首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
远缘杂交早代稳定小麦导入了外源DNA片段并发生了DNA重排   总被引:2,自引:0,他引:2  
在植物界, 多倍体植物非常普遍. 具有A, B, D三个部分同源染色体组的普通小麦是异源多倍体物种的一个典型代表. 近几年, 模拟普通小麦的起源过程进行的研究表明, 从四倍体小麦注入节节麦整个基因组形成异源六倍体小麦的早期阶段, DNA序列和基因表达发生了可能有利于遗传“二倍化”的变化. 利用普通小麦-黑麦远缘杂交自然结实的早代稳定特异小麦99L2研究发现: (ⅰ) 99L2至少导入了两个黑麦染色体上的DNA片段, 表明可能存在不同于传统的小麦-外源染色体配对重组的外源DNA导入机制; (ⅱ) 99L2自身的DNA序列发生了变化, 表明外源DNA部分片段注入小麦染色体组过程中, 也可能导致小麦自身DNA序列发生变化.  相似文献   

2.
小麦A/B染色体组SSR标记在新小麦合成前后的比较研究   总被引:1,自引:0,他引:1  
微卫星分子标记已广泛用于普通小麦遗传和进化研究。由于人工合成小麦与小麦品种之间存在高的遗传多样性,人工合成小麦已被大量应用于小麦分子标记工作中。但是,目前还缺乏人工合成小麦的异源六倍化过程对微卫星影响的研究。本研究直接比较了四倍体小麦与节节麦远缘杂交并经染色体加倍获得人工合成小麦前后,位于普通小麦A/B染色体组不同染色体臂上的66个特异引物揭示的微卫星位点的保守性和可转移性。结果表明,除了一个引物在新合成小麦中扩增出供体亲本没有的新带,一个引物在节节麦扩增出的产物在新合成小麦中消失,其他的所有微卫星引物的扩增产物在小麦合成前后是保守的,没有变异发生。所有的引物能够在四倍体小麦中扩增出微卫星产物,四倍体小麦中的扩增产物也出现在新的人工合成小麦中;有70%的引物能够在节节麦扩增出产物,其中的绝大多数产物也出现在新的人工合成小麦中。因此,普通小麦A/B染色体组的这些微卫星引物除了在人工合成小麦的A/B染色体组中扩增出产物,还能在其D染色体组中扩增出产物,也就是说,这些引物对人工合成小麦而言,并非是A/B染色体组特异的。根据该研究结果,讨论了小麦微卫星的可转移性和特异性问题,重点讨论了在应用人工合成小麦构建的遗传群体进行微卫星分子标记中的应用价值及其应该注意的问题。  相似文献   

3.
研究表明, 多倍体小麦基因组中存在一类低拷贝、染色体专化的DNA序列, 其在多倍体形成时常表现出不稳定性.这类序列被认为在异源多倍体的建立和稳定中起着关键作用.为进一步研究这一问题, 对通过染色体显微切割从普通小麦( Triticum aestivum L.)中分离的5个7B染色体专化DNA序列的特性进行了研究.以这些序列为探针对大量的多倍体小麦和它们的二倍体祖先物种进行了Southern杂交分析.结果表明, 这些序列可被分为两种类型:其中的4个序列与所有的多倍体物种均杂交, 但是在二倍体水平上, 它们却只与和多倍体小麦B基因组紧密相关的物种杂交, 这说明这些序列是在二倍体物种分化以后产生的,然后垂直传递给多倍体; 其中的1个序列与所有的二倍体及多倍体物种均杂交, 暗示在多倍体形成后这些序列从A和D基因组中消除了. 用这一序列分别与一个人工合成的六倍体和四倍体小麦进行Southern杂交的结果表明, 序列消除是一个迅速的事件而且很可能与这些序列的甲基化状态有关. 认为这些低拷贝的染色体专化序列对于多倍体形成后部分同源染色体之间的进一步分化起着重要作用.  相似文献   

4.
研究表明 ,多倍体小麦基因组中存在一类低拷贝、染色体专化的DNA序列 ,其在多倍体形成时常表现出不稳定性。这类序列被认为在异源多倍体的建立和稳定中起着关键作用。为进一步研究这一问题 ,对通过染色体显微切割从普通小麦 (TriticumaestivumL .)中分离的 5个 7B染色体专化DNA序列的特性进行了研究。以这些序列为探针对大量的多倍体小麦和它们的二倍体祖先物种进行了Southern杂交分析。结果表明 ,这些序列可被分为两种类型 :其中的 4个序列与所有的多倍体物种均杂交 ,但是在二倍体水平上 ,它们却只与和多倍体小麦B基因组紧密相关的物种杂交 ,这说明这些序列是在二倍体物种分化以后产生的 ,然后垂直传递给多倍体 ;其中的 1个序列与所有的二倍体及多倍体物种均杂交 ,暗示在多倍体形成后这些序列从A和D基因组中消除了。用这一序列分别与一个人工合成的六倍体和四倍体小麦进行Southern杂交的结果表明 ,序列消除是一个迅速的事件而且很可能与这些序列的甲基化状态有关。认为这些低拷贝的染色体专化序列对于多倍体形成后部分同源染色体之间的进一步分化起着重要作用。  相似文献   

5.
我们感到目前使用染色体数目的符号不够准确,常常看到一些文章、小册子是这样叙述染色体数目的。 “以”表示基本染色体组的染色体数,称为单倍体,则含有二个染色体组的细胞或个体称为二倍体,用2n表示;含有三个染色体组的细胞或个体称为三倍体,用3n表示;依此类推,还有四倍体、五倍体、六倍体……可用4n、5n、6n……表示。凡体细胞中具有二倍以上的染色体数的生物均称为多倍体,包括三倍体、四倍体、五倍体……等”。 “小麦属的多倍体系有一粒小麦,体细胞染色体数2n=14;二粒小麦,体细胞染色体数2n=28,为异源四倍体;普通小麦,体细胞染色体数2n=42,为异源六倍体”。 这种说法并不少见。开始“以n代表基本染色体  相似文献   

6.
小麦属核型分析和BG染色体组及4A染色体的起源   总被引:1,自引:0,他引:1  
应用植物有丝分裂染色体标本制备新方法和N—带技术对小麦属(Triticum)9个六倍体种(AABBDD),8个四倍体种(AABB,AAGG),3个二倍体种(AA,A~uA~u)及B组的可能供体沙融山羊草(Ae. shronensis)体细胞核型和N—带进行了分析。结果表明,小麦属全部为具中部或次中部着丝点染色体,核型属于“2A”类型,不对称性随倍性提高而有所增加。种问核型有一定差异。所有小麦B染色体组、G染色体组和4A染色体均显N—带,其它染色体则不显带或只显很浅的着丝点带。六倍体种B染色体组带型基本相同,四倍体小麦B组N—带种间有一定差异。提莫菲维小麦(T.Timopheevi)G组带纹数目和分布与B梁色体组有显著差别,作者认为两者非同源。沙融山羊草核型和带型都与小麦B组相近,是B组的可能供体。一粒系小麦A染色体组基本不显N—带,其中无与4A带型相同的染色体,4A起源尚待研究。  相似文献   

7.
六倍体普通小麦(Triticum aestivum L.)是由四倍体小麦(T.turgidum L.)与二倍体节节麦(Aegilops tanschii Coss.)天然杂交然后通过染色体自然加倍形成的异源多倍体.这一起源过程是自然条件下天然发生的,它的发生需要具备一个条件:四倍体小麦与节节麦的天然杂交种子在自然条件(没有幼胚培养等)下能够正常发芽出苗.我们从22份节节麦中发现来自中东的节节麦AS60在不采用幼胚培养等人工辅助条件下,仍然很容易与四倍体小麦和普通小麦产生有生活力的杂种植株.AS60与四倍体小麦的杂交种子有50.0%(反交)及57.1%(正交)的种子,而AS60与六倍体普通小麦的杂交种子则有45.5%不需幼胚培养等措施能够正常发芽、生长.AS60的这一特征正是普通小麦起源过程需要的条件.最后探讨了这一发现对小麦遗传改良和对普通小麦起源演化研究的意义.  相似文献   

8.
构建人工合成六倍体小麦是利用小麦近缘材料优异基因的很有效的方法。但是目前在人工合成异源六倍小麦的过程中对微卫星位点的影响研究尚不完善。本研究直接比较了亲本四倍体小麦PS5与4个不同粗山羊草进行远缘杂交并经染色体自然加倍后获得4个人工合成六倍体小麦前后,位于普通小麦A/B染色体组不同染色体臂上的104对引物的变化。结果表明,104对微卫星引物的扩增产物在4个合成六倍体小麦中具有与普通小麦相同的带型;但在22对引物的扩增产物上存在差异,其中Am4与其它3个六倍体小麦Am1,Am2,Am3在15对引物扩增的条带存在差异;另外发现有45对特异与AB染色体的引物能够在粗山羊草中扩增出产物,其中特异于B染色体组的引物47.54%的可以在粗山羊草中扩增出产物,而A染色体组的引物占38.24%。因此,基于普通小麦开发的微卫星引物可以用于合成六倍体小麦的研究,而Am4材料与其它3个合成二倍体小麦的差异尚需进一步研究,另外我们推测普通小麦的B染色体组与A染色体组相比与粗山羊草存在较近的亲缘关系。  相似文献   

9.
远缘杂交不需幼胚培养的节节麦基因型   总被引:9,自引:0,他引:9  
六倍体普通小麦(Triticum aestivum L.)是由四倍体小麦(T.turgidum L.)与二倍体节节麦(Aegilops tanschii Coss.)天然杂交然后通过染色体自然加倍形成的异源多倍体。这一起源过程是自然条件下天然发生的,它的发生需要具备一个条件:四倍体小麦与节节麦的天然杂交种子在自然条件(没有幼胚培养等)下能够正常发芽出苗。我们从22份节节麦中发现来自中东的节节麦AS60在不采用幼胚培养等人工辅助条件下,仍然很容易与四体小麦和普通小麦产生有生活力的杂种植株。AS60与四倍体小麦的杂交种子有50.0%(反交)及57.1%(正交)的种子,而AS60与六倍体普通小麦的杂交种子则有45.5%不需幼胚培养等措施能够正常发芽,生长。AS60的这一特征正是普通小麦起源过程需要的条件。最后探讨了这一发现对小麦遗传改良和对普通小麦起源演化研究的意义。  相似文献   

10.
利用微卫星遗传标记探讨达氏鳇的多倍体倍性   总被引:1,自引:0,他引:1  
鲟形目(Acipenseriformes)鱼类是一类多倍体起源的鱼类,种问易于杂交,且由于存在大量微型染色体,其染色体数目和倍性也难于确定.到目前为止包括达氏鳇(Huso dauricus)在内的一些鲟鱼物种基因组大小和染色体倍性仍旧存在争议.本实验采用微卫星遗传标记技术,通过观察9个微卫星位点的等位基因数目,发现达氏鳇在大部分位点中显示的倍性大于二倍性,同时利用多倍体分析软件POLYSAT推断了26尾达氏鳇的个体倍性.结果表明,26尾达氏鳇中有20尾显示为六倍体,占总数的76.92%;4尾显示为八倍体,占总数的15.38%;2尾显示为四倍体,占总数的7.79%.因此,我们认为达氏鳇应该为八倍体物种,结果中出现的四倍体和六倍体个体,是由于这些个体在我们选取的微卫星位点中存在部分纯合等位基因,导致了多数个体显示为六倍体.这一结论与近年来支持达氏鳇为进化性八倍体物种的研究结果一致.  相似文献   

11.
金沙江中游地区红山茶组植物的Giemsa C-带研究   总被引:3,自引:1,他引:2  
研究了金沙江中游地区红山茶组植物的GiemsaC-带。该地区的红山茶植物以四倍体为主,个别居群为二倍体或六倍体。居群间的C-带差异明显,C-带多出现在染色体端部。在四倍体和六倍体的C-带带型中,只能找到2条显相同C-带的同源染色体,通过与其它地区的红山茶植物进行比较,发现红山茶组植物的倍性从华东,华南经贵州,四川向云南逐渐增高,显C-带的染色体与染色体总数之比随信性增加而减少。文中指出华东或华南可能是红山茶组植物的起源地,而金沙江中游地区是其现代分化中心,这一地区红山茶的多倍体类群可能是异源起源的。  相似文献   

12.
采用微卫星(SSR)分子标记技术,选用23个D染色体组特异性引的对来自CIMMYT的26份人工合成六倍体小麦D染色体组的遗传多样性进行了分析。研究发现,26份材料在D染色体组上存在丰富的等位基因变异(92个),平均每个基因座为4个。遗传距离计算结果也显示,26份材料D染色体组之间具有较大的遗传差异,平均遗传距离高达0.4955。因此,人工合成六倍体小麦D染色体组中存在丰富的遗传多样性,可以作为拓宽普通小麦遗传基础的新的遗传变异来源。研究还发现,由同一个粗山羊草基因型与不同硬粒小麦杂交合成的人工合成六倍体小麦(如合成种17和18)在所用检测的23个基因座中有3个存在差异,说明小麦在多倍化后,供体基因组在重复序列区域会发生遗传分化。  相似文献   

13.
普通小麦是由四倍体小麦栽培类型与野生二倍体节节麦远缘杂交形成的异源六倍体.普通小麦保持了四倍体小麦的高产潜力,D基因组的加入丰富了食品加工产品类型、增强了环境适应能力.与二倍体作物不同,普通小麦有3个亚基因组,存在大量重复基因,基因组缓冲性、可塑性强,单个基因拷贝可能对育种改良的效果有限.小麦3个亚基因组的遗传多样性是...  相似文献   

14.
小麦进化过程中叶片气孔和光合特征演变趋势   总被引:5,自引:0,他引:5  
根据小麦属内种间的进化关系选取21种小麦品种为实验材料,研究了小麦进化过程中气孔特征和光合特征的演变趋势。结果表明,无论是A,B,D染色体组还是A,G染色体组,气孔长度、宽度、周长、面积均随倍性水平的升高而呈增大趋势,而气孔指数无显著变化;A,B,D染色体组气孔密度随倍性升高呈减少趋势。二倍体小麦的Pn值最高,六倍体小麦的Fv/Fm值较高,二倍体小麦叶片叶绿素含量显著高于四倍体和六倍体小麦。不同倍性小麦的净光合速率与气孔导度间均存在极显著相关关系,表明气孔传导力是小麦光合能力的主要限制因素之一。气孔导度与单一气孔特征之间无显著相关关系。A,B,D染色体组不同倍性小麦叶片气孔密度差异显著,其大小顺序为二倍体〉四倍体〉六倍体;A,B,D染色体组不同倍体小麦叶片的气孔长度、宽度、周长、面积差异显著,顺序均为六倍体〉四倍体〉二倍体,气孔密度降低可能是A,B,D染色体组六倍体小麦光合能力降低的原因。随着倍性的升高,小麦的抵抗光抑制能力越强,因此光化学能转换效率可能不是小麦进化过程中光合能力变化的原因。A,B,D染色体组中二倍体的叶绿素含量显著大于四倍体和六倍体,而A,G染色体组中倍体间叶绿素含量差异不显著,说明叶绿素的降低可能是A,B,D染色体组六倍体光合能力降低的原因之一。  相似文献   

15.
整理燕麦属(Avena L.)细胞遗传学研究文献,总结相关研究进展。燕麦属有7组29种植物,分属5个基因组类型(A、C、AB、AC、ACD)。基于荧光原位杂交技术和种间杂交实验表明,A、C基因组染色体结构差异较大,A基因组二倍体物种具有等臂染色体,C基因组二倍体物种具有不等臂染色体。燕麦属植物D基因组和A基因组间分化程度较小,B基因组有可能是A基因组的变型——A′基因组。普遍观点认为A基因组二倍体物种可能是燕麦属六倍体物种母系亲本,砂燕麦(A.strigosa)为该属多倍体物种A基因组祖先的假说备受争议,有学者认为加那利燕麦(A.canariensis)可能是多倍体物种A或D基因组的供体。燕麦属多倍体物种基因组互换及染色体重排事件,增加燕麦属种间亲缘关系、多倍体物种基因组起源研究的困难。结合基因组学、分子细胞遗传学技术,有望为上述问题提供新证据。  相似文献   

16.
山羊草属核型分析及其与小麦属的进化关系   总被引:2,自引:0,他引:2  
作者研究了山羊草属(Aegilops)中的新疆节节麦(Ae.squarrosa)、拟斯卑尔脱山羊草(Ae.speltoides)、沙融山羊草(Ae.sharonensis)、尾状山羊草(Ae.caudata)、卵圆山羊草(Ae.ovata)、偏凸山车草(Ae.ventricosa),钩状山羊草(Ae.triuncialis)、三芒山羊草(Me.triaristata)、欧山羊草(Ae.biuncialis)、柱穗山羊草(Ae.cylindrica)、可兹山羊草(Ae.kotschyi)和肥厚山羊草(Ae.crassa)的核型和部分材料的Giemsa N-带,结果表明山羊草属的C组核型为:4sm+3st;D组核型为:6m+1sm;S组的核型为:6m+1sm;M组的核型为:4m+1sm+2t。在四倍体、六倍体中,各染色体组保持着相对稳定。山羊草属S、D染色体组的核型与带型表明它们是小麦B、D染色体组的可能供体,C、M染色体组的一部分染色体带型亦与小麦B组带型相似。  相似文献   

17.
具有天然雌核发育的多倍体杂种鱼可防止杂种优势的分离并保持其后代的杂种优势. 由于假设诱发的多倍体鱼类的生殖模式是天然雌核发育的, 我们进行了鲤鲫杂种的多倍体诱发, 目的是描述经染色体组叠加由有性鲤鲫二倍体转化为异源三倍体及异源四倍体克隆谱系. 鲤鲫杂种产生未减数而具有两亲本染色体组杂种卵子, 未减数的雌核可与入卵的雄核融合叠加形成三倍体合子. 鲤鲫异源三倍体胚胎发育正常, 部分异源三倍体雌性个体可产生未减数的、仍保留母本的三套染色体的成熟卵子. 绝大部分鲤鲫异源人工三倍体个体的成熟卵子的雌核不与入卵的雄核融合, 具有天然雌核发育特性. 异源三倍体卵子在入卵精子的激动下由雌核发育产生全雌后代, 并形成一个单性克隆系, 后代保留异源三倍体母本的形态特征, 并靠雌核发育的生殖方式形成异源三倍体克隆系. 极少数异源三倍体个体的成熟卵子的雌核可与入卵的雄核融合, 再通过染色体组叠加形成鲤鲫异源四倍体. 所有异源四倍体的雌性产生未减数的、含有4个染色体组的成熟卵子. 异源四倍体的成熟卵子保持雌核发育特性, 在近类的精子诱发下产生单性后代, 形成一个异源四倍体单性克隆.  相似文献   

18.
染色体倍数与杂种优势之关系初探   总被引:2,自引:0,他引:2  
杂种优势是植物界的一个普遍现象,也是提高栽培作物产量的一个十分重要的途径。目前,除少数栽培作物外,大部分作物都已成功地利用了杂种优势。杂种优势的利用基本上集中在二倍体,在生产上大面积利用的以收获种子为目的的多倍体并不多,如小麦(异源六倍体)、大豆(异源四倍体)、花生(异源四倍体)等。其原因除制种较困难外,关键是杂种优势多不及二倍体,但到目前为止,尚未有一个完整的理论对此进行系统解释,本文将就这一问题进行讨论,以供同行参考。1 内源优势与外源优势笔者认为,多倍体作物杂种优势不强与其染色体组成有关。…  相似文献   

19.
利用异源多倍体杂种优势是多倍体水稻研究的第三阶段,但异源多倍体杂种常常不育。为明确其不育特点,本文以本实验室通过远缘杂交获得的栽培稻(AA)品种DTS137和高秆野生稻O.alta(CCDD)的杂种三倍体ACD和加倍形成的六倍体AACCDD为材料,分别对其花粉和胚囊发育过程进行石蜡切片观察,发现3x与6x之间以及6x雌性和雄性生殖方式和前途具有明显的不同:(1)异源三倍体ACD水稻杂种花粉败育彻底,败育发生在小孢子母细胞时期,绒毡层细胞提前解体:大孢子母细胞不能进行减数分裂,与周围的珠心组织一起发生解体,雌性完全败育。(2)异源六倍体水稻杂种(AACCDD)的雄性败育发生在小孢子母细胞减数分裂的细线期,此期小孢子母细胞发育停滞,随后解体;而雌性器官的发育基本正常。推测异源六倍体杂种的不育性与不同基因组间存在着部分核质不亲和性有关。据此,为了克服六倍体水稻AACCDD的不育性和验证该杂种雌性可育的结论,以栽培稻(AA)的PMeS二倍体品系HN2026.2x为父本与之杂交,通过胚挽救成功获得回交杂种BC1F1植株,经根尖染色体鉴定为2n=4x=48,系由AACD组成。虽然该异源三基四倍体是不育的,但为随后的染色体加倍创造AAAACCDD同源异源八倍体,进而获得结实的同源异源多倍体杂种打下了良好的基础。  相似文献   

20.
不同分类群的异源多倍体在二倍化过程中, 正反交序列消除往往表现出不同特征, 暗示了在不同物种中, 核质互作在多倍体进化过程的作用不同。利用13对EcoRI-NN/MseI-NNN选择性引物, 对野黄瓜Cucumis hystrix (2n=24)与栽培黄瓜C. sativus (2n=14)的正反交F1、异源四倍体及二倍体亲本DNA进行AFLP分析。结果表明: 杂交后代基因组的杂合性诱发了F1与异源四倍体广泛的序列消除; 细胞质可能会影响部分亲本序列消除的频率, 但是正反交在序列消除频率上差异不显著, 并且在序列消除时间(均始于F1代)及消除类型上也表现出一致性, 表明核质互作并不是影响序列消除的主要因素; 实验还发现, 正反交不能影响序列的倾向性丢失, 染色体数少的黄瓜条带易发生丢失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号