首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.

Key message

Cruciferin (cru) and napin (nap) were negatively correlated and the cru/nap ratio was closely negative correlated with glucosinolate content indicating a link between the two biosynthetic pathways.

Abstract

Canola-type oilseed rape (Brassica napus L.) is an economically important oilseed crop in temperate zones. Apart from the oil, the canola protein shows potential as a value-added food and nutraceutical ingredient. The two major storage protein groups occurring in oilseed rape are the 2 S napins and 12 S cruciferins. The aim of the present study was to analyse the genetic variation and the inheritance of napin and cruciferin content of the seed protein in the winter oilseed rape doubled haploid population Express 617 × R53 and to determine correlations to other seed traits. Seed samples were obtained from field experiments performed in 2 years at two locations with two replicates in Germany. A previously developed molecular marker map of the DH population was used to map quantitative trait loci (QTL) of the relevant traits. The results indicated highly significant effects of the year and the genotype on napin and cruciferin content as well as on the ratio of cruciferin to napin. Heritabilities were comparatively high with 0.79 for napin and 0.77 for cruciferin. Napin and cruciferin showed a significant negative correlation (?0.36**) and a close negative correlation of the cru/nap ratio to glucosinolate content was observed (?0.81**). Three QTL for napin and two QTL for cruciferin were detected, together explaining 47 and 35 % of the phenotypic variance. A major QTL for glucosinolate content was detected on linkage group N19 whose confidence interval overlapped with QTL for napin and cruciferin content. Results indicate a relationship between seed protein composition and glucosinolate content.  相似文献   

2.
The distribution of napin and cruciferin, the two major storage proteins in rape seed, Brassica napus, has been visualized during seed development by antibody staining of paraffin-embedded and sectioned seeds. The results indicate that the synthesis of both proteins during embryogenesis is strictly regulated with respect to time and tissue. Although the synthesis of napin started a few days earlier than that of cruciferin, both proteins displayed similar patterns in their spatial distributions. They were first detected in the axis, then in the outer cotyledon, and finally in the cells of the inner cotyledon. Both proteins are also present in the endosperm, although in lower amounts. In germinating seeds, napin and cruciferin were rapidly degraded. Within 2 days the amounts had decreased dramatically, and after 4 days hardly any cells contained napin or cruciferin. Biochemical analyses of dissected embryos showed that, for napin as well as for cruciferin, similar levels of polypeptides were found in the axis and cotyledons.  相似文献   

3.
A number of effects on embryogenesis of the putative phytohormone jasmonic acid (JA), and its methyl ester (MeJA), were investigated in two oilseed plants, repeseed (Brassica napus) and flax (Linum usitatissimum). Results from treatments with JA and MeJA were compared with those of a known effector of several aspects of embryogenesis, abscisic acid (ABA). Jasmonic acid was identified by gas chromatography-mass spectrometry as a naturally occurring substance in both plant species during embryo development. Both JA and MeJA can prevent precocious germination of B. napus microspore embryos and of cultured zygotic embryos of both species at an exogenous concentration of >1 micromolar. This dose-response was comparable with results obtained with ABA. Inhibitory effects were also observed on seed germination with all three growth regulators in rapeseed and flax. A number of molecular aspects of embryogenesis were also investigated. Expression of the B. napus storage protein genes (napin and cruciferin) was induced in both microspore embryos and zygotic embryos by the addition of 10 micromolar JA. The level of napin and cruciferin mRNA detected was similar to that observed when 10 micromolar ABA was applied to these embryos. For MeJA only slight increases in napin or cruciferin mRNA were observed at concentrations of 30 micromolar. Several oilbody-associated proteins were found to accumulate when the embryos were incubated with either JA or ABA in both species. The MeJA had little effect on oilbody protein synthesis. The implications of JA acting as a natural regulator of gene expression in zygotic embryogenesis are discussed.  相似文献   

4.
5.
To manipulate the quantity and quality of storage components in Brassica napus seeds, we have constructed an antisense gene for the storage protein napin. The antisense gene was driven by the 5-flanking region of the B. napus napin gene to express antisense RNA in a seed-specific manner. Seeds of transgenic plants with antisense genes often contained reduced amounts of napin. In some transgenic plants, no accumulation of napin was observed. However, the total protein content of transgenic and wild-type seeds did not differ significantly. Seeds lacking napin accumulated 1.4 to 1.5 times more cruciferin than untransformed seeds, although the oleosin content was not affected. Fatty acid content and composition in the seeds of transgenic plants were also analyzed by gas chromatography. Though the total fatty acid content of the transformants was the same as that of non-transformants, there was a reduction in 18:1 contents and a concomitant increase of 18:2 in seeds with reduced napin levels. This observed change in fatty acid composition was inherited in the next generation.  相似文献   

6.
The synthesis of the major protein and lipid storage reserves during embryogenesis in oilseed rape (Brassica napus L., cv. Mikado) has been examined by biochemical, immunological and immunocytochemical techniques. The mature seeds contained about 45% (w/w) storage oil and 25% (w/w) protein. There were three major seed protein components, i.e. about 40-50% total protein was cruciferin, 20% was napin and 20% was a 18 kDa hydrophobic polypeptide associated with the proteinaceous membrane surrounding the storage oil bodies. Embryogenesis was divided into four overlapping stages with regard to the synthesis of these storage components: (1) for the first 3 weeks after flowering, little, if any, synthesis of storage components was observed; (2) storage-oil synthesis began at about week 3, and maximal rates were from weeks 4 to 7; (3) synthesis of the soluble storage proteins cruciferin and napin started at week 6 and rates were maximal between weeks 8 and 11; (4) the final stage was the synthesis of the 19 kDa oil-body polypeptide, which started at weeks 8-10 and was at a maximal rate between weeks 10 and 12. The synthesis of the 19 kDa oil-body protein therefore occurred independently of the synthesis of the soluble seed storage proteins. This former synthesis did not occur until shortly before the insertion of the 19 kDa polypeptide into the oil-body membrane. No evidence was found, either from sucrose-density-gradient-centrifugation experiments or from immunogold-labelling studies, for its prior accumulation in the endoplasmic reticulum. Conventional and immunogold-electron-microscopic studies showed that oil bodies were synthesized in the early to middle stages of seed development without a strongly electron-dense membrane. Such a membrane was only found at later stages of seed development, concomitantly with the synthesis of the 19 kDa protein. It is proposed that, in rapeseed embryos, oil bodies are initially formed with no proteinaceous membrane. Such a membrane is formed later in development after insertion by ribosomes of the hydrophobic 19 kDa polypeptide directly into the oil bodies.  相似文献   

7.
Probes derived from cDNA clones of napin and cruciferin, the major storage proteins of Brassica napus, and in situ hybridization techniques were used to examine changes in the spatial and temporal distribution of storage protein messages during the course of embryogeny, with a special emphasis on the developing apical meristems. Napin mRNAs begin to accumulate in the cortex of the axis during late heart stage, in the outer faces of the cotyledons during torpedo stage and in the inner faces of the cotyledons during cotyledon stage. Cruciferin mRNAs accumulate in a similar pattern but approximately 5 days later. Cells in the apical regions where root and shoot meristems develop do not accumulate storage protein messages during early stages of embryogeny. In the upper axis, the boundary between these apical cells and immediately adjacent cells that accumulate napin and cruciferin mRNAs is particularly distinct. Our analysis indicates that this boundary is not related to differences in tissue or cell type, but appears instead to be coincident with the site of a particular set of early cell divisions. A major change in the mRNA accumulation patterns occurs halfway through embryogeny, as the embryos enter maturation stage and start drying down. Final maturation of the shoot apical meristem is associated with the development of leaf primordia and the accumulation of napin mRNAs in the meristem, associated leaf primordia and vascular tissue. Cruciferin mRNAs accumulate only in certain zones of the shoot apical meristem and on the flanks of leaf primordia. Neither type of mRNA accumulates in the root apical meristem at any stage.  相似文献   

8.
Napins belong to the family of 2S albumin seed storage proteins and are shown to possess antifungal activity. Napins, in general, consist of two subunits (derived from single precursor) linked by disulphide bridges. Usually, reducing environment of the E. coli cytosol is not conducive for proper folding of heterodimeric proteins containing disulphide bridges. Present investigation reports for the first time expression of napin-like protein of Momordica charantia (rMcnapin) in E. coli and its in vitro refolding to produce biologically active protein. Full-length cDNA encoding napin-like protein (2S albumin) was isolated from M. charantia seeds by immunoscreening a cDNA expression library. The cDNA consisted of an open reading frame encoding a protein of 140 amino acid residues. The 36 amino acids at the N-terminus represent the signal and propeptide. The region encoding small and large chains of the M. charantia napin is separated by a linker of 8 amino acid residues. The region encoding napin (along with the linker) was PCR amplified, cloned into pQE-30 expression vector and expressed in E. coli. rMcnapin expressed as inclusion bodies was solubilized and purified by Ni2+-NTA affinity chromatography. The denatured and reduced rMcnapin was refolded by rapid dilution in an alkaline buffer containing glycerol and redox couple (GSH and GSSG). Refolded His-rMcnapin displayed similar spectroscopic properties as that of mature napin-like protein of M. charantia with 48.7% alpha-helical content. In addition, it also exhibited antifungal activity against T. hamatum with IC50 of 3 microg/ml. Refolded His-rMcnapin exhibited approximately 90% antifungal activity when compared with that of mature napin-like protein of M. charantia. Thus, a heterologous expression system and in vitro refolding conditions to obtain biologically active napin-like protein of M. charantia were established.  相似文献   

9.
The major storage proteins isolated from wild-type seeds of Arabidopsis thaliana (L.) Heynh., strain Columbia, were studied by sucrose gradient centrifugation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Both the hypocotyl and cotyledons of mature embryos contained abundant 12 S (cruciferin) and 2 S (arabin) proteins that appeared similar in size and subunit composition to the cruciferin (12 S) and napin (1.7 S) seed-storage proteins of Brassica napus. The 12 S protein from Arabidopsis was resolved by SDS-PAGE into two groups of subunits with approximate relative molecular weights of 22–23 kDa (kilodalton) and 30–34 kDa. These polypeptides accumulated late in embryo development, disappeared early in germination, and were not detected in other vegetative or reproductive tissues. Accumulation of the 12 S proteins in aborted seeds from nine embryo-lethal mutants with different patterns of abnormal development was studied to determine the extent of cellular differentiation in arrested embryos from each mutant line. Abundant 12 S proteins were found in arrested embryos from two mutants with late lethal phases, but not in seven other mutants with lethal phases ranging from the globular to the cotyledon stages of embryo development. These results indicate that the accumulation of seed-storage proteins in wild-type embryos of Arabidopsis is closely tied to morphogenetic changes that occur during embryo development. Embryo-lethal mutants may therefore be useful in future studies on the developmental regulation of storage-protein synthesis.Abbreviations kDa kilodalton - Mr relative molecular weight - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate  相似文献   

10.
Four fractions from rat liver (a crude mitochondria (CM) and cytosol (C) fraction obtained with differential centrifugation, a purified mitochondrial (PM) fraction obtained with nycodenz density gradient centrifugation, and a total liver (TL) fraction) were analyzed with two-dimensional liquid chromatography tandem mass spectrometry analysis. A total of 564 rat proteins were identified and were bioinformatically annotated according to their physicochemical characteristics and functions. While most extreme alkaline ribosomal proteins were identified in the TL fraction, the C fraction mainly included neutral enzymes and the PM fraction enriched alkaline proteins and proteins with electron transfer activity or oxygen binding activity. Such characteristics were more apparent in proteins identified only in the TL, C, or PM fraction. The Swiss-Prot annotation and the bioinformatic prediction results proved that the C and PM fractions had enriched cytoplasmic or mitochondrial proteins, respectively. Combination usage of subcellular fractionation with two-dimensional liquid chromatography tandem mass spectrometry was proved to be a high-throughput, sensitive, and effective analytical approach for subcellular proteomics research. Using such a strategy, we have constructed the largest proteome database to date for rat liver (564 rat proteins) and its cytosol (222 rat proteins) and mitochondrial fractions (227 rat proteins). Moreover, the 352 proteins with Swiss-Prot subcellular location annotation in the 564 identified proteins were used as an actual subcellular proteome dataset to evaluate the widely used bioinformatics tools such as PSORT, TargetP, TMHMM, and GRAVY.  相似文献   

11.
2S albumin storage proteins from rapeseed (Brassica napus), called napins, consist of two different polypeptide chains linked by disulphide bridges, which are derived by proteolytic cleavage from a single precursor. The precursor form of the napin BnIb (proBnIb) has been cloned using a PCR strategy and sequenced. The amino-acid sequence deduced from the clone includes 31 residues of the small chain and 75 of the large chain, which are connected by the peptide Ser-Glu-Asn. Expression of the cDNA encoding proBnIb has been carried out in the methylotrophic yeast Pichia pastoris. The induced protein was secreted to the extracellular medium at a yield of 80 mg.L(-1) of culture and was purified by means of size-exclusion chromatography and reverse phase-HPLC. Recombinant proBnIb appeared properly folded as its molecular and spectroscopic properties were equivalent to those of the mature heterodimeric protein. As 2S albumin storage proteins from Brassicaceae have been shown to be type I allergy inducers, the immunological activity of the recombinant proBnIb was analysed as a measure of its structural integrity. The immunological properties of the recombinant precursor and the natural napin were indistinguishable by immunoblotting and ELISA inhibition using polyclonal antisera and sera of patients allergic to mustard and rapeseed. In conclusion, the recombinant expression of napin precursors in P. pastoris has been shown to be a successful method for high yield production of homogeneous and properly folded proteins whose polymorphism and complex maturation process limited hitherto their availability.  相似文献   

12.
The nonhistone chromosomal proteins were separated on Sephadex G-200 into 3 fractions of which two were associated with 3S RNA. The RNA eluted with fraction I (guanine + cytosine content 54%) is tightly bound to the proteins from which it can be separated only after digestion with pronase. The RNA associated with fraction III (guanine + cytosine content 64%) can be separated from the proteins directly by chromatography on DEAE-Sephadex A 25. No dihydropyrimidines have been detected in any of the two RNAs.  相似文献   

13.
Isolation of phosphatidyl-ethanolamine-binding protein-1 (PEBP-1) from bovine brain was described almost three decades ago but it required a large number of steps to reach high purity. After the fractionation of bovine testis proteins by ammonium sulfate precipitation we found that PEBP-1, detected by Western blotting, was among the very few proteins still soluble at 80% ammonium sulfate saturation (3.2M). This soluble fraction (S80) was directly loaded onto a phenyl sepharose column equilibrated at the same ammonium sulfate concentration (3.2M). A stepwise elution of the retained material at 1.0, 0.5, 0.2, 0.1M ammonium sulfate in ammonium hydrogen carbonate was performed and then with ammonium hydrogen carbonate alone and finally with 50% ethylene glycol. All fractions were analyzed by SDS-PAGE and Western blotting and the fractions containing PEBP-1 was further fractionated by size exclusion chromatography on a HR75 Superdex column permitting the isolation of ubiquitin in addition to PEBP-1 as demonstrated by Western blotting and mass spectrometry. This study shows the feasibility of hydrophobic interaction chromatography (HIC) on phenyl sepharose at a very high ammonium sulfate concentration (3.2M; 80% saturation) to efficiently purify the proteins that are still soluble in these extreme conditions.  相似文献   

14.
J P Fuchs  M Jacob 《Biochemistry》1979,18(19):4202-4208
A method of fractionation of hnRNP constituents adaptable to large-scale preparation is presented. It is based on differential resistance to salt dissociation of the two classes of units of hnRNP, the 30--50S monoparticles and the heterogeneous complexes. The monoparticle proteins were released from hnRNP by 0.4 M NaCl. They were separated from the salt-resistant RNP corresponding to the heterogeneous complexes in three steps: chromatography on DEAE-cellulose, high-speed centrifugation, and Bio-Gel chromatography. The latter chromatography permitted a first fractionation of monoparticle proteins according to molecular weight. Such fractions may serve for purification of individual proteins of molecular weight below 80 000. After the two first steps, two fractions of salt-resistant RNP were obtained. In addition to heterogeneous RNA up to 30 S, small nuclear RNAs were detected which represented 6% of total RNA. The protein pattern was complex, and no clear-cut segregation of groups of proteins could be observed between the two fractions. They were both highly enriched in phosphoproteins as compared to nomoparticle proteins. In another fraction corresponding to the void volume of Bio-Gel chromatography, one-third of the RNA was small nuclear RNA. It is suggested that this fraction contains snRNP in addition to free proteins of molecular weight above 80 000 and to salt-resistant RNP similar to those described above but of small size.  相似文献   

15.
The cholesterol sulphate sulphohydrolase (CHS-ase) exhibiting molecular weight of 30 kDa was purified from human placenta microsomes. The microsomal proteins were extracted with 0.5% Triton X-100. The DEAE-cellulose chromatography of the solubilized microsomal proteins, performed at pH 7.6 allowed to separate two enzymatically active fractions. One of them was associated with the protein fraction unbound by DEAE-cellulose, the other was tightly bound by ion exchanger. The 30 kDa cholesterol sulphate sulphohydrolase was purified to homogenity from the protein fraction tightly bound by DEAE-cellulose. The highly purified enzyme preparation (specific activity 385 nmol min(-1)mg(-1) of protein) exhibited optimal activity at pH 6.4, the K(m) was established to be 6.7 x 10(-6)M, the pI value was 7.4. The 30 kDa cholesterol sulphate sulphohydrolase, in contrast to the CHS-ase form originated from the protein fraction unbound by DEAE-cellulose, was not sensitive to alkaline phosphatase treatment and phosphohydrolase inhibitors. The effects of steroids, -SH reacting agents and sulphohydrolase inhibitors on the enzyme activity were tested.  相似文献   

16.
A rapid and simple method to isolate S100a0 protein from the mixture of bovine S100 protein (S100a0, S100a and S100b) is described. The S100 mixture purified from bovine brain was applied to an anion-exchange column, equilibrated with 50 mM Tris HC1 buffer (pH 8.0) in a high-performance liquid chromatography (HPLC) system. S100a0, S100a and S100b proteins could be eluted separately from the column, which were identified by the immunoassay method, by the Tris-HC1 buffer containing a linear concentration gradient (0.25–0.4) M of NaCl. Immunoreactive S100a0 protein was found in two peak fractions, and each S100a0 fraction could be isolated (S100a0-1 and S100a0-2). Both fractions of S100a0 protein showed a single band at the same position on acrylamide gel electrophoresis, and eluted in a single peak in the same fractions upon gel-filtration column chromatography. There was no significant difference in the amino acid composition between the two S100a0 fractions. Since the S100a0-1 fraction aged for several months at 4°C in the presence of 0.1% NaN3 was found to contain four protein peaks including the fraction corresponding to the S100a0-2 fraction, the difference between the two S100a0 fractions is probably due to some modification of amino acid residues in the molecule, which may occur both in vivo and in vitro.  相似文献   

17.
Immunoaffinity purification of Schistosoma mansoni soluble egg antigens   总被引:8,自引:0,他引:8  
Schistosoma mansoni egg antigens were purified from a heterogeneous mixture of soluble egg antigens (crude SEA) with an immunoaffinity column that consisted of the specific anti-SEA antibodies contained in 16-week S. mansoni-infected mouse serum bound to Sepharose 4B. On sodium dodecyl sulfate (SDS) gel electrophoresis, the purified antigen fraction yielded at least eight bands staining with Coomassie blue and at least five bands staining with Coomaisse blue and at least five bands reacting with periodic acid-Schiff (PAS). All of the proteins in the antigenic fraction appear to contain carbohydrate residues. Upon immunoelectrophoresis the antigen yielded four precipitin arcs. The antigenic fraction isolated by means of the immunoaffinity column was then compared to various fractions obtained from concanavalin A (Con A) chromatography of SEA. The results of Ouchterlony immunodiffusion and immunoelectrophoresis indicate that the antigenic fraction isolated by immunoaffinity purification of SEA contains the major antigens found in the fractions obtained from Con A chromatography of SEA. The results of SDS gel electrophoresis indicate that the major PAS-reacting bands of the antigenic fraction isolated by immunoaffinity purification are found in the 3rd peak (bound fraction) resulting from Con A chromatography of SEA, whereas the major Coomaisse blue-staining band in the isolated antigenic fraction is found in the 2nd peak (unbound fraction) from Con A chromatography of SEA.  相似文献   

18.
Globulins are an important group of seed storage proteins in dicotyledonous plants. They are synthesized during seed development, assembled into very compact protein complexes, and finally stored in protein storage vacuoles (PSVs). Here, we report a proteomic investigation on the native composition and structure of cruciferin, the 12 S globulin of Brassica napus. PSVs were directly purified from mature seeds by differential centrifugations. Upon analyses by blue native (BN) PAGE, two major types of cruciferin complexes of ∼ 300–390 kDa and of ∼470 kDa are resolved. Analyses by two-dimensional BN/SDS-PAGE revealed that both types of complexes are composed of several copies of the cruciferin α and β polypeptide chains, which are present in various isoforms. Protein analyses by two-dimensional isoelectric focusing (IEF)/SDS-PAGE not only revealed different α and β isoforms but also several further versions of the two polypeptide chains that most likely differ with respect to posttranslational modifications. Overall, more than 30 distinct forms of cruciferin were identified by mass spectrometry. To obtain insights into the structure of the cruciferin holocomplex, a native PSV fraction was analyzed by single particle electron microscopy. More than 20,000 images were collected, classified, and used for the calculation of detailed projection maps of the complex. In contrast to previous reports on globulin structure in other plant species, the cruciferin complex of Brassica napus has an octameric barrel-like structure, which represents a very compact building block optimized for maximal storage of amino acids within minimal space.  相似文献   

19.
1. Intracellular distribution of a muscle alkaline proteinase was investigated on four kinds of fish. 2. The total activity of the muscle proteinase of carp, Cyprinus carpio, was larger in both myofibrillar (Mf) and microsomal (Mic) fractions than the activity in mitochondrial, lysosomal, and supernatant fractions. The activity found in Mf fraction seemed to due to the Mic enzyme which was not separated from Mf fraction. 3. The relative specific activity was mostly found in Mic fraction in the species tested. 4. The results indicate that the distribution pattern of fish muscle alkaline proteinase is different from those of cathepsin D and acid phosphatase. 5. The Mic fraction hydrolyzed Mf and sarcoplasmic proteins. The rates were 40 and 55%, respectively, of the rate when casein was used as a substrate.  相似文献   

20.
By detergent-exchange chromatography using a phenyl-Sepharose CL-4B column, Complex III of the respiratory chain of beef heart mitochondria was efficiently resolved into five fractions that were rich in the iron-sulfur protein, ubiquinone-binding protein, core proteins, cytochrome c1, and cytochrome b, respectively. Complex III was initially bound to the phenyl-Sepharose column equilibrated with buffer containing 0.25% deoxycholate and 0.2 M NaCl. An iron-sulfur protein fraction was first eluted from the column with buffer containing 1% deoxycholate and no salt after removal of phospholipids from the complex by washing with the buffer for the column equilibration, as reported previously (Y. Shimomura, M. Nishikimi, and T. Ozawa, 1984, J. Biol. Chem. 259, 14059-14063). Subsequently, a fraction containing the ubiquinone-binding protein and another containing two core proteins were eluted with buffers containing 1.5 and 3 M guanidine, respectively. A fraction containing cytochrome c1 was then eluted with buffer containing 1% dodecyl octaethylene glycol monoether. Finally, a cytochrome b-rich fraction was eluted with buffer containing 2% sodium dodecyl sulfate. The fractions of the iron-sulfur protein and ubiquinone-binding protein were further purified by gel chromatography on a Sephacryl S-200 superfine column, and the cytochrome c1 fraction was further purified by ion-exchange chromatography on a DEAE-Sepharose CL-6B column; each of the three purified proteins was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号