首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. We used long‐term data and a simulation model to investigate temporal fluctuations in zebra mussel populations, which govern the ecological and economic impacts of this pest species. 2. The size of the zebra mussel (Dreissena polymorpha) population in the Hudson River estuary fluctuated approximately 11‐fold across a 13‐year period, following a cycle with a 2–4 year period. 3. This cycling was caused by low recruitment during years of high adult population size, rapid somatic growth of settled animals, and adult survivorship of 50% per year. 4. Adult growth and body condition were weakly correlated with phytoplankton biomass. 5. The habitat distribution of the Hudson's population changed over the 13‐year period, with an increasing proportion of the population spreading onto soft sediments over time. The character of soft‐sediment habitats in the Hudson changed because of large amounts (mean = 34 g DM m?2) of empty zebra mussel shells now in the sediments. 6. Simulation models show that zebra mussel populations can show a range of long‐term trajectories, depending on the balance between adult space limitation, larval food limitation, and disturbance. 7. Effective understanding and management of the effects of zebra mussels and other alien species depend on understanding of their long‐term demography, which may vary across ecosystems.  相似文献   

2.
1. The bivalve Dreissena polymorpha has invaded many freshwater ecosystems worldwide in recent decades. Because of their high fecundity and ability to settle on almost any solid substratum, zebra mussels usually outcompete the resident species and cause severe damage to waterworks. Time series of D. polymorpha densities display a variety of dynamical patterns, including very irregular behaviours. Unfortunately, there is a lack of mathematical modelling that could explain these patterns. 2. Here, we propose a very simple discrete‐time population model with age structure and density dependence that can generate realistic dynamics. Most of the model parameters can be derived from existing data on D. polymorpha. Some of them are quite variable: with respect to these we perform a sensitivity analysis of the model behaviour and verify that non‐equilibrial regimes (either periodic or chaotic) are the rule rather than the exception. 3. Even in circumstances where the model dynamics are aperiodic it is possible to predict total density peaks from previous peaks. This turns out to be true also in the presence of environmental stochasticity. 4. Using the stochastic model we explore the effects of age‐selective predation. Quite surprisingly, larger removal rates of adults do not always result in smaller population densities and mussel biomasses. Moreover, non‐selective predation can result in skewed size‐frequency distributions which, therefore, are not necessarily the footprint of predators’ preference for larger or smaller zebra mussels.  相似文献   

3.
1. Freshwater mussels (Order Unionoida) are the most imperiled faunal group in North America; 60% of described species are considered endangered or threatened, and 12% are presumed extinct. Widespread habitat degradation (including pollution, siltation, river channelization and impoundment) has been the primary cause of extinction during this century, but a new stress was added in the last decade by the introduction of the Eurasian zebra mussel, Dreissena polymorpha , a biofouling organism that smothers the shells of other molluscs and competes with other suspension feeders for food. Since the early 1990s, it has been spreading throughout the Mississippi River basin, which contains the largest number of endemic freshwater mussels in the world. In this report, we use an exponential decay model based on data from other invaded habitats to predict the long-term impact of D. polymorpha on mussel species richness in the basin.
2. In North American lakes and rivers that support high densities (>3000 m−2) of D. polymorpha , native mussel populations are extirpated within 4–8 years following invasion. Significant local declines in native mussel populations in the Illinois and Ohio rivers, concomitant with the establishment of dense populations of D. polymorpha , suggest that induced mortality is occurring in the Mississippi River basin.
3. A comparison of species loss at various sites before and after invasion indicates that D. polymorpha has accelerated regional extinction rates of North American freshwater mussels by 10-fold. If this trend persists, the regional extinction rate for Mississippi basin species will be 12% per decade. Over 60 endemic mussels in the Mississippi River basin are threatened with global extinction by the combined impacts of the D. polymorpha invasion and environmental degradation.  相似文献   

4.
A 3-primer PCR system was developed to discriminate invasive zebra (Dreissena polymorpha) and quagga (Dreissena bugensis) mussel. The system is based on: 1) universal primers that amplifies a region of the nuclear 28s rDNA gene from both species and 2) a species-specific primer complementary to either zebra or quagga mussel. The species-specific primers bind to sequences between the binding sites for the universal primers resulting in the amplification of two products from the target species and one product from the nontarget species. Therefore, nontarget products are positive amplification controls. The 3-primer system accurately discriminated zebra and quagga mussels from seven geographically distinct populations.  相似文献   

5.
1. Field experiments conducted in Lake Wawasee in 1995 and 1996 measured the response of shell growth of Dreissena polymorpha to environmental gradients.
2. Shell growth decreased with initial shell length in four mussel size classes ranging between 8 and 22 mm, and decreased with depth, with mussels in shallow water (<4 m) having growth rates nearly twice those of mussels in deeper water (4–7 m).
3. Growth occurred early in the spring–summer period (May–June) with relatively little shell added later in the summer (July–September), and varied significantly among sites within Lake Wawasee, but not between the 2 years of this study.
4. Rank order of sites was consistent for both years implying that environmental conditions responsible for variation in shell growth were stable within Lake Wawasee.
5. Cage design did not have a significant effect on mussel shell growth nor did the distance of growth cages above the bottom (0.5–0.75 m above the bottom versus directly on the bottom).
6. This study demonstrates the sensitivity of adult mussel growth to subtle variation in environmental conditions occurring within and among lakes, with potential consequences for mussel population dynamics and community structure and function.  相似文献   

6.
The zebra mussel, Dreissena polymorpha (Pallas), a bivalve species originally native to the Black and Caspian seas, has invaded Ireland in the last decade. Five microsatellite loci were used to investigate genetic diversity and population structure in 10 populations across Europe (Ireland, UK, the Netherlands and Romania) and the Great Lakes (Lake Ontario and Lake St Clair). Levels of allelic diversity and mean expected heterozygosity were high for all populations (mean number of alleles/locus and H(E) were 10-15.2 and 0.79-0.89, respectively). High levels of polymorphism observed in Irish populations suggest that the Irish founder population(s) were large and/or several introductions took place after foundation. Significant deficits of heterozygotes were recorded for all populations, and null alleles were the most probable factor contributing to these deficits. Pairwise comparisons using Fisher exact tests and F(ST) values revealed little genetic differentiation between Irish populations. The UK sample was not significantly differentiated from the Irish samples, most probably reflecting an English origin for Irish zebra mussels. No significant differentiation was detected between the two Great Lakes populations. Our data support a northwest rather than a central or east European source for North American zebra mussels.  相似文献   

7.
Measurements of pseudofaeces production of Dreissena polymorpha were carried out with the aim of developing a biological filter at the freshwater inlet of Lake Volkerak-Zoommeer, the Netherlands. Bioprocessing of polluted suspended matter by suspended cultures of D. polymorpha occurs by filtration and sedimentation of the suspended matter as pseudofaeces. The measurements were conducted under semi-natural conditions.Pseudofaeces production was mainly determined by the dry matter content of the water; the relation is linear. Temperature was of much less importance. This agrees with earlier investigations of the filtration rate of D. polymorpha. Even at the lowest temperature measured during the experiments (6.4 °C) no large decrease in activity was observed. The relation of pseudofaeces production with shell length was sigmoid in shape, in accordance with measurements of the filtration rate.The pseudofaeces produced was slightly more polluted than suspended matter, partly due to a finer grainsize. D. polymorpha from Lake IJsselmeer exposed for 217 days at the intended location of the filter showed bioaccumulation of toxicants, especially organic pollutants and Polycyclic Aromatic Hydrocarbons (up to 10-fold accumulation). The required number of D. polymorpha in the biological filter to treat the waterflow of 14 m3 s–1 entering Lake Volkerak-Zoommeer is 1.24 * 109. The purification efficiency of the filter, the reduction of the amount of toxicants, partly depends on the binding properties of the toxicants and is highest for those strongly bound to suspended matter.  相似文献   

8.
1. The grazing impact of zebra mussels, Dreissena polymorpha Pallas, is often evaluated by applying the individual filtration rate measured in the laboratory to the field abundance and then by comparing the total volume of water filtered with the whole lake volume. Since this approach overlooks refiltration, it overestimates the grazing impact of zebra mussels. To deal with this problem, the present authors developed an in situ method for collecting faeces and pseudofaeces to measure the actual volume of water that is cleared of suspended particles by Dreissena in a unit time under a given set of environmental conditions. This is termed the effective clearance rate (ECR). 2. The experiment was conducted in Hargus Lake, OH, U.S.A., a small thermally stratified reservoir, to test the effects of spatial aggregation, mussel density and the concentration of particulate inorganic matter (PIM) on the effective clearance rate of Dreissena. 3. Over 40 measurements, the ECR values ranged from 15.3 to 68.6 mL ind??1 h??1. Much of the variation can be explained by colony form, mussel density and seston concentration. The effects of these variables were all statistically significant. The average ECR for isolated individuals was higher than that for those in clumps (40.4 versus 32.8 mL ind??1 h??1), which is attributed to increased refiltration in the cores of the clumps. The ECR decreased with increased zebra mussel density because of intensified competition for food particles within the group. The ECR increased with increased PIM concentration in the lake water, which may be interpreted as a result of enhanced water mixing which ultimately caused increases in both sediment resuspension and particle delivery to the mussels. 4. Taking the filtration rates for a 20-mm mussel to be between 116 and 234 mL ind??1 h??1, based on data from the literature, the clumped mussels under the present experimental conditions would have a refiltration ratio between 3.4 and 6.9. 5. The present authors developed an areal clearance model which predicts that seston removal by the Dreissena population is limited by the particle delivery from the ambient water to the mussel bed and will reach a maximum value beyond which no further increase will occur with increased population density. 6. It is concluded that the direct grazing impact of zebra mussel on phytoplankton in thermally stratified lakes is much less effective than predicted from simple filtration rate estimation.  相似文献   

9.
The high mutation rate at microsatellite loci can supply important demographic information on founder events and range expansion in an invasive species such as the zebra mussel Dreissena polymorpha, following its initial introduction. In order to facilitate studies into the colonization patterns of this species in new habitats in Europe and North America, five trinucleotide microsatellite loci were isolated from a partial DNA library. Allelic diversity at all described loci was high, ranging from 20 to 35 alleles per locus. Homologous loci were not amplified in a second related invasive species, Dreisenna bugensis, using the primers developed here.  相似文献   

10.
The effects of contaminated river water on the filtration rate of zebra mussels from a clean reference site were studied. After a 48-h exposure period to filtered water from the rivers Rhine, Meuse and Amstel (The Netherlands), the filtration rate was measured. It was demonstrated that water from contaminated locations inhibited the filtration rate. Inhibition was higher during low water levels in the rivers Rhine and Meuse than during high water levels, suggesting that contaminants are diluted during high water levels. It is concluded that the shortterm filtration assay with D. polymorpha can be used for assessing water quality.  相似文献   

11.
Summary We assessed the feeding biology of veliger larvae of the introduced zebra mussel (Dreissena polymorpha Pallas) in laboratory experiments using inert microspheres as food analogues. Mean clearance rate on 2.87-m beads ranged between 247 and 420 L veliger–1 day–1. Clearance rate was unrelated to bead concentration up to 100 beads L–1, but was positively correlated with veliger shell length. Clearance rates of Dreissena veligers are within the range of those reported for marine bivalve veligers of similar size and for herbivorous Great Lakes microzooplankton, but are orders of magnitude lower than those of settled, conspecific adults. The impact of settled zebra mussel grazing activities on phytoplankton stocks may be up to 1162 times greater than that exerted by veliger populations in western Lake Erie. Based on 1990 size-frequency distributions and associated literature-derived clearance rates, reef-associated Dreissena populations in western Lake Erie (mean depth 7 m) possess a tremendous potential to filter the water column (up to 132 m3 m–2 day–1) and redirect energy from pelagic to benthic foodwebs. Preliminary analyses indicate that chlorophyll a concentration is strongly depleted (<1 g L–1) above Dreissena beds in western Lake Erie.  相似文献   

12.
1. The zebra mussel (Dreissena polymorpha) is well known for its invasive success and its ecological and economic impacts. Of particular concern has been the regional extinction of North American freshwater mussels (Order Unionoida) on whose exposed shells the zebra mussels settle. Surprisingly, relatively little attention has been given to the fouling of European unionoids. 2. We investigated interspecific patterns in fouling at six United Kingdom localities between 1998 and 2008. To quantify the effect on two pan‐European unionoids (Anodonta anatina and Unio pictorum), we used two measures of physiological status: tissue mass : shell mass and tissue glycogen content. 3. The proportion of fouled mussels increased between 1998 and 2008, reflecting the recent, rapid increase in zebra mussels in the U.K. Anodonta anatina was consistently more heavily fouled than U. pictorum and had a greater surface area of shell exposed in the water column. 4. Fouled mussels had a lower physiological condition than unfouled mussels. Unlike tissue mass : shell mass ratio, tissue glycogen content was independent of mussel size, making it a particularly useful measure of condition. Unio pictorum showed a stronger decline in glycogen with increasing zebra mussel load, but had a broadly higher condition than A. anatina at the time of study (July). 5. Given the high conservation status and important ecological roles of unionoids, the increased spatial distribution and fouling rates by D. polymorpha in Europe should receive more attention.  相似文献   

13.
  1. Freshwater mussels are in decline worldwide, with the depressed river mussel Pseudanodonta complanata being one of the rarest and most endangered species in Europe. Invasive mussels are suspected to be an important factor of decline, but there is little information on their interaction with native species.
  2. This study analyzed densities, depth distribution, and individual sizes and weights in one of the largest known populations of P. complanata in Europe in relation to the co‐occurring invasive zebra mussel Dreissena polymorpha and other mussel species, using a systematic transect analysis.
  3. Pseudanodonta complanata was the dominant unionid species in Lake Siecino reaching densities of up to 26 ind/m2, with half of the specimens found at a water depth of 2.0–4.0 m. Densities were highest on sandy substrates in areas of underwater currents. In contrast, 67% of native Unio tumidus were found at depths < 1 m, indicating different habitat preference.
  4. In the study area, 91% of P. complanata, 92% of U. tumidus, and all Anodonta individuals were fouled by D. polymorpha. The dreissenid:unionid mass ratio (mean ± SD; maximum) was 0.43 ± 0.56; 4.22 and 0.86 ± 1.87; 8.76 in P. complanata and U. tumidus, respectively. Pseudanodonta complanata fouled with D. polymorpha were impaired in their anchoring capability and had shell deformations potentially affecting shell closing and filtration activity. Fouling intensity was negatively correlated with unionid density, potentially leading to accelerated population declines.
  5. The observed adverse effects of invasive zebra mussels on the depressed river mussel and the difficulties in eradicating established populations of invasive mussels suggest that D. polymorpha should be considered a serious threat to P. complanata. Therefore, the further spread of zebra mussels into habitats with native unionids needs to be avoided by all means.
  相似文献   

14.
Hydrobiologia - Native communities can resist the establishment and invasion of alien species through consumptive and/or competitive interactions. The extent of consumptive resistance from...  相似文献   

15.
Eggs isolated from animals spawned with 10−3 M serotonin were inseminated with sperm concentrations ranging from 103–106 sperm/ml. Multiple sperm attached to the surface of the egg and sperm incorporation occurred within 3 min postinsemination (PI). Sperm mitochondria, centrioles, and flagellum were also incorporated. Incorporation was essentially complete by 6 min PI. In the egg cortex, the sperm head rotated 180°, and a rapid translocation of the sperm through the cytoplasm towards the egg interior began by 5–6 min PI. In heavily polyspermic inseminations, translocations of the sperm were either minimal or nonexistent. In monospermic eggs, nuclear decondensation occurred after translocation was complete, beginning by 9–10 min PI. A male pronucleus began to develop in the cytoplasm by 21 min PI and enlarged to 20 μm before fusing with the female pronucleus. Oscillation of the egg cytoplasm and mitotic spindle apparatus was observed immediately prior to cleavage. Cleavage occurred at 60 min PI. Sperm incorporation and pronuclear formation were confirmed with fluorescent and confocal microscopy using the DNA-specific dyes Hoescht 33342 and 7-aminoactinomycin D. In sperm concentrations >104 sperm/ml, 26–76% of the eggs exhibited polyspermy. The high incidence of polyspermy suggests that rapid, effective blocks to polyspermy were not present or were ineffective in a significant proportion of serotonin-spawned eggs. © 1996 Wiley-Liss, Inc.  相似文献   

16.
17.
The notorious biofouling organism Dreissena polymorpha (the zebra mussel) attaches to a variety of surfaces using a byssus, a series of protein threads that connect the animal to adhesive plaques secreted onto hard substrata. Here, the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to characterize the composition of different regions of the byssus is reported. All parts of the byssus show mass peaks corresponding to small proteins in the range of 3.7–7 kDa, with distinctive differences between different regions. Indeed, spectra from thread and plaques are almost completely non-overlapping. In addition, several peaks were identified that are unique to the interfacial region of the plaque, and therefore likely represent specialized adhesive proteins. These results indicate a high level of control over the distribution of proteins, presumably with different functions, in the byssus of this freshwater species.  相似文献   

18.
1. We predicted that zebra mussel, Dreissena polymorpha (Pallas), genetic structure in the Mississippi River would follow a model of invasive species genetics, which predicts low genetic structure among populations of recently established species. This prediction was upheld in our previous genetic study using allozymes, however, one locus yielded anomalous results. 2. We employed amplified fragment length polymorphism (AFLP) analysis as a neutral marker to assess the amount of genetic structure within and among populations, and as a test of expected population structure from both invasion genetic theory, and the results from our previous study. 3. There was greater spatial differentiation, as measured by Fst, observed using AFLP's than for allozymes (P < 0.001). There was no evidence that AFLP variation conformed to an isolation by distance model, and genetic relationships of populations, as measured by AFLP markers, were not similar to those detected in our allozyme survey. 4. The lack of concordance between these two genetic marker systems probably reflects their differential responses to drift, migration, and selection occurring during this rapid invasion. Strong population structure is counter to predictions that populations of invasive species will not be differentiated, as with observations based on allozyme markers. Therefore, newly established species may require genetic surveys using multiple marker systems to evaluate population structure.  相似文献   

19.
1. The recent arrival and explosive spread of the zebra mussel, Dreissena polymorpha (Pallas), in Ireland provided a rare opportunity to study the population genetics of an invasive species.
2. Eight polymorphic allozyme loci ( ACO-1, ACO-2 , EST-D, GPI, IDH-2, MDH, OPDH and PGM ) were used to investigate genetic diversity and population structure in five Irish populations, and the results were compared with those from a previous microsatellite study on the same samples.
3. The mean number of alleles per locus (2.7 ± 0.1) was similar to the mean for the same loci in European populations, suggesting that Irish founder populations were large and/or multiple colonization events took place after foundation. A deficiency of heterozygotes was observed in all populations, but was uneven across loci.
4. Pairwise comparisons, using Fisher's exact tests and F ST values, revealed significant genetic differentiation among populations. The overall multilocus F ST estimate was 0.118 ± 0.045, which contrasted with an estimate of 0.015 ± 0.007 from five microsatellite loci on the same samples in a previous study.
5. Assuming that microsatellites can be used as a neutral baseline, the discordant results from allozymes and microsatellites suggest that selection may be acting on some allozyme loci, specifically ACO-1, ACO-2 , IDH-2 and MDH, which contributed most to the significant differentiation between samples.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号