首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nontimber forest products (NTFPs) represent an important source of income to millions of people in tropical forest regions, but some NTFP species have decreased in number and become endangered due to overexploitation. There is increasing concern that the planting stocks of Dyera polyphylla and Aquilaria filaria are not sufficient to sustain the yield of NTFPs and promote forest conservation. The objective of this study was to determine the effect of two arbuscular mycorrhizal (AM) fungi, Glomus clarum and Gigaspora decipiens, on the early growth of two NTFP species, D. polyphylla and A. filaria, under greenhouse conditions. The seedlings of both species were inoculated with G. clarum or G. decipiens, or uninoculated (control) under greenhouse conditions. Percentage of AM colonization, plant growth, survival rate, and nitrogen (N) and phosphorus (P) concentrations were measured after 180 days of growth. The percentage of AM colonization of D. polyphylla and A. filaria ranged from 87 to 93% and from 22 to 39%, respectively. Colonization by G. clarum and G. decipiens increased plant height, diameter, and shoot and root dry weights. Shoot N and P concentrations of the seedlings were increased by AM colonization by as much as 70–153% and 135–360%, respectively. Survival rates were higher in the AM-colonized seedlings at 180 days after transplantation than in the control seedlings. The results suggest that AM fungi can accelerate the establishment of the planting stocks of D. polyphylla and A. filaria, thereby promoting their conservation ecologically and sustaining the production of these NTFPs economically.  相似文献   

2.
Shorea balangeran is an important component of peat swamp forests in Southeast Asia and is an important source of timber. However, S. balangeran has been decreasing in number due to overexploitation. The objective of this study was to investigate the effect of inoculation of native ectomycorrhizal (ECM) fungi on growth of S. balangeran in degraded peat swamp forest. Spores of Boletus sp., Scleroderma sp., and Strobilomyces sp. were collected from natural peat swamp forest in Indonesia. Seedlings of S. balangeran were inoculated with or without (control) spores and grown in sterilized peat soil under nursery conditions for 6 months. Then, the seedlings were transplanted into a degraded peat swamp forest and grown for 40 months. ECM colonization was 59–67% under nursery conditions and increased shoot height and weight. Shoot height, stem diameter, and survival rates were higher in inoculated seedlings than in control 40 months after transplantation. The results suggest that inoculation of native ECM fungi onto native tree species is useful for reforestation of degraded peat swamp forests.  相似文献   

3.
Summary Knowledge of the effect of pesticides on the formation of forest tree mycorrhizae is important as pesticides are nowadays used in forestry. The effect of the fungicide Dithane M-45 and the herbicide Gramoxone on the growth ofPinus sylvestris L. seedlings and on the development of their mycorrhizae was studied. Investigations involved seedlings inoculated with pure cultures of mycorrhizal fungi in flasks with perlite under aseptic conditions, in Mitscherlich pots filled with perlite under semi-aseptic conditions, and on peat substrate in outdoor beds. No change in seedling growth and the mycorrhiza formation occurred when water suspension of the fungicide Dithane M-45 was used at the recommended dose. The highest rates of this fungicide had no phytotoxic effect although the growth of treated seedlings was reduced due to complete or partial inhibition of mycorrhizal formation. In contrast, even low doses of Gramoxone reduced the growth of the inoculated and non-inoculated seedlings which were more sensitive than their mycorrhizal fungi. The soil sterilization of outdoor beds with an application of a water suspension of Dithane M-45 at recommended doses reduced mycorrhizal development and seedling growth. Seedlings inoculated simultaneously with pure cultures ofSuillus granulatus showed a slightly better growth than untreated controls.  相似文献   

4.
In arid environments, the propagule density of arbuscular mycorrhizal fungi (AMF) may limit the extent of the plant–AMF symbiosis. Inoculation of seedlings with AMF could alleviate this problem, but the success of this practice largely depends on the ability of the inoculum to multiply and colonize the growing root system after transplanting. These phenomena were investigated in Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) seedlings inoculated with native AMF. Seedlings were first grown in a greenhouse in soil without AMF (non-inoculated seedlings) or with AMF (inoculated seedlings). In spring and fall, 3-month-old seedlings were transplanted outdoors to 24-L pots containing soil from a sagebrush habitat (spring and fall mesocosm experiments) or to a recently burned sagebrush habitat (spring and fall field experiments). Five or 8 months after transplanting, colonization was about twofold higher in inoculated than non-inoculated seedlings, except for the spring field experiment. In the mesocosm experiments, inoculation increased survival during the summer by 24 % (p?=?0.011). In the field experiments, increased AMF colonization was associated with increases in survival during cold and dry periods; 1 year after transplanting, survival of inoculated seedlings was 27 % higher than that of non-inoculated ones (p?<?0.001). To investigate possible mechanisms by which AMF increased survival, we analyzed water use efficiency (WUE) based on foliar 13C/12C isotope ratios (δ 13C). A positive correlation between AMF colonization and δ 13C values was observed in the spring mesocosm experiment. In contrast, inoculation did not affect the δ 13C values of fall transplanted seedlings that were collected the subsequent spring. The effectiveness of AMF inoculation on enhancing colonization and reducing seedling mortality varied among the different experiments, but average effects were estimated by meta-analyses. Several months after transplanting, average AMF colonization was in proportion 84 % higher in inoculated than non-inoculated seedlings (p?=?0.0042), while the average risk of seedling mortality was 42 % lower in inoculated than non-inoculated seedlings (p?=?0.047). These results indicate that inoculation can increase AMF colonization over the background levels occurring in the soil, leading to higher rates of survival.  相似文献   

5.
Inoculation with arbuscular mycorrhizal (AM) fungi has often promoted increased growth of plants but very little work has been done in the tropics to evaluate the effects of inoculation on the establishment and development of seedlings in forests. Desmoncus orthacanthos Martius is a scandent palm present both in early and late succession, and consequently can be used in restoration processes. A test was conducted to determine the effect of AM on the establishment of Desmoncus orthacanthos in tropical forest in the Yucatan Peninsula, Mexico. Thirty inoculated and 30 non-inoculated seedlings were introduced in two sites of different successional age, a mature forest and an eight-year old abandoned cornfield (acahual). Survival and growth parameters were evaluated after 12 months. Leaf area and phosphorus, but not height, were greater in inoculated than non-inoculated plants in the forest but not in the acahual. However, mycorrhizae had a clear effect on plant survival in both sites, with a threefold increase in survival of inoculated compared with non-inoculated plants bassed on an odds ratio. The results suggest that inoculation will be important to increase the establishment of this commercially important palm.  相似文献   

6.
The survival, development and mycorrhizal efficiency of a selected strain of Laccaria bicolor along with naturally occurring ectomycorrhizal fungi in a young plantation of Douglas fir was examined. Symbionts were identified and their respective colonization abilities were determined. Eight species of symbiotic fungi, which may have originated in adjacent coniferous forests, were observed on the root systems. Mycorrhizal diversity differed between inoculated (5 taxa) and control (8 taxa) seedlings. Ectomycorrhizal fungi which occurred naturally in the nursery on control seedlings (Thelephora terrestris and Suillus sp.) did not survive after outplanting. Both inoculated and naturally occurring Laccaria species, as well as Cenococcum geophilum, survived on the old roots and colonized the newly formed roots, limiting the colonization by other naturally occurring fungi. Other fungi, such as Paxillus involutus, Scleroderma citrinum and Hebeloma sp. preferentially colonized the old roots near the seedling's collar. Russulaceae were found mainly in the middle section of the root system. Mycorrhizal colonization by Laccaria species on inoculated seedlings (54%) was significantly greater than on controls (13%) which were consequently dominated by the native fungi. Significant differences (up to 239%) were found in the growth of inoculated seedlings, especially in root and shoot weight, which developed mainly during the second year after outplanting. Seedling growth varied with the species of mycorrhizae and with the degree of root colonization. Competitiveness and effectiveness of the introduced strain on improving growth performances of seedlings are discussed.  相似文献   

7.
Pseudotsuga menziesii is one of the most widely planted conifers in the Patagonian Andes of Argentina, having invading characteristics that are broadly reported. We studied the mycorrhizal status of seedlings along six Nothofagaceae + P. menziesii invasion matrices to investigate their role in the invasive process, according to these hypothesis: a) The abundance and richness of EM will be higher in seedlings grown in their own soil; b) In the presence of native EM inoculum, the invasive plant will be associated with generalist mycorrhizae (EM and/or AM), c) AM associations will be more abundant in P. menziesii seedlings grown in Interface or native forest soils, d) Mycorrhizal community differences between treatments will alter host fitness (growth and nutritional parameters). Seedlings from Nothofagus dombeyi, N. antarctica, Lophozonia alpina, L. obliqua and Pseudotsuga menziesii were set up in a soil-bioassay that included soils from non-invaded Nothofagaceae forests, pure P. menziesii plantations, and the interface between both. Pseudotsuga menziesii seedlings showed a decreasing, although never null, ectomycorrhizal (EM) colonization pattern from plantations to non-invaded forests, mainly with exotic EM species. Hebeloma mesophaeum and Wilcoxina sp. 1, two EM species with cosmopolitan distribution, were found to be shared by both tree species. Hebeloma hiemale and Wilcoxina sp. 1, common mycorrhizal partners of P. menziesii in Patagonia although not registered from Nothofagaceae forest, were found to be associated with N. antarctica, being the first report for both fungal species. Pseudotsuga menziesii seedlings showed the ability to form different arbuscular mycorrhiza (AM) colonization types (Paris-, Arum-, Both- and Intermediate-types) depending on the treatments, with significantly higher presence of Intermediate-type in the Interface treatment, where colonization was low. The shared EM species and the presence of different AM colonization types imply enhanced possibilities for invasive P. menziesii seedlings establishment and development. Seedling features and EM colonization rates evidenced that P. menziesii invasion could produce maladaptation (defined as a relative decline in host fitness due to altered mycorrhizal communities from native settings) of mycorrhizal communities, seriously injuring native ecosystem.  相似文献   

8.
The carob tree (Ceratonia siliqua L.) is an important component in semi-arid Mediterranean ecosystems, particularly in Morocco where it plays a considerable socio-economic role. This species is widely used in the reforestation programmes and in the rehabilitation of degraded soils serving both environmental and socio-economic objectives. In spite of these assets, this species is suffering the particular climatic conditions, rare and irregular rains, long hot and dry summers, generally, leading to desertification processes. To withstand these contrasting conditions, selected arbuscular mycorrhizal fungi (AMF) were tested for their contribution to the growth, nutrient uptake and photosynthesis improvement of the carob tree C. siliqua under nursery conditions.The objective of this study was, to evaluate the effects of some arbuscular mycorrhizal fungi complexes isolated in different Mediterranean ecosystems compared to single-species isolates selected using morphological tools on the growth, mineral nutrition, and chlorophyll content of C. siliqua seedlings.The results indicate that all the used AMF inocula stimulated significantly the height of C. siliqua seedlings after eight months under nursery conditions. An increase in plant height between 33% and 70% compared to a control without inoculation was recorded. Similarly, the aerial dry weight recorded an increase of 62% to 124% comparing inoculated and non-inoculated seedlings. The root dry weight has shown an increase rate of 24% to 86% compared to the control. The analysis of mineral contents in plant tissues, showed a highly significant increase in P. N. K. Ca and Mg levels of the aerial parts compared to the control. A significant increase in chlorophyll contents was noticed when inoculated seedlings were compared to non-inoculated ones. This study had confirmed the importance of AMF improving the growth of C. siliqua seedlings; the AMF complexes remain to have the important growth and mineral nutrition responses. However some single- species have shown similar magnitude to the complexes for all analysed parameters. A large biofertilizer potential of the single-species isolates in the inoculation of C. siliqua is demonstrated for the first time.  相似文献   

9.
The effectiveness of ectomycorrhizal inoculation at the tree nursery seedling production stage on growth and survival was examined in jack pine (Pinus banksiana) and white spruce (Picea glauca) planted in oil sands reclamation sites. The seedlings were inoculated with Hebeloma crustuliniforme strain # UAMH 5247, Suillus tomentosus strain # UAMH 6252, and Laccaria bicolor strain # UAMH 8232, as individual pure cultures and in combinations. These treatments were demonstrated to improve salinity resistance and water uptake in conifer seedlings. The field responses of seedlings to ectomycorrhizal inoculation varied between plant species, inoculation treatments, and measured parameters. Seedling inoculation resulted in higher ectomycorrhizal colonization rates compared with non-inoculated control, which had also a relatively small proportion of roots colonized by the nursery contaminant fungi identified as Amphinema byssoides and Thelephora americana. Seedling inoculation had overall a greater effect on relative height growth rates, dry biomass, and stem volumes in jack pine compared with white spruce. However, when examined after two growing seasons, inoculated white spruce seedlings showed up to 75 % higher survival rates than non-inoculated controls. The persistence of inoculated fungi in roots of planted seedlings was examined at the end of the second growing season. Although the inoculation with H. crustuliniforme triggered growth responses, the fungus was not found in the roots of seedlings at the end of the second growing season suggesting a possibility that the observed growth-promoting effect of H. crustuliniforme may be transient. The results suggest that the inoculation of conifer seedlings with ectomycorrhizal fungi could potentially be carried out on a large scale in tree nurseries to benefit postplanting performance in oil sands reclamation sites. However, these practices should take into consideration the differences in responses between the different plant species and fungal strains.  相似文献   

10.
The potential for mycorrhizae to influence the diversity and structuring of plant communities depends on whether their affinities and effects differ across a suite of potential host species. In order to assess this potential for a tropical forest community in Panama, we conducted three reciprocal inoculation experiments using seedlings from six native tree species. Seeds were germinated in sterile soil and then exposed to arbuscular mycorrhizal fungi in current association with naturally infected roots from adults of either the same or different species growing in intact forest. The tree species represent a range of life histories, including early successional pioneers, a persistent understory species, and emergent species, typical of mature forest. Collectively, these experiments show: (i) the seedlings of small-seeded pioneer species were more dependent on mycorrhizal inocula for initial survival and growth; (ii) although mycorrhizal fungi from all inocula were able to colonize the roots of all host species, the inoculum potential (the infectivity of an inoculum of a given concentration) and root colonization varied depending on the identity of the host seedling and the source of the inoculum; and (iii) different mycorrhizal fungal inocula also produced differences in growth depending on the host species. These differences indicate that host–mycorrhizal fungal interactions in tropical forests are characterized by greater complexity than has previously been demonstrated, and suggest that tropical mycorrhizal fungal communities have the potential to differentially influence seedling recruitment among host species and thereby affect community composition.  相似文献   

11.
The unresolved ecophysiological significance of Dark Septate Endophytes (DSE) may be in part due to existence of morphologically indistinguishable cryptic species in the most common Phialocephala fortinii s. l.—Acephala applanata species complex (PAC). We inoculated three middle European forest plants (European blueberry, Norway spruce and silver birch) with 16 strains of eight PAC cryptic species and other DSE and ectomycorrhizal/ericoid mycorrhizal fungi and focused on intraradical structures possibly representing interfaces for plant-fungus nutrient transfer and on host growth response. The PAC species Acephala applanata simultaneously formed structures resembling ericoid mycorrhiza (ErM) and DSE microsclerotia in blueberry. A. macrosclerotiorum, a close relative to PAC, formed ectomycorrhizae with spruce but not with birch, and structures resembling ErM in blueberry. Phialocephala glacialis, another close relative to PAC, formed structures resembling ErM in blueberry. In blueberry, six PAC strains significantly decreased dry shoot biomass compared to ErM control. In birch, one A. macrosclerotiorum strain increased root biomass and the other shoot biomass in comparison with non-inoculated control. The dual mycorrhizal ability of A. macrosclerotiorum suggested that it may form mycorrhizal links between Ericaceae and Pinaceae. However, we were unable to detect this species in Ericaceae roots growing in a forest with presence of A. macrosclerotiorum ectomycorrhizae. Nevertheless, the diversity of Ericaceae mycobionts was high (380 OTUs) with individual sites often dominated by hitherto unreported helotialean and chaetothyrialean/verrucarialean species; in contrast, typical ErM fungi were either absent or low in abundance. Some DSE apparently have a potential to form mycorrhizae with typical middle European forest plants. However, except A. applanata, the tested representatives of all hitherto described PAC cryptic species formed typical DSE colonization without specific structures necessary for mycorrhizal nutrient transport. A. macrosclerotiorum forms ectomycorrhiza with conifers but not with broadleaves and probably does not form common mycorrhizal networks between conifers with Ericaceae.  相似文献   

12.

Key message

Outplanted Polylepis australis seedling growth, survival and mycorrhizal response were not influenced by inoculation with soil from different vegetation types. Seedling inoculation would not be essential for reforestation practices.

Abstract

Polylepis forests are one of the most endangered high mountain ecosystems of South America and reforestation with native Polylepis species has been recommended. To determine whether native soil inoculation could help in reforestation success, a field trial was set up to evaluate the response of outplanted P. australis seedlings to the inoculation with soils from three vegetation types (a grassland, a mature forest and a degraded forest) and a sterile soil, used as control. We evaluated seedlings performance: growth and survival for 18 months, root/shoot ratio, phosphorous content and arbuscular mycorrhizal fungal (AMF) colonization. To interpret performance patterns we evaluated the colonization potential of the three inoculum soils and the changes of the AMF community composition of the seedlings rhizosphere in relation to inoculation treatment and season. Our main results showed no significant differences in seedlings survival and growth between treatments. The colonization potential of grassland and degraded forest soils was ~25 times greater than mature forest soil and specific spore density of some morphospecies varied with season. However, AMF spore community of seedlings rhizosphere became homogenized after outplanting and was similar between treatments after 12 months. Therefore, we conclude that soil inoculation is not essential for outplanted P. australis survival and increase in height, and thus all the tested soils could be used as inocula, including grassland soils which in practice are the easiest to collect.  相似文献   

13.
Distribution of different mycorrhizal classes on Mount Koma, northern Japan   总被引:2,自引:0,他引:2  
Tsuyuzaki S  Hase A  Niinuma H 《Mycorrhiza》2005,15(2):93-100
To investigate the role of mycorrhizae in nutrient-poor primary successional volcanic ecosystems, we surveyed mycorrhizal frequencies on the volcano Mount Koma (42°04N, 140°42E, 1,140 m elevation) in northern Japan. After the 1929 eruptions, plant community development started at the base of the volcano. Ammonia and nitrate levels, along with plant cover, decreased with increasing elevation, whereas phosphorus did not. In total, 305 individuals of 56 seed plant species were investigated in three elevational zones (550–600 m, 650–700 m, and 750–800 m). Five mycorrhizal classes were classified based on morphological traits: ecto- (ECM), arbuscular (AM), arbutoid, ericoid, and orchid mycorrhiza. All plant species were mycorrhizal to at least some extent, with most widespread tree species being heavily ectomycorrhizal. In addition, of 16 tree species collected in all three zones, 6 differed in the frequencies of ECM on roots between elevational zones, and 3 of these 6 species increased in frequency with increasing elevation. These results suggest that ECM colonization in some tree species is related to establishment in nutrient-poor habitats. All species of Ericaceae and Pyrolaceae had ericoid mycorrhizae, and an Orchidaceae species had orchid mycorrhizae. Herbaceous species, except for the low mycorrhizal frequency of Carex oxyandra and two Polygonaceae species, and ericoid and orchid mycorrhizal species, were generally AM. Of herbaceous species, Anaphalis margaritacea var. angustior increased AM frequency and decreased ECM frequency with increasing elevation, and Hieracium umbellatum increased ECM frequency. In total, the establishment of herbaceous species was not sufficiently explained by AM colonization on roots. Tree individuals developed 2–3 classes of mycorrhizae more than herbs at each elevational zone. We conclude that the symbiosis between seed plants and mycorrhizae, ECM in particular, greatly influences plant community structures on Mount Koma. Not only a single mycorrhizal class, but combinations of mycorrhizal classes should be studied to clarify effects on plant community dynamics.  相似文献   

14.
The effects of Pratylenchus vulnus and the endomycorrhizal fungus Glomus mosseae on growth of Myrobalan 605, Marianna 2624 and San Julian 655-2 plum rootstocks were measured under shadehouse conditions in the field for two growing seasons (1990–91). Shoot dry weights were higher in the majority of the vesicular-arbuscular mycorrhizal (VAM) alone inoculated plants after both growing seasons. Root weights of mycorrhizal Myrobalan and Marianna were higher than root weights of the same rootstocks lacking mycorrhizae, inoculated with P. vulnus, and VAM in combination with the nematode. Mycorrhizal Marianna inoculated with the nematode showed a considerably higher final nematode population in relation to non-inoculated VAM treatments. No correlation was found in the number of nematodes per gram of root between mycorrhizal and non-mycorrhizal treatments. P. vulnus adversely affected the mycorrhizal colonization in Marianna, but not in Myrobalan and San Julian. Marianna appears to be more mycorrhizal dependent than the two other rootstocks.  相似文献   

15.
Eucalyptus tetrodonta, a co-dominant tree species of tropical, northern Australian savannas, does not invade adjacent monsoon rain forest unless the forest is burnt intensely. Such facilitation by fire of seedling establishment is known as the "ashbed effect." Because the ashbed effect might involve disruption of common mycorrhizal networks, we hypothesized that in the absence of fire, intact rain forest arbuscular mycorrhizal (AM) networks inhibit E. tetrodonta seedlings. Although arbuscular mycorrhizas predominate in the rain forest, common tree species of the northern Australian savannas (including adult E. tetrodonta) host ectomycorrhizas. To test our hypothesis, we grew E. tetrodonta and Ceiba pentandra (an AM-responsive species used to confirm treatments) separately in microcosms of ambient or methyl-bromide fumigated rain forest soil with or without severing potential mycorrhizal fungus connections to an AM nurse plant, Litsea glutinosa. As expected, C. pentandra formed mycorrhizas in all treatments but had the most root colonization and grew fastest in ambient soil. E. tetrodonta seedlings also formed AM in all treatments, but severing hyphae in fumigated soil produced the least colonization and the best growth. Three of ten E. tetrodonta seedlings in ambient soil with intact network hyphae died. Because foliar chlorosis was symptomatic of iron deficiency, after 130 days we began to fertilize half the E. tetrodonta seedlings in ambient soil with an iron solution. Iron fertilization completely remedied chlorosis and stimulated leaf growth. Our microcosm results suggest that in intact rain forest, common AM networks mediate belowground competition and AM fungi may exacerbate iron deficiency, thereby enhancing resistance to E. tetrodonta invasion. Common AM networks–previously unrecognized as contributors to the ashbed effect–probably help to maintain the rain forest–savanna boundary.  相似文献   

16.
This study used a plant bioassay to investigate the vesicular-arbuscular mycorrhizal (VAM) inoculum potential of soil from three vegetation types (fern, secondary forest, and grass) in an abandoned pasture in the tropical humid lowlands at La Selva, in northeastern Costa Rica. Growth, measured as seedling height, number of leaves, and total (above- and belowground) biomass, of Stryphnodendron microstachyum Poepp. et Endl. (Synon. S. excelsum Harms) seedlings was significantly lower when grown in soil inoculum from the fern areas than in soil inoculum from the forest and grass areas. However, S. microstachyum seedlings grown in the fern inoculum had significantly greater VAM colonization than seedlings grown in the forest and grass inoculum. In addition, roots collected from a dominant plant species from each of the three vegetation types showed that the fern (Nephrolepsis biserrata) had significantly greater mycorrhizal colonization than the tree (Pentaclethra macroloba (Willd.) Kuntze or the grass (Brachiaria spp.). The results of this study suggest that differences in mycorrhizal inoculum potential among vegetation types and its effects on seedling growth may have important implications for the restoration and management of degraded lands.  相似文献   

17.
A study was undertaken to examine the extent of root colonization by four locally isolated ectomycorrhizal (ECM) fungi (Hebeloma theobrominum, Boletus dryophilus, Scleroderma citrinum and Suillus luteus) and their effects on seedling growth in Pinus wallichiana and Cedrus deodara under nursery conditions. Seedlings of the two conifers were inoculated with mycelium of ECM fungi and were grown in pots containing sterilized forest soil for six months. The percentage of ECM colonization of roots was 38%-52% in Pinus wallichiana and 33%-48~ in Cedrus deodara. ECM colonization increased shoot height, needle number, shoot and root biomass and survival of inoculated seedlings. Among the four ECM fungi Hebeloma theobrominum was more effective with Pinus wallichiana and Scleroderma citrinum with Cedrus deodara in promoting seedling survival and overall growth. All the four ECM fungi used enhanced growth of inoculated seedlings and thus can be used in afforestation and regeneration programmes in degraded forests ecosystems.  相似文献   

18.
Many clonal plants live in symbiosis with ubiquitous arbuscular mycorrhizal (AM) fungi, however, little is known about their interaction with respect to clonal reproduction and resource acquisition. The effects of arbuscular mycorrhiza on the growth and intraclonal integration between ramets of two stoloniferous species were studied experimentally in a nutritionally homogenous soil environment. Two species coexisting at the same field site, Potentilla reptans and Fragaria moschata, were selected as model plants for the study. Pairs of their ramets were grown in neighbouring pots with each ramet rooted separately. Four inoculation treatments were established: (1) both mother and daughter ramets remained non-inoculated, (2) both ramets were inoculated with a mixture of three native AM fungi from the site of plant origin, (3) only mother or (4) daughter ramet was inoculated. The stolons connecting the ramets were either left intact or were disrupted. Despite the consistent increase in phosphorus concentrations in inoculated plants, a negative growth response of both plant species to inoculation with AM fungi was observed and inoculated ramets produced fewer stolons and fewer offspring ramets and had lower total shoot dry weights as compared to non-inoculated ones. A difference in the extent of the negative mycorrhizal growth response was recorded between mother and daughter ramets of P. reptans, with daughter ramets being more susceptible. Due to AM effect on ramet performance, and thereby on the source-sink relationship, inoculation also significantly influenced biomass allocation within clonal fragments. Physiological integration between mother and daughter ramets was observed when their root systems were heterogeneous in terms of AM colonization. These results hence indicate the potential of mycorrhizal fungi to impact clonal growth traits of stoloniferous plant species, with possible consequences for their population dynamics.  相似文献   

19.
Individual trees in open vegetation such as woodlands can act as “nuclei” for the colonization of forest tree species, which consequently lead to the formation of forest patches. This phenomenon is known as nucleation. The mechanism of nucleation is generally attributed to two factors: trees provide perches for frugivores that increase seed deposition (perch effect), and tree crowns ameliorate environmental conditions, which improves seedling establishment (facilitative effect). Few studies have attempted to distinguish the relative importance of these two factors. In this study, I separated these two effects in a woodland in northern Malawi. I chose Ficus natalensis as a potential nuclei tree because large individuals of this species are commonly located at the center of forest patches within open woodland at the study site. I monitored several environmental variables, seedling survival, seedling composition, and seed rain at three microsites: under F. natalensis, under Brachystegia floribunda (a dominant woodland species), and in open sites. Both tree species provided similar favorable conditions for the establishment of forest species compared to open sites. Thus, the survival of forest tree seedlings under F. natalensis and B. floribunda was similar, and substantially higher than seedling survival in open sites. However, communities of naturally occurring seedlings differed significantly between F. natalensis and B. floribunda. These results indicate that the facilitative effect alone cannot explain the nucleation pattern. I attribute this result to the perch effect of F. natalensis because the forest seedling species recorded under F. natalensis reportedly have small, brightly colored diaspores, which are indicative of dispersal by birds. Seed deposition of forest species under F. natalensis was significantly higher than that under B. floribunda or in open sites. My findings reinforce the idea that trees will lead to nucleation when they enhance seed deposition and have a positive effect on the post-dispersal stage.  相似文献   

20.
黄兰兰  王冉  时晓菲  于富强 《菌物学报》2022,41(8):1293-1302
为探讨早期真菌与本土和外来松树的共生特性,选用3种早期外生菌根真菌(环褐乳牛肝菌Suillus luteus、虎皮乳牛肝菌S. phylopictus和酒红蜡蘑Laccaria vinaceoavellanea)接种2种本地松(云南松Pinus yunnanensis、华山松P. armandii)和2种外来松(P. greggiiP. maximartinensis),并对接种后的侵染率、菌根特征和松苗株高等进行测量和分析,结果显示:6个月后,2种乳牛肝菌与4种松均能形成菌根,华山松与2种乳牛肝菌的亲和性最好,酒红蜡蘑仅能与2种外来松P. greggiiP. maximartinensis形成菌根,且菌根合成成功率仅为14.3%。此次合成的10种菌根组合均为首次报道,其中同一种真菌与不同松形成的菌根在形态和解剖特征上较为接近。3种真菌对宿主生长的促进作用因树种而异,整体上外来松苗的生长速率要快于本土松苗;华山松苗虽然菌根感染率最高,但生长效应却均不明显。研究认为:孢子接种对乳牛肝菌、蜡蘑等早期真菌的菌根合成研究是一种经济有效的手段;外生菌根真菌可能对外来树种具有更为重要的作用,与本土树种相比,外来树种与外生菌根真菌在能否形成菌根、菌根形成时间以及对宿主的生长效应等方面存在差异,需要开展进一步深入的相关研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号