首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
It has been shown previously that cultured human venous and arterial endothelial cells (EC) bind C1q in a time- and dose-dependent manner. Cultured human endothelial cells express an average number of 5.2 x 10(5) binding sites/cell. In the present study the putative receptor for C1q (C1qR) was isolated from the membranes of 1-5 x 10(9) human umbilical cord EC by affinity chromatography on C1q-Sepharose. During isolation, C1qR was detected by its capacity to inhibit the lysis of EAC1q in C1q-deficient serum. The eluate from C1q-Sepharose was concentrated, dialysed and subjected to QAE-A50 chromatography and subsequently to gel filtration on HPLC-TSK 3000. C1qR filtered at an apparent molecular weight of 60 kDa. Purified C1qR exhibited an apparent molecular weight of 55-62 kDa in the unreduced state and a molecular weight of 64-68 kDa in reduced form. Two IgM monoclonal antibodies (mAb) D3 and D5 were raised following immunization of mice with purified receptor preparations. Both monoclonal antibodies increased the binding of (125)I-C1q to endothelial cells but F(ab')(2) anti-C1qR mAb inhibited the binding of a(125)I-C1q to EC in a dosedependent manner. The D3 mAb recognized a band of 54-60 kDa in Western blots of membranes of human EC and polymorphonuclear leukocytes. Previously, the authors showed that C1q induces the binding of IgM-containing immune complexes to EC. Therefore, it was hypothesized that during a primary immune response generation of IgM-IC may occur, resulting in binding and activation of C1, dissociation of activated C1 by C1 inhibitor and subsequent interaction of IgM-IC bearing C1q with EC-C1qR.  相似文献   

2.
Abstract: The 5A11/HT7 antigen, a member of the immunoglobulin supergene family, has been implicated in heterotypic cell-cell interactions during retina development. Immunopurified 5A11 antigen isolated from Nonidet P-40-solubilized retina membranes had two components as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), a 45.5-kDa doublet and a 69-kDa polypeptide. Immunoreactive bands of 46-50 kDa were recognized following SDS-PAGE of detergent-solubilized membrane proteins from liver, kidney, and erythrocytes. Treatment with N-glycosidase F (EC 3.2.2.18) converted the 45.5–50-kDa immunoreactive polypeptides from all tissues to 32 kDa, indicating that the observed differences in molecular mass were due to differences in glycosylation. N-Glycosidase Ftreatment also converted the 69-kDa form from retina to 46 kDa, indicating a different polypeptide core than the 32-kDa species. Treatment with endo-β-N-acetylglucosaminidase H (EC 3.2.1.96) resulted in modest increases in electrophoretic mobility due to hydrolysis of high mannose or hybrid oligosaccharides and lack of hydrolysis of complex oligosaccharides resistant to endo-β-N-acetylglucosaminidase H digestion. Immunoreactivity was retained after deglycosylation. Much of the difference in molecular weight could be attributed to variations in sialylation. The higher molecular mass species of the 45.5-kDa doublet from retina and the polypeptides from other tissues were susceptible to neuraminidase (EC 3.2.1.18) and O-glycosidase (endo-α-N-acetylgalactosaminidase; EC 3.2.1.97) digestion. Labeling with elderberry bark lectin (specific for α2, 6-linked sialic acid) was confined to the higher molecular mass species of the 45.5-kDa doublet and was considerably greater in antigen derived from epithelia rather than neural retina. In paraffin sections of chick retina, elderberry bark lectin staining was confined to the retinal pigmented epithelium, photoreceptor cells, and bipolar cells with no staining of the Müller cells, which bear the bulk of the 5A11 antigen. These results indicate tissue-specific posttranslational modifications, particularly differences in sialylation of antigen-bearing polypeptides.  相似文献   

3.
The contribution of N-linked carbohydrate to the complement-inhibitory function of the human erythrocyte membrane glycoprotein, CD59, was investigated. Amino acid sequence analysis of tryptic peptides labeled with [3H]borohydride revealed an N-linked carbohydrate moiety at the Asn18 residue. No O-linked carbohydrate was detected, as judged by the failure of asialo-CD59 to bind peanut agglutinin and by its resistance to digestion by O-glycanase. The apparent molecular mass of CD59 was reduced from 18-20 to 14 kDa upon complete digestion with N-glycanase, with no detectable proteolysis. N-glycanase digestion of CD59 was associated with an 88 +/- 4% loss of the complement-inhibitory activity of the protein, as assessed by its capacity to protect chicken erythrocytes from lysis by the human C5b-9 proteins. By contrast, no change in function was observed after digestion of CD59 with neuraminidase, under conditions that removed greater than 60% of [3H]sialic acid residues. Despite loss of functional activity after N-glycanase digestion, we detected no change in the capacity of the deglycosylated CD59 to incorporate into erythrocyte membranes or to bind specifically and with species selectivity to the C8 and C9 components of the membrane attack complex. In order to alter the branched-chain structure of the N-linked carbohydrate of CD59 without enzymatic digestion, Chinese hamster ovary (CHO) cells transfected with cDNA for human CD59 were grown in the alpha-mannosidase inhibitor, 1-deoxymannojirimycin, resulting in conversion of approximately 70% of the membrane glycoprotein to a high mannose. When grown in the presence of 1-deoxymannojirimycin, the C5b-9-inhibitory activity of CD59 expressed on the surface of the transfected CHO cells was reduced by an amount comparable to that observed for the N-glycanase digested protein. Taken together, these data suggest that normal glycosylation of Asn18 in CD59 is required for the normal expression of its complement-inhibitory activity on membrane surfaces, although these N-linked sugar residues do not contribute to CD59's affinity for the C8 and C9 components of the C5b-9 complex.  相似文献   

4.
Tryptic digestion of a multifunctional enzyme from porcine liver containing methylenetetrahydrofolate dehydrogenase (5,10-methylenetetrahydrofolate: NADP+ oxidoreductase, EC 1.5.1.5), methenyltetrahydrofolate cyclohydrolase (5,10-methenyltetrahydrofolate 5-hydrolase, EC 3.5.4.9) and formyltetrahydrofolate synthetase (formate:tetrahydrofolate ligase, EC 6.3.4.3) activities destroys the synthetase. A fragment containing both dehydrogenase and cyclohydrolase activities has been isolated by affinity chromatography on an NADP+-Sepharose affinity column. The purified fragment is homogeneous on dodecyl sulfate-polyacrylamide gel electrophoresis where its molecular weight was determined as 33 000 +/- 1200 compared with 100 000 for the undigested protein. The cyclohydrolase activity retains sensitivity to inhibition by NADP+, MgATP and ATP.  相似文献   

5.
A laccase-type polyphenoloxidase (EC 1.10.3.2.), abundantly secreted by suspension-cultured sycamore (Acer pseudoplatanus) cells was purified to homogeneity. This laccase form is a glycoprotein (molecular weight 110000) with high mannose and complex glycans. The polypeptide moiety has a molecular weight of 66 000, indicating that the glycoprotein is 40% carbohydrate. Laccase is abundantly present in both the cell wall and the culture medium of suspension-cultured sycamore cells, but it is not detected in the cytoplasm, indicating that this large protein is efficiently secreted by the cells. Polyclonal rabbit antiserum was raised against the deglycosylated protein and was used to probe extracts of sycamore stem tissues. A second laccase form (molecular weight 56 000), antigenically related to laccase from cell cultures, is abundant in the epidermis of sycamore stems. In addition, this 56 kDa laccase form co-localizes with lignin precursors on tissue prints from sycamore stems. A polypeptide (molecular weight 50 000-56 000), antigenically related to sycamore laccase, was also immunodetected in most plant organs previously described in the literature as polyphenoloxidase-rich.  相似文献   

6.
We previously produced monoclonal antibodies against the detergent-insoluble microdomain, i.e., the raft microdomain, of the human renal cancer cell line ACHN. Raft.2, one of these monoclonal antibodies, recognizes sialosyl globopentaosylceramide, which has the stage-specific embryonic antigen (SSEA)-4 epitope. Although the mouse embryonal carcinoma (EC) cell line F9 does not express SSEA-4, some F9 cells stained with Raft.2. Western analysis and matrix-assisted laser desorption ionization-time of flight mass spectrometry identified the Raft.2 binding molecule as laminin binding protein (LBP), i.e., 34/67 laminin receptor. Weak acid treatment or digestion with Clostridium perfringens sialidase reduced Raft.2 binding to LBP on nitrocellulose sheets and [(14)C]galactose was incorporated into LBP, indicating LBP to have a sialylated carbohydrate moiety. Subcellular localization analysis by sucrose density-gradient centrifugation and examination by confocal microscopy revealed LBP to be localized on the outer surface of the plasma membrane. An SSEA-4-positive human EC cell line, NCR-G3 cells, also expressed Raft.2-binding LBP.  相似文献   

7.
In enzymatically dispersed enriched rat parietal cells we studied the effect of pertussis toxin on prostaglandin E2 (PGE2)- or somatostatin-induced inhibition of H(+)-production. Parietal cells were incubated in parallel in the absence (control cells) and presence of pertussis toxin (250 ng/ml; 4 h). [14C]Aminopyrine accumulation by both pertussis toxin-treated and control cells was used as an indirect measure of H(+)-production after stimulation with either histamine, forskolin or dibutyryl adenosine 3',5'-cyclic monophosphate (dbcAMP) alone and in the presence of PGE2 (10(-9)-10(-7) M) or somatostatin (10(-9)-10(-6) M). PGE2 inhibited histamine- and forskolin-stimulated [14C]aminopyrine accumulation but failed to alter the response to dbcAMP. Somatostatin was less effective and less potent than PGE2 in inhibiting stimulation by histamine or forskolin and reduced the response to dbcAMP. Pertussis toxin completely reversed inhibition by both PGE2 and somatostatin on histamine- and forskolin-stimulated H(+)-production but failed to affect inhibition by somatostatin of the response to dbcAMP. After incubation of crude control cell membranes with [32P]NAD+, pertussis toxin catalysed the incorporation of [32P]adenosine diphosphate (ADP)-ribose into a membrane protein of molecular weight of 41,000, the known molecular weight of the inhibitory subunit of adenylate cyclase (Gi alpha). Pertussis toxin treatment of parietal cells prior to the preparation of crude membranes almost completely prevented subsequent pertussis toxin-catalysed [32P]ADP ribosylation of the 41,000 molecular weight protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Using 14C-labeled Salmonella bacterial cells as the substrate, the enzymic and molecular properties of the base-plate parts of phage P22 were studied. The base-plate part consisted of a single protein species which cleaved extensively the O-antigen of Salmonella typhimurium, Salmonelly schottmuellerie and with somewhat slower rate that of Salmonella typhi, releasing oligo-saccharide products with rhamnose at the reducing end. Much less cleavage was observed with a strain of S. typhimurium lysogenic for P22, and no significant reaction with Salmonella anatum, Salmonella newington and Salmonella minneapolis. The base-plate part enzyme was a very heat-stable protein and only 10-20% loss was observed after treatment at 85 degrees C for 5 min. The pH optimum of the enzyme was around 7.5, and the glycosidase activity was not influenced by the ionic strength (25-250 mM( of the medium or the presence of Mg2+. The molecular weight of the base-plate part was 320,000 by sedimentation equilibrium. Dodecylsulphate-acrylamide gel electrophoresis revealed a single band of molecular weight 77,000, indicating that a single base-plate part corresponds to a tetramer of identical subunits. Circular dichroism spectra of P22 base-plate parts showed a major contribution of beta structure. The protein was rich in acidic amino acids, glycine and serine.  相似文献   

9.
Three cell surface components of mouse embryonal carcinoma (EC) cells, F9 antigens and the receptors to the lectins FBP and PNA, have been isolated from radiolabeled EC cells by indirect immunoprecipitation. All three were efficiently labeled with fucose, galactose and glucosamine, but scarcely at all with mannose. The high molecular weight glycopeptides characteristic of early embryonic cells were released as the major glycopeptides upon pronase digestion of the three markers. The binding sites to the two lectins are present in the high molecular weight glycopeptides. Furthermore, a close correlation exists between the disappearance of the high molecular weight glycopeptides from differentiating EC cells and the disappearance of the three markers from the surface of these cells. The large glycopeptides from the three markers have the following properties in common. First, they are not mucin-type glycopeptides with short oligosaccharides, glycolipids and acidic mucopolysaccharides, nor are they products of incomplete pronase digestion of conventional complex-type glycopeptides. Second, they do not contain appreciable amounts of Fucα1→2Gal or Fucα1→6GlcNAc linkages. Third, a significant fraction of the glycopeptides have the GlcNAcβ→Gal sequence in their core structure. We propose that the cell surface markers of EC cells have a class of large carbohydrate chains not found in typical surface markers of adult cells such as H-2, la and LETS.  相似文献   

10.
A protein which inhibited complement channel formation was isolated from extracts of papain-digested human erythrocyte membranes using DEAE-Sephacel, Bio-Gel A0.5m column chromatographies, and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by transfer to nitrocellulose paper and elution with 2% NP-40 solution. The purified protein showed a molecular weight of 18 kDa, and efficiently inhibited hemolysis of EC5-7 cells with C8 and C9, but did not show any decay-accelerating activity to C5 convertase. Immunochemical analysis of native membranes after sodium dodecyl sulfate-polyacrylamide gel electrophoresis using the antibody against this protein gave a single band having the same mobility as this protein; papain did not eliminate a significant portion of this protein.  相似文献   

11.
Protection against the pore-forming activity of the human C5b-9 proteins was conferred on a nonprimate cell by transfection with cDNA encoding the human complement regulatory protein CD59. CD59 was stably expressed in Chinese hamster ovary cells using the pFRSV mammalian expression vector. After cloning and selection, the transfected cells were maintained in media containing various concentrations of methotrexate, which induced surface expression of up to 4.2 x 10(6) molecules of CD59/cell. Phosphatidylinositol-specific phospholipase C removed greater than 95% of surface-expressed CD59 antigen, confirming that recombinant CD59 was tethered to the Chinese hamster ovary plasma membrane by a lipid anchor. The recombinant protein exhibited an apparent molecular mass of 21-24 kDa (versus 18-21 kDa for human erythrocyte CD59). After N-glycanase digestion, recombinant and erythrocyte CD59 comigrated with apparent molecular masses of 12-14 kDa, suggesting altered structure of asparagine-linked carbohydrate in recombinant versus erythrocyte CD59. The function of the recombinant protein was evaluated by changes in the sensitivity of the CD59 transfectants to the pore-forming activity of human C5b-9. Induction of cell-surface expression of CD59 antigen inhibited C5b-9 pore formation in a dose-dependent fashion. CD59 transfectants expressing greater than or equal to 1.2 x 10(6) molecules of CD59/cell were completely resistant to human serum complement. By contrast, CD59 transfectants remained sensitive to the pore-forming activity of guinea pig C8 and C9 (bound to human C5b67). Functionally blocking antibody against erythrocyte CD59 abolished the human complement resistance observed for the CD59-transfected Chinese hamster ovary cells. These results confirm that the C5b-9 inhibitory function of the human erythrocyte membrane is provided by CD59 and suggest that the gene for this protein can be expressed in xenotypic cells to confer protection against human serum complement.  相似文献   

12.
5′-Nucleotidase activity of normal human embryonic lung fibroblasts (IMR-90) was found to be inhibited by the homogenates of seven different cell lines originated from patients with different kinds of leukemia and of fresh lymphocytes from a patient with Sezary syndrome (circulating T-cell lymphoma). About 97% of the inhibiting activity was found in the soluble fraction of RPMI 8402 cells, a cell line originated from the lymphocytes of a patient with acute lymphocytic leukemia. This inhibiting activity was not destroyed by dialysis, heating at 56°C for 30 min, nor digestion with RNAase or DNAase. About 85% of the inhibiting activity was destroyed by digestion with papain at 37°C for 1 h and it was destroyed completely by heating at 100°C for 30 min. When the heated (56°C for 30 min) soluble fraction of RPMI 8402 cells was mixed with the homogenate of IMR-90 cells, it had no effect on the activities of alkaline, neutral or acid phosphatases, nor of N-acetyl-β-d-glucosaminidase or cytochrome c oxidase of IMR-90 cells. Preincubating the mixed samples for 1, 20 and 45 min, respectively, before adding the substrate, the heated soluble fraction of RPMI 8402 cells did not increase the percentage of inhibition for 5′-nucleotidase of the homogenate of IMR-90 cells. No inhibition of other enzyme activities was observed under similar conditions. These data suggest that the inhibiting activity is due to a protein(s) that is not a protease. The inhibiting activity was found in a single peak after the soluble fraction was fractionated by Sephadex G-100 chromatography and sedimentation centrifugation. The molecular weight of the inhibitor was found to be approx. 35 000 by comparing its retention volume and sedimentation rate with those of proteins of known molecular weight. The present study suggests that the previously reported undetectability of 5′-nucleotidase in permanent cell lines could be due to the presence of a protein inhibitor for 5′-nucleotidase in these human leukemic cell lines. It also supports the hypothesis that the increased 5′-nucleotidase activity in normal senescent cells in vitro may be a control in cellular aging that is missing from leukemic cells in vitro.  相似文献   

13.
Alpha-D-Mannosidase (alpha-D-mannoside mannohydrolase, EC 3.2.1.24) has been purified to homogeneity as demonstrated by polyacrylamide gel electrophoresis and ultracentrifugation. The molecular weight of the enzyme is approx. 200000; the protein appears to contain 4 subunits, with molecular weights of 66000 and 44000. The enzyme was immobilized on Sepharose and the properties of the coupled and free enzyme were compared. Both were stable up to 70 degrees C with rapid loss of activity between 75-80 degrees C; both retained 25-30% activity in 6 M urea and 65% of the original activity could be restored in the coupled preparation by removal of the urea. The pH maximum of each form was approximately the same, with the maximum of the immobilized enzyme shifted slightly to a lower pH. The coupled alpha-D-mannosidase presented in this report offers the possibility of digesting high molecular weight substrates, such as glycoproteins, with the advantages of (1) recovering large quantities of digested substrate; (2) recovery of the active glycosidase; and (3) digestion at high temperatures and under conditions that denature many proteins.  相似文献   

14.
5'-Nucleotidase activity of normal human embryonic lung fibroblasts (IMR-90) was found to be inhibited by the homogenates of seven different cell lines originated from patients with different kinds of leukemia and of fresh lymphocytes from a patient with Sezary syndrome (circulating T-cell lymphoma). About 97% of the inhibiting activity was found in the soluble fraction of RPMI 8402 cells, a cell line originated from the lymphocytes of a patient with acute lymphocytic leukemia. This inhibiting activity was not destroyed by dialysis, heating at 56 degrees C for 30 min, nor digestion with RNAase or DNAase. About 85% of the inhibiting activity was destroyed by digestion with papain at 37 degrees C for 1 h and it was destroyed completely by heating at 100 degrees C for 30 min. When the heated (56 degrees C for 30 min) soluble fraction of RPMI 8402 cells was mixed with the homogenate of IMR-90 cells, it had no effect on the activities of alkaline, neutral or acid phosphatases, nor of N-acetyl-beta-D-glucosaminidase or cytochrome c oxidase of IMR-90 cells. Preincubating the mixed samples for 1, 20 and 45 min, respectively, before adding the substrate, the heated soluble fraction of RPMI 8402 cells did not increase the percentage of inhibition for 5'-nucleotidase of the homogenate of IMR-90 cells. No inhibition of other enzyme activities was observed under similar conditions. These data suggest that the inhibiting activity is due to a protein(s) that is not a protease. The inhibiting activity was found in a single peak after the soluble fraction was fractionated by Sephadex G-100 chromatography and sedimentation centrifugation. The molecular weight of the inhibitor was found to be approx. 35,000 by comparing its retention volume and sedimentation rate with those of proteins of known molecular weight. The present study suggest that the previously reported undetectability of 5'-nucleotidase in permanent cell lines could be due to the presence of a protein inhibitor for 5'-nucleotidase in these human leukemic cell lines. It also supports the hypothesis that the increased 5'-nucleotidase activity in normal senescent cells in vitro may be a control in cellular aging that is missing from leukemic cells in vitro.  相似文献   

15.
The association of the eighth (C8) and ninth (C9) components of human complement within membrane-bound C5b-9 was investigated using the photosensitive cross-linking reagent N-succinimidyl-6-(4'-azido-2'-nitrophenylamino)hexanoate. Reaction of this reagent with either the purified alpha-gamma or beta subunit of C8 resulted in the introduction of 6-8 mol/mol of photosensitive 6-(4'-azido-2'-nitrophenylamino)hexanoate (ANH) as an intrinsic ligand on each protein. The resulting ANH-(alpha-gamma) or ANH-(beta) was capable of recombining with equimolar amounts of beta or alpha-gamma, respectively, to yield ANH-C8. Parallel modifications of purified C9 resulted in incorporation of 3-4 mol/mol of ANH-ligand. Both ANH-C8 and ANH-C9 retained their ability to incorporate into C5b-9. Two approaches were used to determine the proximity of C8 subunits to C9 within C5b-9. In one, the complex was assembled on erythrocytes by incubating EAC1-7 cells separately with each form of ANH-C8 and subsequently saturating with 125I-C9. After lysis, membranes were irradiated, solubilized, and analyzed by gel electrophoresis. Cross-linking was assessed by a shift in electrophoretic mobility of 125I-C9 to a higher molecular weight. Results using either form of ANH-C8 in C5b-9 showed that, although at least 30% was involved in cross-linking, none was cross-linked to C9. Similar results were obtained using a second approach in which cross-linker and radiolabel were transposed between C8 and C9. Here, EAC1-7 cells were incubated first with 125I-C8 containing either 125I-(alpha-gamma) or 125I-(beta) and subsequently with ANH-C9. Although at least 48% of ANH-C9 in C5b-9 was involved in cross-linking in these experiments, no cross-linking to either subunit of C8 was detected. These results suggest that C8 is not in close physical association with C9 within membrane-bound C5b-9.  相似文献   

16.
The membrane-damaging C5b-9(m) complex of complement is a cylindrically structured, amphiphilic molecule that is generated on a target membrane during complement attack. Isolated C5b-9(m) complexes are shown here to possess the capacity of binding a protein, termed "S"-protein, that is present in human plasma. Binding of this protein apparently shields the apolar surfaces of C5b-9(m), since the resulting "SC5b-9(m)" complex is hydrophilic and no longer aggregates in detergentfree solution. Dispersed SC5b-9(m) complexes exhibit an apparent sedimentation coefficient of 29S in sucrose density gradients, corresponding to a molecular weight of approximately 1.4 million. SDS PAGE analyses indicate binding of 3-4 molecules of S-protein per C5b-9(m) complex. These data are consistent with a monomer nature and molecular weight of 1-1.1 million of the C5b-9(m) complex. Ultrastructural analysis of SC5b- 9(m) shows preservation of the hollow cylindrical C5b-9(m) structure. Additional material, probably representing the S-protein itself, can be visualized attached to the originally membrane-embedded portion of the macromolecule. The topography of apolar surfaces on a molecule thus appears directly probed and visualized through the binding of a serum protein.  相似文献   

17.
The C terminus of the rat brain Na(+)-Ca(2+) exchanger (RBE-1; NCX1. 4) (amino acids 875-903) is modeled to contain the last transmembrane alpha helix (amino acids 875-894) and an intracellular extramembraneous tail of 9 amino acids (895-903). Truncation of the last 9 C-terminal amino acids, Glu-895 to stop, did not significantly impair functional expression in HeLa or HEK 293 cells. Truncation, however, of 10 amino acids (Leu-894 to stop; mutant C10) reduced Na(+) gradient-dependent Ca(2+) uptake to 35-39% relative to the wild type parent exchanger, and further truncation of 13 or more amino acids resulted in expression of trace amounts of transport activity. Western analysis indicated that Na(+)-Ca(2+) exchanger protein was produced whether transfection was carried out with functional or non-functional mutants. Immunofluorescence studies of HEK 293 cells expressing N-Flag epitope-tagged wild type and mutant Na(+)-Ca(2+) exchangers revealed that transport activity in whole cells correlated with surface expression. All cells expressing the wild type exchanger or C9 exhibited surface expression of the protein. Only 39% of the cells expressing C10 exhibited surface expression, and none was detected in cells transfected with non-functional mutants C13 and C29. Since functional and non-functional mutants were glycosylated, the C terminus is not mandatory to translocation into the endoplasmic reticulum (ER). Endoglycosidase H digestion of [(35)S]methionine-labeled protein derived from wild type Na(+)-Ca(2+) exchanger and from C10 indicated that resistance to the digestion was acquired after 1 and 5 h of chase, respectively. C29 did not acquire detectable resistance to endoglycosidase H digestion even after 10 h of chase. Taken together, these results suggest that the "cellular quality control machinery" can tolerate the structural change introduced by truncation of the C terminus up to Ser-893 albeit with reduced rate of ER-->Golgi transfer and reduced surface expression of the truncated protein. Further truncation of C-terminal amino acids leads to retention of the truncated protein in the ER, no transfer to the Golgi, and no surface expression.  相似文献   

18.
Monoclonal antibodies were produced by murine hybridomas after immunization with semipurified baboon endogenous virus. In a solid-phase radioimmunoassay, two antibodies (F12-9 and B9-18) reacted with viral antigen only. The antibodies A6-8 and C9-12 also reacted with virus-producing cells but not with control cells, whereas antibodies E4-6 and D12-2 bound to virus-free cells as well. The cytofluorometry technique confirmed these results and showed a competition between antibodies A6-8 and C9-12 for binding to virus-producing cells as well as a competition between antibodies D12-2 and E4-6 for binding to virus-free human cells. An immune precipitation assay with disrupted virions indicated that antibodies A6-8, B9-18, and C9-12 were directed against the gp70 glycoprotein, and that antibody F12-9 reacted with a viral antigen with a molecular weight of 18,000. The syncytia induced in RSa cells by baboon molecular weight of 18,000. The syncytia induced in RSa cells by baboon endogenous virus could be inhibited either when antibody A6-8 or C9-12 was combined to the virus or when the RSa cells were treated with the anticellular antibody D12-2 or E4-6. These two effects were not observed with Mason-Pfizer virus. Thus, of three antibodies with specificities for viral gp70, two (A6-8 and C9-12) were directed at viral sites responsible for syncytium formation. Another antiviral antibody (F12-9) reacted with a protein of unknown function with a molecular weight of 18,000. The two anticellular antibodies were directed at similar or neighboring epitopes, which may be situated within the receptor to the virus.  相似文献   

19.
The amino acid sequence of a trimethoprim-resistant dihydrofolate reductase (EC 1.5.1.3) specified by the R-plasmid R67 is described. The sequence was deduced from automatic and manual sequence analysis of the intact protein, the fragments produced by cyanogen bromide cleavage, and peptides derived from the largest cyanogen bromide fragment by digestion with trypsin, Staphylococcus aureus V8 proteus, chymotrypsin, and Lysobacter enzymogenes alpha-lytic protease. The complete sequence comprises 78 residues in a single polypeptide chain of molecular weight 8444. No evidence of heterogeneity was obtained, indicating that all subunits of the native enzyme are identical. Comparison of the sequence with that of all known dihydrofolate reductases shows no significant sequence homology.  相似文献   

20.
1. Lyase (L-Phenylalanine ammonia-lyase, EC 4.3.1.5) from far-red light-irradiated mustard cotyledons was purified to a single protein using ammonium sulphate fractionation, column chromatography on L-phenylalanyl-Sepharose 4B and on Sephadex G-200, isoelectric focusing and polyacryalmide gel electrophoresis. 2. The enzyme constituted 0.01% of total cellular protein, did not catalyse the deamination of L-tyrosine, had a pH optimum of pH 8.6 and an isoelectric point of pH 5.6. 3. The sedimentation coefficient was estimated as 11.3 S, the Stokes' radius 4.25 nm, and the molecular weight 240 000 +/- 9000 (S.E.). 4. Electrophoresis on denaturing polyacrylamide gels gave a single stained protein band corresponding to a subunit molecular weight of 55 000 indicating a tetrameric structure of equal (or near-equal) size subunits. 5. Maximum velocity (V) for the purified lyase at 25 degrees C was 3.83--4.10 nkat. 1(-1) enzyme and Km value 0.151--0.154 mM. Negative cooperativity (Hill coefficient, n = 1.08) was not detected over the substrate concentration range tested. 6. A putative non-diffusible inhibitor isolated from dark-grown gherkin hypocotyls inhibited the homogeneously purified mustard lyase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号