首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unilateral injections of horseradish peroxidase into the cat spinal cord at different segmental levels revealed a laminar distribution of spinal interneurons that are sources of ipsilateral and contralateral propriospinal pathways of different lengths. The majority of the long pathways connecting cervical and lumbar segments are formed by neurons located in the central quadrants (laminae VII and VIII) bilaterally; a few such neurons also are present in the marginal layer and in lateral zones at the base of the dorsal horn (ipsilaterally). The zones containing numerous propriospinal neurons forming short (extending over a few segments) connections were more extensive. In the lumbar portion neurons which were sources of short uncrossed pathways tended to be concentrated in the lateral areas of the base of the dorsal horn, intermediate zone, and ventral horn, whereas sources of crossed pathways were concentrated in the ventromedial zones of gray matter. In the cervical portion "short" propriospinal neurons forming both ipsilateral and contralateral projections were concentrated in the lateral zones of gray matter. Neurons of the marginal layer and substantia gelatinosa and neurons of intermediolateral sympathetic nuclei also were sources of descending propriospinal pathways. Some propriospinal axons were intermediate in length. The distribution of neurons with axons of this kind largely coincided with the distribution of neurons that were sources of long propriospinal pathways. The connection between the spatial distribution of different groups of propriospinal neurons and the organization of the synaptic inputs into them, and also correlation between the morphological and functional characteristics of these neurons are discussed.  相似文献   

2.
Depolarization of primary afferent terminals in the lumbosacral portion of the spinal cord evoked by selective activation of propriospinal pathways was investigated in anesthetized cats. The strongest depolarization developed as a result of activation of short (two to five segments) propriospinal pathways in the lateral funiculus; stimulation of the long propriospinal pathways of this funiculus also induced depolarization, but of lower amplitude. Stimulation of propriospinal pathways of the ventral funiculi was ineffective. Significant primary afferent depolarization developed only following the use of a series of stimuli and strong stimulation of the propriospinal pathways. Excitation of these pathways caused depolarization of afferent terminals of both cutaneous and muscular nerves, including muscular sensory fibers of group Ia, although in the latter case its intensity was low. Neuronal mechanisms involved in the generation of this depolarization and its possible functional role are dicussed.  相似文献   

3.
We will focus on spinal cord dorsal horn lamina I projection neurones, their supraspinal targets and involvement in pain processing. These spinal cord neurons respond to tonic peripheral inputs by wind-up and other intrinsic mechanisms that cause central hyper-excitability, which in turn can further enhance afferent inputs. We describe here another hierarchy of excitation - as inputs arrive in lamina I, neurones rapidly inform the parabrachial area (PBA) and periaqueductal grey (PAG), areas associated with the affective and autonomic responses to pain. In addition, PBA can connect to areas of the brainstem that send descending projections down to the spinal cord - establishing a loop. The serotonin receptor, 5HT3, in the spinal cord mediates excitatory descending inputs from the brainstem. These descending excitatory inputs are needed for the full coding of polymodal peripheral inputs from spinal neurons and are enhanced after nerve injury. Furthermore, activity in this serotonergic system can determine the actions of gabapentin (GBP) that is widely used in the treatment of neuropathic pain. Thus, a hierarchy of separate, but interacting excitatory systems exist at peripheral, spinal and supraspinal sites that all converge on spinal neurones. The reciprocal relations between pain, fear, anxiety and autonomic responses are likely to be subserved by these spinal-brainstem-spinal pathways we describe here. Understanding these pain pathways is a first step toward elucidating the complex links between pain and emotions.  相似文献   

4.
The distribution and ultrastructure of terminals of the propriospinal fibers of the lateral funiculus in the cervical segments of the cat spinal cord were studied by the experimental degeneration method. A preliminary lateral hemisection of the spinal cord was carried out 5–6 months earlier at the level of segments C2 or C3 to destroy all the long descending pathways; the lateral funiculus was then divided at the level of C4 or C5. It was shown by the method of Fink and Heimer that terminals of descending and ascending propriospinal pathways damaged by the second division are distributed in the gray matter ipsilaterally in the lateral zones of Rexed's laminase V–VII and also in the dorsolateral motor nuclei. An electron-microscopic study showed that the synapses of the degenerating terminals are mainly axo-dendritic in type and account for 14.5% of the total number of terminals counted. Residual synaptic vesicles in these terminals were spherical in shape. The mean diameter of the degenerating myelinated propriospinal fibers in the lateral funiculus was 10±3 µ. The results of this investigation were compared with those of electrophysiological investigations of the function of propriospinal neurons.  相似文献   

5.
Quantitative estimates of the density of distribution of interneurons forming descending intersegmental connections in the cat spinal cord were obtained. Neurons were labeled by retrograde axonal transport of horseradish peroxidase injected unilaterally at different segmental levels. The mean number of labeled units per section 50 µ thick, in a given zone, was used as the measure of density. The density of distribution of the propriospinal neurons forming the longest tracts between the cervical and lumbosacral regions of the cord was found to be about half the density of distribution of neurons with short (not more than two segments) axons, and to be several times less than the corresponding value for neurons with axons of intermediate length. No marked local peaks of density of distribution of long-axon neurons were found at the level of the brachial enlargement. The number of neurons with crossed axons in most segments was close to half of the total number of propriospinal units. Zones of transverse section of the spinal cord with maximal concentrations of neurons forming direct and crossed propriospinal tracts of different lengths were determined at different levels. Correlation between the quantitative composition of propriospinal neuron populations with characteristics of influences transmitted by these populations is examined.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 1, pp. 96–105, January–February, 1984.  相似文献   

6.
Experiments on anesthetized cats with partial transection of the spinal cord showed that reticulo-spinal fibers in the ventral part of the lateral funiculus participate in the inhibition of polysynaptic reflexes evoked by stimulation of the ipsi- and contralateral reticular formation. The reticulo-fugal wave in the ventrolateral funiculus evoked comparatively short (up to 70 msec) IPSPs in some motoneurons of the internal intercostal nerve investigated and at the same time evoked prolonged (up to 500 msec) inhibition of IPSPs caused by activation of high-threshold segmental afferents. This wave also led to the appearance of IPSPs in 14 of 91 (15.5 %) thoracic spinal interneurons studied. The duration of these IPSPs did not exceed 100 msec; meanwhile, segment excitatory responses of 21 of 43 interneurons remained partly suppressed for 120–500 msec. It is concluded that the inhibitory action of the lateral reticulo-spinal system on segmental reflexes is due to several synaptic mechanisms, some of them unconnected with hyperpolarization of spinal neurons. The possible types of mechanisms of this inhibition are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 10, No. 2, pp. 162–172, March–April, 1978.  相似文献   

7.
Activity of propriospinal neurons in segments C3 and C4 was recorded in immobilized decerebrate cats, whose spinal cord was divided at the lower thoracic level, during locomotor activity of neuronal mechanisms controlling the forelimbs (fictitious locomotion of the forelimbs). Neurons were identified according to antidromic responses to stimulation of the lateral column of the spinal cord at level C6. Antidromic responses also appeared in 70% of these neurons to stimulation of the medullary lateral reticular nucleus. During fictitious locomotion, i.e., in the absence of afferent signals from the limb receptors, rhythmic modulation of the discharge of most neurons was observed, correlating with activity of motoneurons. If the rostral region of the cervical enlargement of the spinal cord was cooled, causing generation of the locomotor rhythm to cease, rhythmic activity of propriospinal neurons in segments C3 and C4 also ceased. The main source of modulation of activity of propriospinal neurons in segments C3 and C4 is thus the central spinal mechanisms controlling activity of the forelimbs.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. M. V. Lomonosov Moscow University. Translated from Neirofiziologiya, Vol. 17, No. 3, pp. 320–326, May–June, 1985.  相似文献   

8.
Responses of motoneurons and interneurons of the cervical enlargement of the cat spinal cord were studied by a microelectrode technique during selective stimulation of propriospinal fibers of the dorsolateral tract of the lateral white column. The long descending and ascending pathways were blocked by preliminary (10–16 days earlier) hemisection of the spinal cord cranially and caudally to the segments studied. Stimulation of the dorsolateral tract at a distance of 15–25 mm from the site of recording evoked complex postsynaptic potentials consisting of several successive waves in the motoneurons. The character of the PSPs was not clearly linked with the function of the motoneurons. By their latent periods the components of the PSPs could be placed in three groups. The "primary" components were reproduced in response to stimulation at 50–100/sec whereas the "secondary" and "tertiary" components were weakened or blocked. It is postulated that the "primary" components are evoked through monosynaptic connections between propriospinal fibers of the dorsolateral tract and motoneurons of the forelimb muscles, while the late components are evoked through polysynaptic pathways, including segmental interneurons. Many of these interneurons, located in the ventral horn and intermediate zone, were strongly excited during stimulation of the dorsolateral tract.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 1, pp. 61–69, January–February, 1973.  相似文献   

9.
Cortico- and rubrospinal tracts play an important role in controlling voluntary movements. Transection of these tracts in different spinal cord layers gives different effects that may be explained by the influence of different spinal cord neuronal networks. The aim of the present work was to study the role of C3/C4 propriospinal system in movement control and processes of motor recovery. It was shown that propriospinal system C3/C4 play crucial role in motor recovery after lesion of cortico- and rubrospinal tracts in C5, whereas ventrally located tracts are important after the same lesion in C2. More over, propriospinal system C3/C4 can mediate the command for some voluntary movements in cats.  相似文献   

10.
Effects induced in motoneurons and interneurons of the cervical enlargements of the cat spinal cord by stimulation of the lateral and ventral funiculi at the lower thoracic level were studied under conditions producing degeneration of fibers of descending brain systems. Stimulation of this sort evoked PSPs (mainly of mixed character) in 57 of 90 motoneurons tested. In nine motoneurons the primary response consisted of monosynaptic EPSPs evoked by activity of fibers of the lateral funiculus, and in the rest it consisted of polysyanptic (at least disynaptic) EPSPs and IPSPs. Polysynaptic effects arising in the neuron in response to stimulation of the lateral and ventral funiculi usually differed only quantitatively. The intensity of excitatory synaptic action on motoneurons of the proximal muscle (especially thoracid) was much greater than that on motoneurons of distal muscles. Nearly all motoneurons with no synaptic action belonged to the latter group. Stimulation of the lateral and ventral funculi facilitated synaptic action induced in motoneurons by stimulation of high-threshold segmental afferents and led to excitation of interneurons located in the vectral quadrant, and had no effect on interneurons in the dorsal regions of gray matter. These effects are regarded mainly as the result of excitation of long ascending propriospinal pathways in the cervical parts of the cord; it is also postulated that some of them are evoked by the arrival of activity along collaterals of descending propiospinal pathways to the neurons in this region.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 339–347, July–August, 1979.  相似文献   

11.
In experiments on the cats the relationship was studied of individual columns of the spinal cord to irradiation of the early (propriospinal) and late component of viscerosomatic reflex responses. It was found that the intraspinal systems involved in the descending spread of activity forming the early and the late component of the splanchnic response along the spinal cord were localized mainly in the anterolateral quadrants of the white matter. The descending systems are bilateral and cross at the segmental level. The pathways participating in the spread of the two-component somatomotor discharge evoked by intercostal nerve stimulation are localized in the same area. A bilateral lesion of the dorsal part of the lateral columns of segments C1 to C3 strongly inhibited the late component of the reflex responses. Inhibition was reversible, showing that systems modifying the development and course of the late component are localized in this region. Lesion-induced changes in viscerosomatic reflex responses were parallel with changes in somatomotor discharges. This finding supports the opinion that the pathways involved are localized close together and that their action is modified by similar factors.  相似文献   

12.
The dynamics of interaction between segmental, propriospinal, and spino-bulbo-spinal components of reflex responses of lumbar flexor centers was investigated during activation of forelimb and hindlimb afferents in cats. The monosynaptic flexor reflex to activation of hindlimb afferents is facilitated up to 300% when it coincides in time with the reflex discharge evoked by activation of forelimb afferents, and it remains increased up to 120–140% for 40–50 msec during the aftereffect of such activation. Polysynaptic flexor reflexes of segmental, propriospinal, and spino-bulbo-spinal origin have both facilitatory and inhibitory effects on each other. Facilitation is observed only while the interacting responses coincide in time, inhibition when they do not coincide. Three type of inhibitory effects with durations of 7–15, 40–150, and 300–500 msec are observed. The possible neuronal mechanisms of interaction between these reflexes and their role in functional relations between the fore- and hindlimbs are discussed.  相似文献   

13.
The distribution of propriospinal fiber terminals of the lateral funiculus in the lumbar segments of the cat spinal cord was examined by light and electron microscopy. For the selective demonstration of these terminals, preliminary hemisectioning of the brain at the boundary of the thoracic and lumbar segment, eliminating all the long descending pathways, and subsequent hemisectioning or sectioning of the lateral funiculus at the level of the third lumbar segment was carried out. It was established by staining the degenerating endings (by the Fink—Heimer method) that the terminals of the descending and ascending propriospinal fibers, which form part of the lateral and ventral funiculi, are located mainly in the lateral and medial parts of lamina VII and the dorsal section of lamina VIII, according to Rexed, as well as in the regions adjacent to the dorsolateral and ventromedial motor nuclei. A large number of these terminals is found in the corresponding regions of the gray matter on the contralateral side of the brain. Since, in the case of selective injury of the lateral funiculus the number of degenerating terminals in lamina VIII is noticeably decreased, it can be assumed that the propriospinal neuron terminals of the ventral funiculus are concentrated mainly in lamina VIII. The axons of the propriospinal neurons extend over several segments both in the ascending and in the descending directions. It was shown in an electron microscopic study of the regions in which most of the propriospinal terminals are located that these terminals are of an axo-dendritic nature and terminate in the dendrites of both inter- and motor neurons. Their degeneration can be of the "light" or "dark" type.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 401–407, July–August, 1971.  相似文献   

14.
In the ventral hindbrain and spinal cord of zebrafish embryos, the first neurones that can be identified appear as single cells or small clusters of cells, distributed periodically at intervals equal to the length of a somite. In the hindbrain, a series of neuromeres of corresponding length is present, and the earliest neurones are located in the centres of each neuromere. Young neurones within both the hindbrain and spinal cord were identified in live embryos using Nomarski optics, and histochemically by labelling for acetylcholinesterase activity and expression of an antigen recognized by the monoclonal antibody zn-1. Among them are individually identified hindbrain reticulospinal neurones and spinal motoneurones. These observations suggest that early development in these regions of the CNS reflects a common segmental pattern. Subsequently, as more neurones differentiate, the initially similar patterning of the cells in these two regions diverges. A continuous longitudinal column of developing neurones appears in the spinal cord, whereas an alternating series of large and small clusters of neurones is present in the hindbrain.  相似文献   

15.
In the CNS, immune-like competent cells (microglia and astrocytes) were first described as potential sites of chemokine synthesis, but more recent evidence has indicated that neurones might also express chemokines and their receptors. The aim of the present work was to investigate further, both in vivo and in vitro, CC Chemokine Family Receptor 2 (CCR2) expression and functionality in rat spinal cord neurones. First, we demonstrated by RT-PCR and western blot analysis that CCR2 mRNA and protein were present in spinal extracts. Furthermore, we showed by immunolabelling that CCR2 was exclusively expressed by neurones in spinal sections of healthy rat. Finally, to test the functionality of CCR2, we used primary cultures of rat spinal neurones. In this model, similar to what was observed in vivo, CCR2 mRNA and protein were expressed by neurones. Cultured neurones stimulated with Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2, the best characterized CCR2 agonist, showed activation of the Akt pathway. Finally, patch-clamp recording of cultured spinal neurones was used to investigate whether MCP-1/CCL2 could modulate their electrophysiological properties. MCP-1 alone did not affect the electrical properties of spinal neurones, but potently and efficiently inhibited GABA(A)-mediated GABAergic responses in these neurones. These data constitute the first demonstration of a modulatory role of MCP-1 on GABAergic neurotransmission and contribute to our understanding of the roles of CCR2 and MCP-1/CCL2 in spinal cord physiology, in particular with respect to nociceptive transmission, as well as the implication of this chemokine in neuronal adaptation or dysfunction during neuropathy.  相似文献   

16.
When applied by iontophoresis onto single sympathetic preganglionic neurones in he intermediolateral nucleus of spinal segments T1-T3 in the cat, substance P and thyrotropin-releasing hormone (TRH) each had a weak excitatory effect. Two-thirds of the neurones studied were excited by substance P while one-fifth were excited by TRH. The time courses of the responses to substance P and to TRH were similar, and consisted of an increase in the rate of discharge with a latency of approximately 30 s from the onset of application. They were also prolonged (30-320 s) in afterdischarge following termination of application. These results indicate that substance P and TRH exert excitatory effects on single sympathetic pregnanglionic neurones, and support the possibility that they may be chemical mediators of synaptic transmission in the intermediolateral nucleus.  相似文献   

17.
The retrograde tracer fluoro-gold was injected into the periaqueductal grey, thalamus or hypothalamus, and spinal cord sections were processed for neuronal nitric oxide synthase (nNOS) immunohistochemistry to investigate the relationships of nNOS immunoreactive, and spinomesencephalic, spinothalamic and spinohypothalamic projection neurones. In addition, in the lateral spinal nucleus the relationship between spinomesencephalic, -thalamic and -hypothalamic projection neurones, and nNOS and interferon-gamma receptor immunoreactive structures was investigated at the lumbar level. No single retrogradely labelled spinomesencephalic, -thalamic or -hypothalamic neurone showed nNOS immunoreactivity. In the lateral spinal nucleus, however, many fluoro-gold-labelled neurones were closely apposed by both nNOS and interferon-gamma receptor immunoreactive structures, especially prominent in the hypothalamic injection cases. This study gave no evidence for nNOS immunoreactivity in spinal neurones projecting to the periaqueductal grey, thalamus or hypothalamus, but suggests that in the lateral spinal nucleus such neurones are contacted by both nNOS- and interferon-gamma receptor-containing axon terminals.  相似文献   

18.
The retrograde tracer fluoro-gold was injected into the periaqueductal grey, thalamus or hypothalamus, and spinal cord sections were processed for neuronal nitric oxide synthase (nNOS) immunohistochemistry to investigate the relationships of nNOS immunoreactive, and spinomesencephalic, spinothalamic and spinohypothalamic projection neurones. In addition, in the lateral spinal nucleus the relationship between spinomesencephalic, -thalamic and -hypothalamic projection neurones, and nNOS and interferon-gamma receptor immunoreactive structures was investigated at the lumbar level. No single retrogradely labelled spinomesencephalic, -thalamic or -hypothalamic neurone showed nNOS immunoreactivity. In the lateral spinal nucleus, however, many fluoro-gold-labelled neurones were closely apposed by both nNOS and interferon-gamma receptor immunoreactive structures, especially prominent in the hypothalamic injection cases. This study gave no evidence for nNOS immunoreactivity in spinal neurones projecting to the periaqueductal grey, thalamus or hypothalamus, but suggests that in the lateral spinal nucleus such neurones are contacted by both nNOS- and interferon-gamma receptor-containing axon terminals.  相似文献   

19.
1. Experiments were conducted in vitro on isolated spinal cords of frogs and immature rats and in vivo on cat spinal neurones. 2. The concept of two major types of excitatory amino acid receptors present in these preparations is summarized, one type (NMDA receptors) being activated specifically by N-methyl-D-aspartate (NMDA) and blocked by specific antagonists such as D(-)-2-amino-5-phosphonovalerate (APV), and a second type (non-NMDA receptors) characterized by insensitivity to specific NMDA antagonists. This second type may be comprised of two sub-types activated selectively by the agonists quisqualate and kainate. The putative transmitters L-glutamate and L-aspartate have mixed action on both NMDA and non-NMDA receptors. The major action of both transmitter candidates is considered to be on non-NMDA receptors, but the proportion of the composite responses mediated by NMDA receptors (at least for spinal neurones) appears to be greater for L-aspartate than for L-glutamate. 3. The preference of NMDA and non-NMDA receptors for a range of agonists is discussed. Some newer agonists are considered, in addition to several known agonists not previously discussed in terms of NMDA- and non-NMDA-receptor preference. Structure-activity relations of agonists are discussed. 4. The actions of some new amino acid antagonists are reported. Some of these have useful kainate and quisqualate blocking activity, in addition to their ability to block NMDA induced responses. 5. Evidence is presented suggesting that excitatory amino acid receptors are involved in both polysynaptic and monosynaptic excitation in the spinal cord, NMDA receptors mediating polysynaptic excitation and non-NMDA receptors monosynaptic excitation. 6. The unusual effect is reported of L-2-amino-4-phosphonobutyrate, which potently blocks spinal synaptic excitation in the absence of depressant action on excitatory amino acid-induced responses.  相似文献   

20.
The effects of segmental reflexes on descending intersegmental reflexes to stimulation of forelimb afferents were studied in anesthetized cats by recording postsynaptic responses from single motoneurons. Interaction between these influences was found to be reciprocal in character for groups of neurons with primary connections with afferents of the superficial and deep branches of the peroneal nerve and afferents of the nerve to the gastrocnemius muscle. Excitatory postsynaptic responses arising in groups of motoneurons of the peroneal nerve to stimulation of forelimb afferents underwent profound and prolonged inhibition during conditioning stimulation of afferents in the deep and superficial peroneal nerves. Activation of segmental afferents during conditioning stimulation of the gastrocnemius nerve was accompanied by inhibition of excitatory intersegmental responses and deinhibition of inhibitory responses in motoneurons of the gastrocnemius muscle. Segmental inhibition of intersegmental descending impulse activity appeared in the interneuron system of the segmental reflex centers connecting the descending propriospinal tracts with the motoneurons of these centers.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 4, No. 2, pp. 16872-175, March–April, 1972.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号