首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of D-(+)-mannose, inorganic phosphate (Pi) and mannose-6-phosphate on net mesophyll CO2 assimilation rate (A) and stomatal conductance (gs) of wheat (Triticum aestivum L.) leaves was studied. The compounds were supplied through the transpiration stream of detached leaves from plants grown in sand in growth cabinets or glasshouses, with different concentrations of Pi (0.25, 1.0 and 4.0 mM) supplied during growth. In all cases, 10 mM D-(+)mannose caused 40–60% reduction of A within 30 min, though the time courses differed for flag leaves and the sixth leaf on the mainstem of glasshouse- and cabinet-grown plants. D-(+)Mannose had a similar effect on A in leaves having a fourfold range in total phosphate content. Effects of D-(+)mannose in reducing gs were always slower than on A. When the CO2 concentration in the leaf chamber was adjusted to maintain intercellular CO2 concentration (Ci) constant as A declined after mannose supply, gs still declined indicating that stomatal closure was not caused by changing Ci. Supplying mannose-6-phosphate at 10 and 1 mM and Pi at 5 and 10 mM concentrations caused rapid reductions in gs and also direct reductions in A. The observed effects of mannose and Pi on assimilation are consistent with the proposed regulatory role of cytoplasmic Pi in determining mesophyll carbon assimilation that has been derived previously using leaf discs, protoplasts and chloroplasts.Abbreviations and symbols A net mesophyll CO2-assimilation rate - Ca, Ci external (assimilation-chamber) and intercellular CO2 concentration, respectively - gs stomatal conductance - Man6P mannose-6-phosphate - Pi orthophosphate  相似文献   

2.
Lectin activity, agglutinating sheep erythrocytes, was associated with parasporal inclusion proteins from a Lepidoptera-specific isolate of Bacillus thuringiensis serovar galleriae (H5ab). The activity was generated when parasporal inclusions were solubilized in an alkaline condition. Proteolytic processing was not required for generation of the lectin activity; the activity level was not affected by the presence/absence of the three proteases (trypsin, chymotrypsin, and proteinase K). SDS-PAGE analysis revealed that (1) alkali-solubilized parasporal inclusion proteins consisted of two major components of 130 kDa and 65 kDa, and (2) proteinase K treatment of alkali-solubilized proteins yielded a single major protein of 60 kDa. Lectin activity of our isolate was strongly inhibited by preincubation with D-mannose, but not with the six other monosaccharides: D-galactose, D-glucose, L-fucose, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, and N-acetylneuraminic acid. In contrast, D-mannose did not inhibit the in vivo larvicidal activity of the proteins against the silkworm, Bombyx mori. Received: 21 February 2002 / Accepted: 28 March 2002  相似文献   

3.
Particulate membrane preparations isolated from cambial cells and differentiating and differentiated xylem cells of pine (Pinus sylvestris L.) trees synthesised [14C]glucans using either guanosine 5-diphosphate (GDP)-D-[U-14C]glucose or uridine 5-diphosphate (UDP)-D-[U-14C]glucose as glycosyl donors. Although these glucans had -(13) and -(14) linkages in an approximate ratio 1:1, the distribution of the linkages in the glucan synthesised from GDP-D-glucose was different from that synthesised from UDP-D-glucose. The synthesis of the mixed -(13) and -(14) glucan from GDP-D-[U-14C]glucose was changed to that of -(14) glucomannan in the presence of increasing concentrations of GDP-D-mannose. The glucan formed from UDP-D-[U-14C]glucose was not affected by any concentration of GDP-D-mannose. The membrane preparations epimerized GDP-D-glucose to GDP-D-mannose; however, the low amount of GDP-D-mannose formed was not incorporated into the polymer becaus the affinity of the synthase for GDP-D-glucose was much greater than that for GDP-D-mannose. The glucan formed from GDP-D-glucose and the glucomannan formed from GDP-D-glucose together with GDP-D-mannose were characterized. The apparent K m and V max of the glucan synthase for GDP-D-glucose were 6.38 M and 5.08 M·min-1, respectively. No lipid intermediates were detected during the synthesis of either glucan or glucomannan. The results indicated that an enzyme complex for the formation of the glucomannan was bound to the membrane.Abbreviations GDP guanosine 5-diphosphate - GLC gasliquid chromatography - UDP trridine 5-diphosphate  相似文献   

4.
O-α-D-Galactopyranosyl-(1→2)-D-chiro-inositol, herein named fagopyritol B1, was identified as a major soluble carbohydrate (40% of total) in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) embryos. Analysis of hydrolysis products of purified compounds and of the crude extract led to the conclusion that buckwheat embryos have five α-galactosyl D-chiro-inositols: fagopyritol A1 and fagopyritol B1 (mono-galactosyl D-chiro-inositol isomers), fagopyritol A2 and fagopyritol B2 (di-galactosyl D-chiro-inositol isomers), and fagopyritol B3 (tri-galactosyl D-chiro-inositol). Other soluble carbohydrates analyzed by high-resolution gas chromatography included sucrose (42% of total), D-chiro-inositol, myo-inositol, galactinol, raffinose and stachyose (1% of total), but no reducing sugars. All fagopyritols were readily hydrolyzed by α-galactosidase (EC 3.2.1.22) from green coffee bean, demonstrating α-galactosyl linkage. Retention time of fagopyritol B1 was identical to the retention time of O-α-D-galactopyranosyl-(1→2)-D-chiro-inositol from soybean (Glycine max (L.) Merrill, Leguminosae), suggesting that the α-ga-lactosyl linkage is to the 2-position of D-chiro-inositol. Accumulation of fagopyritol B1 was associated with acquisition of desiccation tolerance during seed development and maturation in planta, and loss of fagopyritol B1 correlated with loss of desiccation tolerance during germination. Embryos of seeds grown at 18 °C, a condition that favors enhanced seed vigor and storability, had a sucrose-to-fagopyritol B1 ratio of 0.8 compared to a ratio of 2.46 for seeds grown at 25 °C. We propose that fagopyritol B1 facilitates desiccation tolerance and storability of buckwheat seeds. Received: 21 May 1997 / Accepted: 5 June 1997  相似文献   

5.
Renal reabsorption appears to play a major role in d-mannose homeostasis. Here we show that in rat kidney, the transport of d-mannose by brush border membrane vesicles from tubular epithelial cells involves an uphill and rheogenic Na-dependent system, which is fully inhibited by d-mannose itself, incompletely inhibited by d-glucose, d-fructose, phloridzin, and phloretin, and noninhibited by l-mannose or disaccharides. In addition, this system exhibits both low capacity (112.9 ± 15.6 pmol/mg/second) and high affinity (0.18 ± 0.04 mm), with a 2:1 stoichiometry for the Na:d-mannose interaction, and low affinity for sodium (16.6 ± 3.67 mm). We also show expression of d-mannose transport by Xenopus laevis oocytes injected with rat renal polyA+ RNA. Kinetic analysis of the expressed transport was performed after RNA enrichment by fractionation through a sucrose density gradient and was shown to be identical to that measured in membrane vesicles. The RNA species encoding the expressed transport has a small mean size, 1 kb approximately, and shows no homology with the SGLT family of Na-dependent d-glucose transporters, as shown by low stringent RT-PCR and northern analysis. The expressed transport is specific for d-mannose, since in spite of a significant inhibition by d-glucose and d-fructose, neither of these two substrates was transported above the level of the water-injected oocytes. Received: 29 February 2000/Revised: 25 August 2000  相似文献   

6.
The yeastTorulopsis candida NCYC 576 was found to transport acyclic polyols (D-arabinitol,L-arabinitol, ribitol, xylitol,D-mannitol,D-glucitol and erythritol) and monosaccharides (D-galactose,L-sorboseD-xylose) by an active process, reaching high intracellular concentrations, making use of four different carrier systems: (1) high-affinity for polyols, (2) high-affinity for monosaccharides, (3) lowaffinity for both polyols and monosaccharides, and (4) specific high-affinity for erythritol andD-ribose.  相似文献   

7.
The O-antigen (lipopolysaccharide) of Anacystis nidulans, strain KM, has been isolated from whole cells and from cell wall preparations by phenolwater extraction. The polysaccharide moiety consists of a D-mannose polymer accompanied by smaller amounts of 3- and 4-O-methyl-D-mannoses, D-galactose, D-glucose, L-fucose, D-glucosamine, mannosamine and 2-keto-3-deoxyoctonate. Aldoheptoses are lacking. The degraded polysaccharide is split from lipid A by acid hydrolysis (10% acetic acid, 100°C, 3 h) whereby 2-keto-3-deoxyoctonate is released in small amounts. Degraded polysaccharide forms only one major fraction by Sephadex G-50 gel-filtration. This fraction includes all the sugars mentioned above except L-fucose, which is released during the acetic acid degradation. Periodate studies and methylation analysis revealed that the poly-mannose chain consists of about 75% 13 linked and of 25% 14 linked D-mannose units.Lipid A of A. nidulans is phosphate-free. The main fatty acid, -hydroxypalmitic acid, is exclusively amide-bound, presumably to the amino group of D-glucosamine. Other fatty acids, found as minor constituents, are -hydroxymyristic, palmitic and stearic acids. Lipopolysaccharide of A. nidulans KM exhibits high anticomplementary activity in guineapig serum. It is about 800 times less toxic for adrenalectomized mice than endotoxin from Salmonella typhimurium.The isolated lipopolysaccharide reacts with rabbit antisera against living or heat-killed cells of A. nidulans in passive hemagglutination, when untreated or heated, but not when alkali-treated lipopolysaccharide is used for red blood cell sensibilization. It is concluded that lipopolysaccharide of A. nidulans KM is exposed on the surface of the cell.  相似文献   

8.
Sugar substrates which depress the intracellular level of inorganic phosphate in baker's yeast (d-glucose,d-fructose,d-mannose, sucrose, as well as maltose andd-galactose after appropriate induction) also make transmembrane flux of phosphate anions possible. Acetate and ethanol, although readily oxidized, as well as nonmetabolized sugars, do not produce the effect. Phosphate uptake in whole cells (but not in protoplasts) is accelerated by preincubation with substrate either aerobically or anaerobically but the actual presence of substrate in the incubation medium is required for transport to take place. Starved cells take up phosphate from the medium with aK m of 3mm, the half-activation concentration by glucose being 18mm, the amount taken up being constant under given conditions (40 μmol/g dry wt. here). Phosphate-rich cells lose phosphate to the medium in the presence of a suitable substrate. The uptake process is characterized by an activation energy of 13400 cal/mol at 10−6 m phosphate and of 9400 cal/mol at 10−3 m phosphate. The process shows two optima at pH 5.0 and 7.0. A short-lived intermediate of fermentative sugar metabolism is postulated as essential for the translocation of phosphate across the yeast membrane.  相似文献   

9.
Base excision repair (BER) is dedicated to the repair of oxidative DNA damage caused by reactive oxygen species generated by chemical and physical agents or by metabolism which can react with DNA and cause a variety of mutations. Epithelial cells are typically the first type of host cell to come into contact with potential microbial invaders. In this work, we have evaluated whether the adherence to human epithelial cells causes DNA damage and associated filamentation. Experiments concerning adherence to HEp-2 cells were carried out with mutants deficient in BER that were derived from Escherichia coli K-12. Since the removal of mannose during bacterial interaction with HEp-2 cells allows adhesion through mannose-sensitive adhesins, the experiments were also performed in the presence and the absence of mannose. Our results showed enhanced filamentation for the single xth (BW9091) and triple xth nfo nth (BW535) mutants in adherence assays with HEp-2 cells performed without d-mannose. The increased filamentation growth was inhibited by complementation of BER mutants with a wild type xth gene. Moreover, we measured SOS induction of bacteria adhered to HEp-2 cells in the presence and absence of d-mannose through of SOS-chromotest assay and we observed a higher β-galactosidase expression in the absence of mannose. In this context, data showed evidence that bacterial attachment to HEp-2 epithelial surfaces can generate DNA lesions and SOS induction.  相似文献   

10.
The influence of the anti-fungal agent phosphonate (Phi) on the response of oilseed rape (Brassica napus L. cv. Jet Neuf ) cell suspensions to inorganic phosphate (Pi) starvation was examined. Subculture of the cells for 7 d in the absence of Pi increased acid phosphatase (APase; EC 3.1.3.2) and pyrophosphate (PPi)-dependent phosphofructokinase (PFP; EC 2.7.1.90) activities by 4.5- and 2.8-fold, respectively, and led to a 19-fold increase in V max and a 14-fold decrease in K m (Pi) for Pi uptake. Addition of 2 mM Phi to the nutrient media caused dramatic reductions in the growth and Pi content of the Pi-starved, but not Pi-sufficient cells, and largely abolished the Pi-starvation-dependent induction of PFP, APase, and the high-affinity plasmalemma Pi translocator. Immunoblotting indicated the cells contain three APase isoforms that are synthesized de novo following Pi stress, and that Phi treatment represses this process. Phosphonate treatment of Pi-starved cells significantly altered the relative extent of in-vivo 32P-labelling of polypeptides having Mrs of 66, 55, 45 and 40 kDa. However, Phi had no effect on the total adenylate pool of Pi-starved cells which was about 32% lower than that of Pi-sufficient cells by day 7. Soluble protein levels, and activities of pyruvate kinase (EC 2.7.1.40) and ATP-dependent phosphofructokinase (EC 2.7.1.11) were unaffected by Pi starvation and/or Phi treatment. The effects of Phi on the growth, and APase and PFP activities of Pi-starved B. napus seedlings were similar to those observed in the suspension cells. The results are consistent with the hypothesis that a primary site of Phi action in higher plants is at the level of the signal transduction chain by which plants perceive and respond to Pi stress at the molecular level. Received: 30 December 1996 / Accepted: 19 February 1997  相似文献   

11.
Summary Cell extracts ofCandida guilliermondii grown ind-xylose,l-arabinose,d-galactose,d-glucose,d-mannose and glycerol as sole carbon sources possessed NADPH-dependent aldose reductase activity, but no NADH-dependent activity was detected.d-xylose andl-arabinose were the best inducers of aldose reductase activity. The highest enzyme activity ind-xylose orl-arabinose-grown cells was observed first withl-arabinose followed byd-xylose as substrates of the enzymatic reaction. However, only low activity was found ind-glucose,d-mannose andd-galactose-grown cells, indicating that these carbon sources cause catabolite repression. Enzyme activities induced ind-xylose-grown cells were twice as high as those obtained from the cells under resting conditions. Furthermore, the level of induction of aldose reductase activity depended on the initial concentration ofd-xylose. The present study shows that aldose reductase activity may be efficiently induced by pentose sugars of hemicellulosic hydrolysates and weakly by hemicellulosic hexoses.  相似文献   

12.
Asparagine-linked oligosaccharides of duck ovomucoid were released quantitatively from the protein by digestion with glycoamidase A (from almond), the reducing ends of the oligosaccharide chains thus obtained were aminated with a fluorescent reagent, 2-aminopyridine, and the mixture of pyridylamino derivatives of the oligosaccharides was separated using two different types of high performance liquid chromatography (HPLC) on a reversed phase column and an amide adsorption column. More than sixteen different oligosaccharides were separated and the structures were characterized by a combination of the 2-dimensional sugar mapping technique using HPLC, exoglycosidase digestion, and proton nuclear magnetic resonance measurements (1- and 2-dimensional). Furthermore, the HPLC profile of duck ovomucoid oligosaccharides was compared with previously reported profiles obtained from quail and chicken ovomucoids.Abbreviations COSY chemical shift-correlated spectroscopy - DQF-COSY double quantum filtered COSY - DSS sodium, 4,4-dimethyl-4-silapentane 1-sulfonate - Gal D-galactose - GlcNAc or GN N-acetyl-D-glucosamine - HOHAHA homonuclear Hartmann-Hahn spectroscopy - Man or M D-mannose - NOE nuclear Overhauser enhancement - ODS octadecylsilyl - PA pyridylamino - ROESY rotating frame nuclear Overhauser effect spectroscopy - SDS/PAGE sodium dodecyl sulfate/polyacrylamide gel electrophoresis  相似文献   

13.
The disaccharide sophorose induces Trichoderma to increase a solube intracellular b-glucosidase that hydrolyses cellobiose, sophorose, and p-nitrophenyl-b-D-glucopyranoside. Simultaneously, it depresses the activity of a similar insoluble enzyme that is associated with the mycelium. Gel electrophoresis indicates that a single enzyme is responsible for all the soluble intracellular b-glucosidase activity. Cycloheximide severely inhibits sophorose induction of this enzyme indicating that the increase in activity normally obtained with sophorose is due to the de novo formation of the enzyme. The same sugars that promote the formation and release of cellulase by Trichoderma induce an increase in the soluble intracellular b-glucosidase. A function of the soluble intracellular enzyme appears to be the hydrolysis of cellobiose, which would otherwise accumulate during cellulose degradation, and thus to prevent cellobiose inhibition of cellulase.  相似文献   

14.
The pho2 mutant of Arabidopsis thaliana (L.) Heynh. accumulates excessive Pi (inorganic phosphate) concentrations in shoots compared to wild-type plants (E. Delhaize and P. Randall, 1995, Plant Physiol. 107: 207–213). In this study, a series of experiments was conducted to compare the uptake and translocation of Pi by pho2 with that of wild-type plants. The pho2 mutants had about a twofold greater Pi uptake rate than wild-type plants under P-sufficient conditions and a greater proportion of the Pi taken up accumulated in shoots of pho2. When shoots were removed, the uptake rate by roots was found to be similar for both genotypes, suggesting that the greater Pi uptake by the intact pho2 mutant is due to a greater shoot sink for Pi. Although pho2 mutants could recycle 32Pi from shoots to roots through phloem the proportion of 32Pi translocated to roots was less than half of that found in wild-type plants. When transferred from P-sufficient to P-deficient solutions, Pi concentrations in pho2 roots had a similar depletion rate to wild-type roots despite pho2 shoots having a fourfold greater Pi concentration than wild-type shoots throughout the experiment. We suggest that the pho2 phenotype could result from a partial defect in Pi transport in the phloem between shoots and roots or from an inability of shoot cells to regulate internal Pi concentrations. Received: 20 August 1997 / Accepted: 4 October 1997  相似文献   

15.
125I-labeled type I collagen (Cn-I) binding of 92 fresh isolates and 18 type culture collection strains of lactobacilli was tested. More than 75% of the strains bound Cn-I. The binding was inhibited by excess of unlabeled Cn-I, gelatin, and was sensitive to proteinase K. Other proteins such as fibronectin and albumin and various carbohydrates such asD-galactose,D-fucose, andD-mannose did not inhibit the binding. Therefore, we propose binding of Cn-I to lactobacilli involving specific surface protein(s).  相似文献   

16.
Summary In the colonic epithelium of the chicken, glycoconjugates have been studied by means of selected histochemical methods of light and electron microscopy. According to the results obtained, most of the colonic goblet cells contained acidic and neutral glycoconjugates with sulphate and vicinal diol groupings, -D-mannose and -D-glucose residues and sialic acid-galactose dimers. These goblet cells were found to undergo changes in histochemical reactivity during upward migration along the crypts; -D-mannose and -D-glucose residues and terminal sialic acidgalactose dimers increased in amount. The striated border of the colonic columnar cells has, likewise, been found to contain such glycoconjugates as were similar in reactivity to those of the goblet cells. The histophysiological significances of glycoconjugates involved in the chicken colonic epithelium have been discussed with special reference to the functional activities of the carbohydrates.  相似文献   

17.
The cellobiose 2-epimerase from Ruminococcus albus (RaCE) catalyzes the epimerization of cellobiose and lactose to 4-O-β-d-glucopyranosyl-d-mannose and 4-O-β-d-galactopyranosyl-d-mannose (epilactose). Based on the sequence alignment with N-acetyl-d-glucosamine 2-epimerases of known structure and on a homology-modeled structure of RaCE, we performed site-directed mutagenesis of possible catalytic residues in the enzyme, and the mutants were expressed in Escherichia coli cells. We found that R52, H243, E246, W249, W304, E308, and H374 were absolutely required for the activity of RaCE. F114 and W303 also contributed to catalysis. These residues protruded into the active-site cleft in the model (α/α)6 core barrel structure.  相似文献   

18.
Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube   总被引:18,自引:0,他引:18  
Arabinogalactan-proteins (AGPs) are proteoglycans with a high level of galactose and arabinose. Their current functions in plant development remain speculative. In this study, (β-D-glucosyl)3 Yariv phenylglycoside [(β-D-Glc)3] was used to perturb AGPs at the plasmalemma-cell wall interface in order to understand their functional significance in cell wall assembly during pollen tube growth. Lily (Lilium longiflorum Thunb.) pollen tubes, in which AGPs are deposited at the tip, were used as a model. Yariv phenylglycoside destabilizes the normal intercalation of new cell wall subunits, while exocytosis of the secretory vesicles still occurs. The accumulated components at the tip are segregated between fibrillar areas of homogalacturonans and translucent domains containing callose and AGPs. We propose that the formation of AGP/(β-D-Glc)3 complexes is responsible for the lack of proper cell wall assembly. Pectin accumulation and callose synthesis at the tip may also change the molecular architecture of the cell wall and explain the lack of proper cell wall assembly. The data confirm the importance of AGPs in pollen tube growth and emphasize their role in the deposition of cell wall subunits within the previously synthesized cell wall. Received: 14 August 1997 / Accepted: 9 September 1997  相似文献   

19.
Summary A bacterium that stereospecifically produces D-p-hydroxyphenylglycine (D-PHPG) from DL-5-p-hydroxyphenylhydantoin (DL-5-PHPH) was isolated from soil and identified as Agrobacterium sp. IP-I 671. The hydantoinase and the N-carbamyl-amino acid amido-hydrolase involved in this biotransformation process were both strictly D-stereospecific. Their biosynthesis was found to be inducible by addition of 2-thiouracil to the cultivation media, or to a lesser extent by uracil. The amidohydrolase activity of Agrobacterium sp. was strongly inhibited by ammonium ions co-produced with D-PHPG, whereas the hydantoinase activity under the same conditions was unaffected. Optimum temperature and pH were respectively 55° C and 10 for the partially purified hydantoinase, 45° and 6.75 when resting cells were used. Biotransformation under these slightly acidic conditions allowed to complete conversion of 30 g/1 DL-5-PHPH into 25 g/l of D-PHPG (molar yield 96%) and involved enzymatic racemization of DL-5-PHPH. Offprint requests to: S. Runser  相似文献   

20.
To investigate whether cyclic GMP (cGMP) would mediate, in an intracellular Ca2+ -dependent manner, coupling of auxin to stomatal opening, the stomatal opening responses to the auxin indolyl-3-butyric acid (IBA) and to the cGMP membrane-permeable derivative 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) were compared in epidermal strips of Commelina communis. In this comparison were studied possible effects of intracellular Ca2+ modulators, GTP-binding protein (G-protein) modulators and selective inhibitors of enzymatic reactions which use or generate cGMP. The stomatal response to IBA was almost similarly reversed by the Ca2+ buffer 1,2-bis(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA), the intracellular Ca2+-release inhibitors ruthenium red and procaine, the inactive cGMP analog Rp-8-bromoguanosine 3,5-cyclic monophosphorothioate (Rp-8-Br-cGMPS), the inhibitor of cGMP-producing guanylyl cyclase LY 83583, the G-protein inhibitor mas17 and the G-protein antagonist pGlu-Gln-D-Trp-Phe-D-Trp-D-Trp-Met-NH2. Comparison with stomatal opening in response to 8-Br-cGMP, which was almost completely suppressed by either BAPTA, ruthenium red, procaine or Rp-8-Br-cGMPS, strongly suggests that cGMP acts downstream of G-protein activation as a second messenger for IBA signal transduction and that the cGMP pathway likely depends on cytosolic Ca2+signaling. Received: 8 November 1997 / Accepted: 6 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号