首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The novel macrolide-inducible and -repressible mammalian gene regulation systems (E.REX) have been cloned into a variety of sophisticated expression configurations including (1) multi-purpose expression vectors, (2) pTRIDENT-based artificial operons, (3) dual-regulated expression strategies for independent control of two different transgenes, (4) autoregulated vectors for one-step installation of adjustable multigene expression, and (5) oncoretroviral and lentiviral plasmids for transduction of macrolide-, streptogramin- and tetracycline-dependent transactivators and production of cell lines supporting independent control of three different transgenes. This vector portfolio represents a construction kit-like toolbox for efficient installation of adjustable gene expression responsive to clinically licensed antibiotics and enables the design of multiregulated multigene metabolic engineering strategies required for biopharmaceutical manufacturing, gene therapy, and tissue engineering.  相似文献   

3.
  1. Download : Download high-res image (137KB)
  2. Download : Download full-size image
  相似文献   

4.
Advances in metabolic engineering have led to the synthesis of a wide variety of valuable chemicals in microorganisms. The key to commercializing these processes is the improvement of titer, productivity, yield, and robustness. Traditional approaches to enhancing production use the “push–pull-block” strategy that modulates enzyme expression under static control. However, strains are often optimized for specific laboratory set-up and are sensitive to environmental fluctuations. Exposure to sub-optimal growth conditions during large-scale fermentation often reduces their production capacity. Moreover, static control of engineered pathways may imbalance cofactors or cause the accumulation of toxic intermediates, which imposes burden on the host and results in decreased production. To overcome these problems, the last decade has witnessed the emergence of a new technology that uses synthetic regulation to control heterologous pathways dynamically, in ways akin to regulatory networks found in nature. Here, we review natural metabolic control strategies and recent developments in how they inspire the engineering of dynamically regulated pathways. We further discuss the challenges of designing and engineering dynamic control and highlight how model-based design can provide a powerful formalism to engineer dynamic control circuits, which together with the tools of synthetic biology, can work to enhance microbial production.  相似文献   

5.
The ability of nuclei preparations of Chinese hamster cell lines Don-C and B14I50 (the latter having greatly reduced thymidine kinase activity) to incorporate radioactive thymidine into DNA was measured. By placing the nuclei of one cell line in the cytoplasmic extract of the other cell, we were able to demonstrate that the thymidine kinase activity was largely restricted to the cytoplasm of the Don-C cells. The kinetics of isotope incorporation also suggested that the B14I50 nuclei contained a greatly reduced pool of thymidine triphosphate, compared with the Don-C nuclei.  相似文献   

6.
The dysfunction of respiratory chain complex I (CI) is the most common form of mitochondrial disease that most often presents as Leigh syndrome (LS) in children — a severe neurometabolic disorder defined by progressive focal lesions in specific brain regions. The mechanisms underlying this region-specific vulnerability to CI deficiency, however, remain elusive. Here, we examined brain regional respiratory chain enzyme activities and metabolic profiles in a mouse model of LS with global CI deficiency to gain insight into regional vulnerability to neurodegeneration. One lesion-resistant and three lesion-prone brain regions were investigated in Ndufs4 knockout (KO) mice at the late stage of LS. Enzyme assays confirmed significantly decreased (60–80%) CI activity in all investigated KO brain regions, with the lesion-resistant region displaying the highest residual CI activity (38% of wild type). A higher residual CI activity, and a less perturbed NADH/NAD+ ratio, correlate with less severe metabolic perturbations in KO brain regions. Moreover, less perturbed BCAA oxidation and increased glutamate oxidation seem to distinguish lesion-resistant from -prone KO brain regions, thereby identifying key areas of metabolism to target in future therapeutic intervention studies.  相似文献   

7.
The metabolic engineer's toolbox, comprising stable isotope tracers, flux estimation and analysis, pathway identification, and pathway kinetics and regulation, among other techniques, has long been used to elucidate and quantify pathways primarily in the context of engineering microbes for producing small molecules of interest. Recently, these tools are increasingly finding use in cancer biology due to their unparalleled capacity for quantifying intracellular metabolism of mammalian cells. Here, we review basic concepts that are used to derive useful insights about the metabolism of tumor cells, along with a number of illustrative examples highlighting the fundamental contributions of these methods to elucidating cancer cell metabolism. This area presents unique opportunities for metabolic engineering to expand its portfolio of applications into the realm of cancer biology and help develop new cancer therapies based on a new class of metabolically derived targets. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

8.
Production of complex recombinant proteins requires the culture of mammalian cells in bioreactors. Inherent in these cultures is the problem of cell death, which can result from nutrient depletion, byproduct accumulation, and other bioreactor stresses which signal the cell to die through apoptosis, or programmed cell death. Apoptosis is a highly regulated pathway of both pro- and anti-apoptotic proteins that promote cell survival or death, and cell engineering efforts to inhibit the apoptosis pathway have led to increased culture viability and recombinant protein production. Originally, the exclusive function of many of these pathway proteins was believed to be binding at the mitochondria and regulating apoptosis through modulation of the mitochondria permeability. While this protein functionality does still hold true, it is now evident that these proteins also include roles in the metabolic processes of the mitochondria. Furthermore, apoptosis pathway proteins in other organelles within the cell may also both modulate apoptosis and metabolism. This review first details the known links that exist between apoptosis proteins and metabolic functions in the cytosol, mitochondria, and endoplasmic reticulum. Second, the review turns to look at potentially new cell engineering strategies that are linked to metabolism for improving cell culture viability and protein production.  相似文献   

9.
10.
While well established in bacterial hosts, the effect of coding sequence variation on protein expression in mammalian systems is poorly characterized outside of viral proteins or proteins from distant phylogenetic families. The potential impact is substantial given the extensive use of mammalian expression systems in research and manufacturing of protein biotherapeutics. We are studying the effect of codon engineering on expression of recombinant antibodies with an emphasis on developing manufacturing cell lines. CNTO 888, a human mAb specific for human MCP-1, was obtained by antibody phage display in collaboration with MorphoSys AG. The isolated DNA sequence of the antibody was biased towards bacterial codons, reflecting the engineering of the Fab library for phage display expression in Escherichia coli. We compared the expression of CNTO 888 containing the parental V-region sequences with two engineered coding variants. In the native codon exchanged (NCE) variant, the V-region codons were replaced with those used in naturally derived human antibody genes. In the human codon optimized (HCO) variant the V-region codons were those used at the highest frequency based on a human codon usage table. The antibody expression levels from stable transfections in mammalian host cells were measured. The HCO codon variant of CNTO 888 yielded the highest expressing cell lines and the highest average expression for the screened populations. This had a significant positive effect on the process to generate a CNTO 888 production cell line and indicates the potential to improve antibody expression in mammalian expression systems by codon engineering.  相似文献   

11.
The mammalian circadian timing system: from gene expression to physiology   总被引:16,自引:0,他引:16  
Many physiological processes in organisms from bacteria to man are rhythmic, and some of these are controlled by self-sustained oscillators that persist in the absence of external time cues. Circadian clocks are perhaps the best characterized biological oscillators and they exist in virtually all light-sensitive organisms. In mammals, they influence nearly all aspects of physiology and behavior, including sleep-wake cycles, cardiovascular activity, endocrinology, body temperature, renal activity, physiology of the gastro-intestinal tract, and hepatic metabolism. The master pacemaker is located in the suprachiasmatic nuclei, two small groups of neurons in the ventral part of the hypothalamus. However, most peripheral body cells contain self-sustained circadian oscillators with a molecular makeup similar to that of SCN (suprachiasmatic nucleus) neurons. This organization implies that the SCN must synchronize countless subsidiary oscillators in peripheral tissues, in order to coordinate cyclic physiology. In this review, we will discuss some recent studies on the structure and putative functions of the mammalian circadian timing system, but we will also point out some apparent inconsistencies in the currently publicized model for rhythm generation.  相似文献   

12.
Expression of enzymatically active mammalian proteins in Escherichia coli can proven to be a challenging task due to poor solubility, improper folding, and lack of adequate posttranslational modification. Expression of mammalian proteins using baculovirus or yeast systems is time-consuming and may also be subject to inadequate modification. In order to overcome these technical difficulties, we have developed a mammalian expression system for the convenient subcloning of cDNA fragments, high-level expression, and one-step purification of enzymatically active proteins. The mammalian expression vector pEBG that expresses glutathione S-transferase fusion proteins was modified to create an SrfI restriction site in the multiple cloning site. The protein coding sequences of MAP kinase phosphatase-1 (MKP-1), MAP kinase phosphatase-2 (MKP-2), and the tumor suppressor PTEN were PCR-amplified using Pfu DNA polymerase and cloned into the SrfI site through SrfI digestion-coupled ligation. The resulting plasmids were transiently transfected into 293T cells using FuGENE 6 transfection reagent. Forty eight hours after transfection, cells were harvested and bioactive recombinant proteins were purified by glutathione-Sepharose beads. Protein yield, which ranged from 200 to 700 microg, was more than adequate for biochemical studies. The usefulness of this versatile system for studying protein function and its potential application for proteomics research are discussed.  相似文献   

13.
ABSTRACT: BACKGROUND: Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. METHODS: A new method called "flux balance analysis with flux ratios (FBrAtio)" was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC794) that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allows solutions to be found through standard linear programming. RESULTS: Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i) acetate, (ii) lactate, (iii) butyrate, (iv) acetone, (v) butanol, (vi) ethanol, (vii) CO2 and (viii) H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetylacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. CONCLUSIONS: FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.  相似文献   

14.
Absolute quantification of Rak nuclear tyrosine kinase mRNA in breast tissue samples was determined by competitive RT-PCR. The total RNA from the same samples was also chemically amplified through conventional RT-PCR, and the relative amounts of these amplified RT-PCR products were determined by adsorption onto an indium tin oxide (ITO) electrode followed by electrochemical detection. The electrochemical detection was performed using the inorganic metal complex Ru(bpy)(3)(2+) (bpy = 2,2' bipyridine) to catalyze the oxidation of the guanine residues of the immobilized RT-PCR products. Using the competitive RT-PCR values as standards, it was found that an optimized conventional RT-PCR coupled with electrochemical detection provides a simple method for measuring relative gene expression among a series of mRNA samples from breast tumors. The use of electrochemical detection potentially eliminates the need for gel electrophoresis and fluorescent or radioactive labels in detecting the target genes.  相似文献   

15.
Activation of glycolytic genes by HIF-1 is considered critical for metabolic adaptation to hypoxia through increased conversion of glucose to pyruvate and subsequently to lactate. We found that HIF-1 also actively suppresses metabolism through the tricarboxylic acid cycle (TCA) by directly trans-activating the gene encoding pyruvate dehydrogenase kinase 1 (PDK1). PDK1 inactivates the TCA cycle enzyme, pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA. Forced PDK1 expression in hypoxic HIF-1alpha null cells increases ATP levels, attenuates hypoxic ROS generation, and rescues these cells from hypoxia-induced apoptosis. These studies reveal a hypoxia-induced metabolic switch that shunts glucose metabolites from the mitochondria to glycolysis to maintain ATP production and to prevent toxic ROS production.  相似文献   

16.
Lactic acid bacteria display a relatively simple metabolism wherein the sugar is converted mainly to lactic acid. The extensive knowledge of metabolic pathways and the increasing information of the genes involved allows for the rerouting of natural metabolic pathways by genetic and physiological engineering. We discuss several examples of metabolic engineering of Lactococcus lactis for the production of important compounds, including diacetyl, alanine and exopolysaccharides.  相似文献   

17.
In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in?yeast, we discovered that central metabolism is?self-adapting to synchronize redox metabolism when respiration is activated. Low PYK activity activated yeast respiration. However, levels of reactive oxygen species (ROS) did not increase, and cells gained resistance to oxidants. This adaptation was attributable to accumulation of the PYK substrate phosphoenolpyruvate (PEP). PEP acted as feedback inhibitor of the glycolytic enzyme triosephosphate isomerase (TPI). TPI inhibition stimulated the pentose phosphate pathway, increased antioxidative metabolism, and prevented ROS accumulation. Thus, a metabolic feedback loop, initiated by PYK, mediated by its substrate and acting on TPI, stimulates redox metabolism in respiring cells. Originating from a single catalytic step, this autonomous reconfiguration of central carbon metabolism prevents oxidative stress upon shifts between fermentation and respiration.  相似文献   

18.
We construct a model of activity-dependent, anatomical inhibitory plasticity. We apply the model to the mammalian auditory system. Specifically, we model the activity-dependent topographic refinement of inhibitory projections in the auditory brain stem, and we construct an anatomically abstract model of binaural band formation in the primary auditory cortex involving the segregation of different populations of inhibitory and excitatory afferents. Issues raised and predictions made include the nature of interactions between excitatory and inhibitory afferents innervating the same population of target cells, and the possibility that pharmacological manipulations of the developing primary auditory cortex might induce a shift in the periodicity of binaural bands. Any model of inhibitory plasticity must confront the issue of postulating mechanisms underlying such plasticity. In order to attempt to understand, at least theoretically, what the mechanisms underlying inhibitory plasticity might be, we propose the existence of a new class of neurotrophic factors that promote neurite outgrowth from and mediate competitive interactions between inhibitory afferents. We suppose that such factors are up-regulated by hyperpolarisation and down-regulated by depolarisation. Furthermore, we suppose that their activity-dependent release from target cells depends on Cl influx. Such factors are therefore assumed to be the physiological inverse of such factors as nerve growth factor and brain-derived neurotrophic factor, which are up-regulated by depolarisation and down-regulated by hyperpolarisation, with their activity-dependent release depending on Na+, and not Ca2+, influx. Received: 16 December 1997 / Accepted in revised form: 3 April 1998  相似文献   

19.
  1. Download : Download high-res image (94KB)
  2. Download : Download full-size image
Highlights► The plastidial pyruvate transporter in plants is driven by sodium symport. ► The mitochondrial pyruvate transporter MPC has been identified. ► All transporters needed for a synthetic PEP-CK/C4 photosynthetic cycle are now known. ► The SWEET proteins define a new class of sugar efflux carriers in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号