首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clara cell secretory protein (CCSP) is a transport protein for lipophilic substances in bronchio-alveolar fluid, plasma, and uterine secretion. It acts as a carrier for steroid hormones and polychlorinated biphenyl metabolites. Previously, the existence of receptors for uptake of CCSP.ligand complexes into the renal proximal tubules had been suggested. Using surface plasmon resonance analysis, we demonstrate that CCSP binds to cubilin, a peripheral membrane protein on the surface of proximal tubular cells. Binding to cubilin results in uptake and lysosomal degradation of CCSP in cultured cells. Surprisingly, internalization of CCSP is blocked not only by cubilin antagonists but also by antibodies directed against megalin, an endocytic receptor that does not bind CCSP but associates with cubilin. Consistent with a role of both receptors in renal uptake of CCSP in vivo, patients deficient for cubilin or mice lacking megalin exhibit a defect in tubular uptake of the protein and excrete CCSP into the urine. These findings identify a cellular pathway consisting of a CCSP-binding protein (cubilin) and an endocytic coreceptor (megalin) responsible for tissue-specific uptake of CCSP and associated ligands.  相似文献   

2.
Adams JS 《Cell》2005,122(5):647-649
Megalin is a member of the low-density lipoprotein receptor-related protein (LRP) family. The plasma membrane-anchored LRPs serve as receptors for a wide variety of extracellular ligands, promoting their entry into cells by endocytosis of the receptor-ligand complex. In this issue of Cell, Hammes et al. (2005) show that resistance (insensitivity) to sex steroid hormones is encountered in animals lacking megalin. These data provide important insights into an endocytic mechanism for the uptake of sex steroids by mammalian cells.  相似文献   

3.
Steroid hormones may enter cells by diffusion through the plasma membrane. However, we demonstrate here that some steroid hormones are taken up by receptor-mediated endocytosis of steroid-carrier complexes. We show that 25-(OH) vitamin D3 in complex with its plasma carrier, the vitamin D-binding protein, is filtered through the glomerulus and reabsorbed in the proximal tubules by the endocytic receptor megalin. Endocytosis is required to preserve 25-(OH) vitamin D3 and to deliver to the cells the precursor for generation of 1,25-(OH)2 vitamin D3, a regulator of the calcium metabolism. Megalin-/- mice are unable to retrieve the steroid from the glomerular filtrate and develop vitamin D deficiency and bone disease.  相似文献   

4.
The steroid hormone 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] rapidly stimulates the uptake of phosphate in isolated chick intestinal cells, while the steroid 24,25-dihydroxyvitamin D3 [24,25(OH)2D3] inhibits the rapid stimulation by 1,25(OH)2D3. Earlier work in this laboratory has indicated that a cellular binding protein for 24,25(OH)2D3 is the enzyme catalase. Since binding resulted in decreased catalase activity and increased H2O2 production, studies were undertaken to determine if pro-oxidant conditions mimicked the inhibitory actions of 24,25(OH)2D3, and anti-oxidant conditions prevented the inhibitory actions of 24,25(OH)2D3. An antibody against the 24,25(OH)2D3 binding protein was found to neutralize the inhibitory effect of the steroid on 1,25(OH)2D3-mediated 32P uptake. Incubation of cells in the presence of 50 nM catalase was also found to alleviate inhibition. In another series of experiments, isolated intestinal epithelial cells were incubated as controls or with 1,25(OH)2D3, each in the presence of the catalase inhibitor 3-amino-1,2,4-triazole, or with 1,25(OH)2D3 alone. Cells exposed to hormone alone again showed an increased accumulation of 32P, while cells treated with catalase inhibitor and hormone had uptake levels that were indistinguishable from controls. We tested whether inactivation of protein kinase C (PKC), the signaling pathway for 32P uptake, occurred. Incubation of cells with phorbol-13-myristate (PMA) increased 32P uptake, while cells pretreated with 50 microM H2O2 prior to PMA did not exhibit increased uptake. Likewise, PMA significantly increased PKC activity while cells exposed to H2O2 prior to PMA did not. It is concluded that catalase has a central role in mediating rapid responses to steroid hormones.  相似文献   

5.
The endocytic compartment of eukaryotic cells is a complex intracellular structure involved in sorting, processing, and degradation of a great variety of internalized molecules. Recently, the uptake through caveolae has emerged as an alternative internalization pathway, which seems to be directly related with some signal transduction pathways. However, the mechanisms, molecules, and structures regulating the transport of caveolin from the cell surface into the endocytic compartment are largely unknown. In this study, normal quiescent fibroblasts (normal rat kidney (NRK)) were used to demonstrate that epidermal growth factor causes partial redistribution of caveolin from the cell surface into a cellubrevin early endocytic compartment. Treatment of NRK cells with cytochalasin D or latrunculin A inhibits this pathway and the concomitant activation of Mek and mitotic-activated protein (MAP) kinase; however, if cells were pre-treated with filipin, cytochalasin D does not inhibit the phosphorylation of MAP kinase induced by epidermal growth factor. From these results we conclude that in NRK cells the intact actin cytoskeleton is necessary for the EGF-mediated transport of caveolin from the cell surface into the early endocytic compartment and the activation of MAP kinase pathway.  相似文献   

6.
Role of endocytosis in cellular uptake of sex steroids   总被引:7,自引:0,他引:7  
Androgens and estrogens are transported bound to the sex hormone binding globulin (SHBG). SHBG is believed to keep sex steroids inactive and to control the amount of free hormones that enter cells by passive diffusion. Contrary to the free hormone hypothesis, we demonstrate that megalin, an endocytic receptor in reproductive tissues, acts as a pathway for cellular uptake of biologically active androgens and estrogens bound to SHBG. In line with this function, lack of receptor expression in megalin knockout mice results in impaired descent of the testes into the scrotum in males and blockade of vagina opening in females. Both processes are critically dependent on sex-steroid signaling, and similar defects are seen in animals treated with androgen- or estrogen-receptor antagonists. Thus, our findings uncover the existence of endocytic pathways for protein bound androgens and estrogens and their crucial role in development of the reproductive organs.  相似文献   

7.
The intra-erythrocytic stages of the malaria parasite endocytose large quantities of the surrounding erythrocyte cytoplasm and deliver it to a digestive food vacuole via endocytic vesicles. Digestion provides amino acids for parasite protein synthesis and is required to maintain the osmotic integrity of the host cell. The parasite endocytic pathway has been described morphologically by electron microscopy, but the molecular mechanisms that mediate and regulate it remain elusive. Given the involvement of actin in endocytosis in other eukaryotes, we have used actin inhibitors to assess the requirement for this protein in the endocytic pathway of the human malaria parasite, Plasmodium falciparum . Treatment of cultures with cytochalasin D did not affect haemoglobin levels in the parasites when co-administered with protease inhibitors, and neither did it affect the uptake of the endocytic tracer horseradish peroxidase, suggesting the absence of actin in the mechanism of endocytosis. However, in the absence of protease inhibitors, treated parasites contained increased levels of haemoglobin due to an accumulation of enlarged endocytic vesicles, as determined by immunofluorescence and electron microscopy, suggesting a role for actin in vesicle trafficking, possibly by mediating vesicle maturation and/or fusion to the digestive vacuole. In contrast to cytochalasin D, treatment with jasplakinolide led to an inhibition of endocytosis, an accumulation of vesicles closer to the plasma membrane and a marked concentration of actin in the parasite cortex. We propose that the stabilization of cortical actin filaments by jasplakinolide interferes with normal endocytic vesicle formation and migration from the cell periphery.  相似文献   

8.
Although the importance of clathrin- and caveolin-independent endocytic pathways has recently emerged, key aspects of these routes remain unknown. Using quantitative ultrastructural approaches, we show that clathrin-independent carriers (CLICs) account for approximately three times the volume internalized by the clathrin-mediated endocytic pathway, forming the major pathway involved in uptake of fluid and bulk membrane in fibroblasts. Electron tomographic analysis of the 3D morphology of the earliest carriers shows that they are multidomain organelles that form a complex sorting station as they mature. Proteomic analysis provides direct links between CLICs, cellular adhesion turnover, and migration. Consistent with this, CLIC-mediated endocytosis of key cargo proteins, CD44 and Thy-1, is polarized at the leading edge of migrating fibroblasts, while transient ablation of CLICs impairs their ability to migrate. These studies provide the first quantitative ultrastructural analysis and molecular characterization of the major endocytic pathway in fibroblasts, a pathway that provides rapid membrane turnover at the leading edge of migrating cells.  相似文献   

9.
Cytochalasin D was found to reduce the endocytosis of ricin and the fluid phase markers [14C]sucrose and Lucifer Yellow in Vero cells without reducing the uptake of transferrin. The number of coated pits at the plasma membrane was not affected by the treatment. Cytochalasin D also reduced the endocytosis of ricin in cells where uptake of transferrin from coated pits was blocked by low cytosolic pH. Colchicine had a similar effect as cytochalasin D. Both drugs inhibited the exocytosis of ricin from the cells, and they reduced the rate by which ricin intoxicated the cells. Cytochalasin D had essentially no effect on the ability of the cells to bind transferrin, whereas colchicine reduced the binding to some extent. Epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA) increased the endocytic uptake of ricin in A431 cells both under normal culture conditions and when the coated pit/coated vesicle pathway was blocked by acidification of the cytosol. In contrast, EGF and TPA had no stimulatory effect on the uptake of transferrin at normal cytoplasmic pH, and they did not abolish the ability of low cytoplasmic pH to inhibit endocytic uptake of transferrin. The results indicate that cytochalasin D and colchicine selectively inhibit endocytic uptake from non-clathrin-coated areas of the cell membrane whereas EGF and TPA stimulate it. The data support the view that there are different endocytic mechanisms, and they indicate that at least in some cell types the non-clathrin-coated endocytosis can be modulated.  相似文献   

10.
Steroid hormones and many other lipophilic compounds are believed to enter cells solely by free diffusion through the plasma membrane. However, recent work using a megalin-deficient mouse model has identified a new endocytic pathway responsible for the delivery of steroids to renal and gonadal tissues. This review describes these new pathways for uptake of 25-hydroxy-vitamin-D3 and the gonadal sex-steroids (17beta-estradiol and testosterone) bound to vitamin D-binding protein and sex hormone-binding globulin respectively. Furthermore examples of other lipophilic molecules that enter cells by receptor-mediated pathways will be presented and the receptors responsible for their uptake described.  相似文献   

11.
After uptake by murine macrophages, Salmonella typhimurium is able to survive and replicate within specialized phagosomes called Salmonella -containing vacuoles (SCVs), which are segregated from the late endocytic pathway. The molecular basis of this process and the virulence factors required are not fully understood. In this study, we used confocal fluorescence microscopy to evaluate interactions between the endocytic pathway of the murine macrophage cell line RAW 264.7 and different S. typhimurium strains. The analysis was carried out using the fluid-phase marker Texas red–ovalbumin and antibodies against the lysosomal enzyme cathepsin D, the late endosomal lipid lysobisphosphatidic acid and the adaptor proteins AP-1 and AP-3. Less than 10% of wild-type SCVs were associated with these markers at 24 h after uptake by macrophages. A similar low level of association was observed for vacuoles containing mutant strains affected in the function of the Salmonella pathogenicity island (SPI)-2 type III secretion system or the virulence plasmid spv operon. However, at this time point, the proportion of vacuoles containing phoP mutant bacteria that were associated with each of the markers ranged from 25% to 50%. These results show that the regulon controlled by the PhoP/Q two-component system makes a major contribution to trafficking of the SCV in macrophages. Segregation of SCVs from the endocytic pathway was also found to be dependent on bacterial proteins synthesized between 15 min and 4 h after uptake into macrophages. However, after this time, protein synthesis was not required to maintain the segregation of SCVs from late endosomes and lysosomes.  相似文献   

12.
Acidification of the cytosol inhibits endocytosis from coated pits   总被引:57,自引:25,他引:32       下载免费PDF全文
Acidification of the cytosol of a number of different cell lines strongly reduced the endocytic uptake of transferrin and epidermal growth factor. The number of transferrin binding sites at the cell surface was increased in acidified cells. Electron microscopic studies showed that the number of coated pits at the cell surface was not reduced in cells with acidified cytosol. Experiments with transferrin-horseradish peroxidase conjugates and a monoclonal anti-transferrin receptor antibody demonstrated that transferrin receptors were present in approximately 75% of the coated pits both in control cells and in cells with acidified cytosol. The data therefore indicate that the reason for the reduced endocytic uptake of transferrin at internal pH less than 6.5 is an inhibition of the pinching off of coated vesicles. In contrast, acidification of the cytosol had only little effect on the uptake of ricin and the fluid phase marker lucifer yellow. Ricin endocytosed by cells with acidified cytosol exhibited full toxic effect on the cells. Although the pathway of this uptake in acidified cells remains uncertain, some coated pits may still be involved. However, the data are also consistent with the possibility that an alternative endocytic pathway involving smooth (uncoated) pits exists.  相似文献   

13.
A stable HeLa cell line expressing a dynamin mutant, dynts, exhibits a temperature-sensitive defect in endocytic clathrin-coated vesicle formation. Dynts carries a point mutation, G273D, corresponding to the Drosophila shibirets1 allele. The ts-defect in receptor-mediated endocytosis shows a rapid onset (< 5 min) and is readily reversible. At the nonpermissive temperature (38 degrees C) HRP uptake is only partially inhibited. Moreover, when cells are held at the nonpermissive temperature, fluid phase uptake fully recovers to wild-type levels within 30 min, while receptor-mediated endocytosis remains inhibited. The residual HRP uptake early after shift to the nonpermissive temperature and the induced HRP uptake that occurs after recovery are insensitive to cytosol acidification under conditions that potently inhibit receptor-mediated endocytosis of Tfn. Together, these results suggest that a dynamin- and clathrin-independent mechanism contributes to the total constitutive pinocytosis in HeLa cells and that dynts cells rapidly and completely compensate for the loss of clathrin- dependent endocytosis by inducing an alternate endocytic pathway.  相似文献   

14.
In eukaryotic cells, several pathways exist for the internalization of plasma membrane proteins and extracellular cargo molecules. These endocytic pathways can be divided into clathrin-dependent and clathrin-independent pathways. While clathrin-dependent pathways are known to be involved in a variety of cellular processes in plants, clathrin-independent pathways have so far only been identified in animal and yeast cells. Here we show that internalization of fluorescent glucose into BY-2 cells leads to accumulation of the sugar in compartments of the endocytic pathway. This endocytic uptake of glucose was not blocked by ikarugamycin, an inhibitor of clathrin-dependent endocytosis, suggesting a role for clathrin-independent endocytosis in glucose uptake. Investigations of fusion and fission of single vesicles by membrane capacitance measurements revealed stimulation of endocytic activity by extracellular glucose. Glucose-stimulated fission of vesicles was not affected by addition of ikarugamycin or blocking of clathrin coat formation by transient over-expression of HUB1 (the C-terminal part of the clathrin heavy chain). These data demonstrate that clathrin-independent endocytosis does occur in plant cells. This pathway may represent a common mechanism for the uptake of external nutrients.  相似文献   

15.
Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.  相似文献   

16.
The presence of specific binding sites for radiolabelled vertebrate-type and arthropod-type steroid hormones was investigated in several organs including salivary gland, and central nervous system of third instar Calliphora vicina larvae by thaw-mount autoradiography. Ponasterone A, a 20-hydroxyecdysone agonist and 20-hydroxyecdysone are the only steroids which bind to nuclear high affinity binding sites. These binding sites are DNA associated while nucleoli show no tracer binding. Ecdysone, an endogenous 20-hydroxyecdysone precursor, is taken up by target cells but no significant nuclear binding occurs. 1,25-Dihydroxyvitamin D3 concentrates in cytoplasm only and its uptake is highest compared to all other steroids. Progesterone and testosterone show weak accumulation in the cytoplasm, while for cholesterol, corticosterone, cortisol, dexamethasone, dihydrotestosterone and estradiol-17 beta, no noticeable uptake occurs. For ponasterone A, a clear time dependence of uptake and intracellular distribution is visible, suggesting the existence and involvement of specific ecdysteroid uptake and transport mechanisms. These results suggest the presence of binding sites for various mammalian steroids in insects. Whether vertebrate steroid hormones or metabolites of them play a role in insects or whether the uptake and binding is based on chemical similarities alone without biological significance remains to be further investigated.  相似文献   

17.
Isogenic variants of antibiotic-resistant and -sensitive Neisseria gonorrhoeae were examined for differences in the inhibition of oxygen uptake by steroid hormones. Mutants designated as env, which possessed cell envelope mutations allowing phenotypic suppression of low-level antibiotic resistance, were more sensitive to steroid hormone inhibition of oxygen uptake than the wild-type parental strains. Possession of an mtr locus, which confers nonspecific resistance to multiple antibiotics, dyes, and detergents, was also associated with an increase in resistance to steroid hormone inhibition of oxygen uptake. The penA2 locus, which confers an eightfold increase in resistance to penicillin, was not responsible for the increased resistance to steroid hormones. Phospholipids in the outer membrane of intact env-2 cells were susceptible to digestion by phospholipase C, indicating exposure of phospholipid head groups on the outer surface. Cells of a wild-type and mtr-2 strain were not susceptible to phospholipase C digestion unless they were pretreated with mixed exoglycosidases. This pretreatment also increased the sensitivity of mtr-2 cells to progesterone inhibition of O2 uptake. These data suggest that the permeability of the gonococcus to hydrophobic antibiotic and steroid molecules is mediated by the degree of phospholipid exposure on the outer membrane.  相似文献   

18.
The intracellular distribution of synthetic glycosphingolipids (GSLs) bearing a fluorophore can be monitored in living cells by fluorescence microscopy. We reported previously that variation in the length of the long-chain base and in the structure of the carbohydrate-containing polar head group of (2S,3R) (or D-erythro-)-beta-lactosylceramide (LacCer) did not alter the mechanism of endocytic uptake from the plasma membrane of various mammalian cell types [Singh, R.D., Puri, V., Valiyaveettil, J.T., Marks, D.L., Bittman, R., Pagano, R.E., 2003. Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol. Biol. Cell 14, 3254-3265]. To extend our examination of the molecular features in LacCer that are responsible for its uptake by the caveolar-requiring endocytic pathway, we have synthesized the three unnatural stereoisomers [(2R,3R)-, (2S,3S)-, and (2R,3S)] of dipyrromethene difluoride (BODIPY)-LacCer. These analogues will be used to probe the role of stereochemistry in the long-chain base of LacCer in the mechanism of endocytic uptake.  相似文献   

19.
Sterling TM  Nemere I 《Steroids》2007,72(2):151-157
Cell culture techniques providing retention of the polarized enterocyte morphology has allowed, for the first time, comparison of parathyroid hormone (PTH)- and 25-hydroxyvitamin D(3) [25(OH)D(3)]-induced (45)Ca uptake with membrane trafficking events discerned using confocal microscopy. Treatment of cells with 65 pM bPTH(1-34) promoted enhanced (45)Ca uptake between 1 and 10 min after peptide. The protein kinase A (PKA) antagonist, RpcAMP inhibited hormone-mediated uptake. At the microscopic level, cells labeled with the endocytic tracking dye FM1-43 revealed increased punctate staining 50-550s after hormone. Pretreatment of cells with RpcAMP abolished this pattern of staining. The calcium indicator dye fluo-3 AM revealed faint punctate labeling in controls, with increased bands of punctate labeling in the apical region of the cells after peptide hormone, and ultimately the basal region. Parallel studies conducted with the metabolite 25(OH)D(3) resulted in a slower stimulation of (45)Ca uptake 5-10 min after steroid, which was also inhibited by preincubation with RpcAMP. Cells labeled with FM1-43 and then treated with steroid showed no change in distribution of fluorescence during the 10 min incubation period. Confocal microscopy with fluo-3 revealed intense apical fluorescence--that after steroid --streamed to a perinuclear position, and ultimately the basal area. Uniformly diffuse staining, which would indicate cytoplasmic calcium transport, was observed only in controls. Membrane trafficking and compartmentalized calcium appear to be integral to agonist mediated cation transport.  相似文献   

20.
Renad I. Zhdanov 《Steroids》2009,74(9):723-724
The “Torgov reaction” opened an original pathway for the total chemical synthesis of steroid hormones, which is still used for the large-scale industrial production of steroid hormones at factories of Schering AG in Berlin, Germany.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号