首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The A‐kinase anchoring proteins (AKAPs) are a group of structurally diverse proteins identified in various species and tissues. These proteins are able to anchor protein kinase and other signalling proteins to regulate cardiac function. Acting as a scaffold protein, AKAPs ensure specificity in signal transduction by enzymes close to their appropriate effectors and substrates. Over the decades, more than 70 different AKAPs have been discovered. Accumulative evidence indicates that AKAPs play crucial roles in the functional regulation of cardiac diseases, including cardiac hypertrophy, myofibre contractility dysfunction and arrhythmias. By anchoring different partner proteins (PKA, PKC, PKD and LTCCs), AKAPs take part in different regulatory pathways to function as regulators in the heart, and a damaged structure can influence the activities of these complexes. In this review, we highlight recent advances in AKAP‐associated protein complexes, focusing on local signalling events that are perturbed in cardiac diseases and their roles in interacting with ion channels and their regulatory molecules. These new findings suggest that AKAPs might have potential therapeutic value in patients with cardiac diseases, particularly malignant rhythm.  相似文献   

3.
Spatial and temporal separation of signal transduction pathways often determines the specificity in cellular responses. Recent advances have improved our understanding of how growth factor signalling is influenced by the formation of molecular complexes (signalosomes) in distinct cellular compartments. There has also been new insight into the mechanisms that determine the signalling competence of these complexes and their role in receptor endocytosis, retrograde trafficking in neurons and restricted protein biosynthesis, and many examples have been found where signalosome deregulation leads to disease.  相似文献   

4.
Plants have the ability to respond to pathogen invasion by specific defense reactions. Components of mammalian signal transduction chains have been identified in plants, and several lines of evidence have implicated such components in elicitor signal transmission in defense responses. In particular, it has been assumed that elicitor signals are transduced via a protein kinase cascade, although the identity of the protein kinases and the function of the phosphorylated proteins remain to be determined. The purpose of this review is to discuss the roles of protein kinases in elicitor signal transduction pathways in plant cells based on recent progress in this field.  相似文献   

5.
Adaptors are proteins of multi-modular structure without enzymatic activity. Their capacity to organise large, temporary protein complexes by linking proteins together in a regulated and selective fashion makes them of outstanding importance in the establishment and maintenance of specificity and efficiency in all known signal transduction pathways. This review focuses on the structural and functional characterisation of adaptors involved in tyrosine kinase (TK) signalling. TK-linked adaptors can be distinguished by their domain composition and binding specificities. However, such structural classifications have proven inadequate as indicators of functional roles. A better way to understand the logic of signalling networks might be to look at functional aspects of adaptor proteins such as signalling specificity, negative versus positive contribution to signal propagation, or their position in the signalling hierarchy. All of these functions are dynamic, suggesting that adaptors have important regulatory roles rather than acting only as stable linkers in signal transduction.  相似文献   

6.
Recent progress has been made in identifying signal transduction pathways controlled by receptor protein-tyrosine kinases. The receptors for nerve growth factor and hepatocyte growth factor have been identified as the Trk and Met tyrosine kinases. The stimulation of intracellular signal transduction pathways by activated receptors appears to involve the association of SH2-containing cytoplasmic signalling proteins with autophosphorylated receptors.  相似文献   

7.
Ethylene signal transduction   总被引:22,自引:0,他引:22  
  相似文献   

8.
9.
10.
Wound signalling in plants   总被引:10,自引:0,他引:10  
Plants undergoing the onslaught of wound-causing agents activate mechanisms directed to healing and further defence. Responses to mechanical damage are either local or systemic or both and hence involve the generation, translocation, perception, and transduction of wound signals to activate the expression of wound-inducible genes. Although the central role for jasmonic acid in plant responses to wounding is well established, other compounds, including the oligopeptide systemin, oligosaccharides, and other phytohormones such as abscisic acid and ethylene, as well as physical factors such as hydraulic pressure or electrical pulses, have also been proposed to play a role in wound signalling. Different jasmonic acid-dependent and -independent wound signal transduction pathways have been identified recently and partially characterized. Components of these signalling pathways are mostly similar to those implicated in other signalling cascades in eukaryotes, and include reversible protein phosphorylation steps, calcium/calmodulin-regulated events, and production of active oxygen species. Indeed, some of these components involved in transducing wound signals also function in signalling other plant defence responses, suggesting that cross-talk events may regulate temporal and spatial activation of different defences.  相似文献   

11.
The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.  相似文献   

12.
The understanding of molecular mechanisms regulating the formation, growth and differentiation of haemopoietic stem cells has advanced considerably recently. Particular progress has been made in defining the cytokines, chemokines and extracellular matrix components which retain and maintain primitive haemopoietic cell populations in bone marrow. Furthermore, signal transduction pathways that are critical for haemopoiesis, both in vivo and in vitro, and that are activated by cytokines have also been identified and further characterised. The importance of these processes has, this year, been exemplified by the phenotypes of mice deficient in key signal transduction proteins and the discovery that mutations in the component proteins of some signalling pathways are linked to human diseases. Significant advances in understanding the molecular mechanisms for mobilisation of stem cells from bone marrow have also been made this year; this has potential importance for bone marrow transplantation.  相似文献   

13.
14.
Heterotrimeric G‐proteins are complexes that regulate important signalling pathways essential for growth and development in both plants and animals. Although plant cells are composed of the core components (Gα, Gβ and Gγ subunits) found in animal G‐proteins, the complexities of the architecture, function and signalling mechanisms of those in animals are dissimilar to those identified in some plants. Current studies on plant G‐proteins have improved knowledge of the essential physiological and agronomic properties, which when harnessed, could potentially impact global food security. Extensive studies on the molecular mechanisms underlying these properties in diverse plant species will be imperative in improving our current understanding of G‐protein signalling pathways involved in plant growth and development. The advancement of G‐protein signalling networks in distinct plant species could significantly aid in better crop development. This review summarizes current progress, novel discoveries and future prospects for this area in potential crop improvement.  相似文献   

15.
16.
17.
Signalling drought in guard cells   总被引:15,自引:1,他引:14  
A number of environmental conditions including drought, low humidity, cold and salinity subject plants to osmotic stress. A rapid plant response to such stress conditions is stomatal closure to reduce water loss from plants. From an external stress signal to stomatal closure, many molecular components constitute a signal transduction network that couples the stimulus to the response. Numerous studies have been directed to resolving the framework and molecular details of stress signalling pathways in plants. In guard cells, studies focus on the regulation of ion channels by abscisic acid (ABA), a chemical messenger for osmotic stress. Calcium, protein kinases and phosphatases, and membrane trafficking components have been shown to play a role in ABA signalling process in guard cells. Studies also implicate ABA-independent regulation of ion channels by osmotic stress. In particular, a direct osmosensing pathway for ion channel regulation in guard cells has been identified. These pathways form a complex signalling web that monitors water status in the environment and initiates responses in stomatal movements.  相似文献   

18.
Abscisic acid (ABA) and nitric oxide (NO) are both extremely important signalling molecules employed by plants to control many aspects of physiology. ABA has been extensively studied in the mechanisms which control stomatal movement as well as in seed dormancy and germination and plant development. The addition of either ABA or NO to plant cells is known to instigate the actions of many signal transduction components. Both may have an influence on the phosphorylation of proteins in cells mediated by effects on protein kinases and phosphatases, as well as recruiting a wide range of other signal transduction molecules to mediate the final effects. Both ABA and NO may also lead to the regulation of gene expression. However, it is becoming more apparent that NO may be acting downstream of ABA, with such action being mediated by reactive oxygen species such as hydrogen peroxide in some cases. However not all ABA responses require the action of NO. Here, examples of where ABA and NO have been put together into the same signal transduction pathways are discussed.  相似文献   

19.
Protein phosphatase 2C (PP2C) function in higher plants   总被引:18,自引:0,他引:18  
In the past few years, molecular cloning studies have revealed the primary structure of plant protein serine/threonine phosphatases. Two structurally distinct families, the PP1/PP2A family and the PP2C family, are present in plants as well as in animals. This review will focus on the plant PP2C family of protein phosphatases. Biochemical and molecular genetic studies in Arabidopsis have identified PP2C enzymes as key players in plant signal transduction processes. For instance, the ABI1/ABI2 PP2Cs are central components in abscisic acid (ABA) signal transduction. Arabidopsis mutants containing a single amino acid exchange in ABI1 or ABI2 show a reduced response to ABA. Another member of the PP2C family, kinase-associated protein phosphatase (KAPP), appears to be an important element in some receptor-like kinase (RLK) signalling pathways. Finally, an alfalfa PP2C acts as a negative regulator of a plant mitogen-activated protein kinase (MAPK) pathway. Thus, the plant PP2Cs function as regulators of various signal transduction pathways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号