首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short photoperiod induces growth cessation in seedlings of Norway spruce ( Picea abies (L.] Karst.). Application of different gibberellins (GAS) to seedlings growing under a short photoperiod show that GA9 and GA20 can not induce growth. In contrast application of GA, and GA4 induced shoot elongation. The results indicate that 3β-hydroxylation of GA9 to GA4 and of GA20 to GA1 is under photoperiodic control. To confirm that conclusion, both qualitative and quantitative analyses of endogenous GAs were performed. GA1, GA3, GA4, GA7, GA9, GA12, GA15, GA15, GA20, GA29, GA34 and GA51 were identified by combined gas chromatography-mass spectrometry in shoots of Norway spruce seedlings. The effect of photoperiod on GA levels was determined by using deuterated and 14C-labelled GAs as intermal standards. In short days, the amounts of GA9, GA4 and GA1 are less than in plants grown in continuous light. There is no significant difference in the amounts of GA3, GA12, and GA20 between the different photoperiods. The lack of accumulation of GA9 and GA20 under short days is discussed.  相似文献   

2.
Effects of gibberellins A1, A4/7, A9, A19 and A20 and growth retardants were studied on shoot elongation in seedlings of Salix pentandra L. The growth-retarding effects of CCC and ancymidol were antagonized by all the gibberellins tested. The novel plant growth regulator prohexadione (free acid of BX-112), which is suggested to block 3β-hydroxylation of gibberellins, effectively prevented shoot elongation in seedlings grown under long photoperiod. Initiation of new leaves was only slightly reduced. GA1, but not GA19 and GA20, was active in overcoming the inhibition of stem elongation of seedlings, treated with prohexadione, GA19, GA20 and GA1 are native in S. pentandra , and the results are compatible with the hypothesis that GA1 is active per se in shoot elongation, and that the effect of GA19 and GA20 is dependent on their conversion to GA1.
A mixture of GA4 and GA7 was as active as GA1 in promoting shoot elongation in seedlings treated with prohexadione, while GA9 showed slight activity only when applied at high doses.  相似文献   

3.
Germination of the polymorphic seeds and seedling growth of Atriplex triangularis under various salinity, gibberellic acid and kinetin treatments were determined. Gibberellic acid (GA3; 2.9 m M ) promoted germination and growth at high NaCl concentrations (345 m M ). Kinetin (4.7 μ M ) stimulated germination at all salinities and seed sizes tested. GA3 and kinetin generally increased seedling growth at all concentrations of salinity studied. Higher concentrations of kinetin were found to be inhibitory.  相似文献   

4.
It has been shown previously that gibberellins (GAs) mediate the phytochrome (Phy) control of cowpea ( Vigna sinensis L.) epicotyl elongation induced by end-of-day (EOD)-far-red light (FR). In the present work, the EOD-FR effect on GA metabolism and GA levels in cowpea has been investigated. GA1, GA8, GA19 and GA20 were identified in epicotyls, and GA1, GA19, GA20 and GA29-catabolite in leaves of 6-day-old cowpea seedlings. The content of GA1 in the epicotyl paralleled the decrease of its growth rate, supporting the hypothesis that this is the GA bioactive in controlling cowpea epicotyl elongation. FR enhanced both the amount of [3H]GA1 in the epicotyl produced from applied [3H]GA20, and that of applied [3H]GA1 that remained unmetabolized in epicotyl explants, suggesting that Phy may regulate the inactivation of GA1. In agreement with this effect of light on GA1 metabolism, the contents of GA1 in the epicotyl remained higher in FR-treated than in R-treated explants. Moreover, in intact seedlings EOD-FR treatment increased both epicotyl elongation and GA1 content in the responsive epicotyl, whereas it was not altered in the leaves. These results show, for the first time, that photostable Phys modulate the stem elongation in light-grown plants by locally controlling the GA1 levels through regulation of its inactivation.  相似文献   

5.
Extracts of Douglas fir ( Pseudotsuga menziesii [Mirb.] Franco) shoots were purified by reversed and normal phase HPLC; gibberellin (GA)-like compounds detected by radioimmunoassay with antibodies against GA4 and the Tan-ginbozu dwarf rice micro-drop biossay were analyzed by GC-MS. Three major components were identified as GA4, GA7, and GA9 while smaller amounts of GA1, GA3 and putative GA9-glucosyl ester were also present.  相似文献   

6.
Gibberellins Al (GA1), GA3, GA4, GA9, and after enzymatic hydrolysis of GA-conjugate-like fractions, GA9 and GA15, were identified in shoots of Sitka spruce [ Picea sitchensis (Bong.) Carr.] of different ages by combined gas chromatography-mass spectrometry (GC-MS). The purification and separation of the GAs involved the use of reverse phase and normal phase high performance liquid chromatography (HPLC). The Tan-ginbozu dwarf rice bioassay and binding to antibodies raised against GA1, GA4 and GA9 were used for detection of GA-like substances. The qualitative differences between the three ages of plant material were the presence of GA3 and GA1 in the 48-year-old material and the absence of detectable amounts of GA4 in the same material. This indicates a difference in GA metabolism which may reflect the difference in ability to form reproductive buds.  相似文献   

7.
The effect of the plant growth retardants ancymidol. mefluidide and uniconazole on germination of two melon accessions differing in their ability to germinate at 14°C was examined. The accessions were the cold sensitive Noy Yizre'el and the cold tolerant Persia 202. The three growth retardants were able to delay the germination of intact Noy Yizre'el seeds, but did not affect that of intact Persia 202 seeds. On the other hand germination of decoated seeds of both accessions was unaffected by these inhibitors at normal oxygen concentration, but was inhibited at 5% oxygen. When gibberellin-like activity was measured by a dwarf rice biological assay following HPLC fractionation, it was found that seeds of Persia 202 contained much more gibberellin-like activity than Noy Yizre'el seeds. Among the extracted compounds several endogenous gibberellins were identified by combined gas chromatography-mass spectrometry (GC-MS). They included GA4, GA20, GA1 and GA3 in Noy Yizre'el and GA34, GA20, GA1 and GA8 in Persia 202. It is suggested that the better germination of intact Persia 202 seeds, compared to Noy Yizre'el seeds at low temperature and low oxygen concentration, is due to a higher endogenous level of GA and a better seed coat permeability to oxygen.  相似文献   

8.
GA1, GA8, GA17, GA19, GA20 and GA29 were identified by combined gas chromatography-mass spectrometgry (GC-MS) in immature seeds and pericarp of Lycopersicon esculentum Mill. (tomato). Higher levels of these GAs were present in the seeds than in the pericarp; seeds in addition contained GA15, GA24, GA25, and GA44. Fruits of the Lycopersicon pimpinellifolium Mill. mutant I were smaller and contained lower GA1 concentrations, but higher GA20 concentrations, than those of mutants III and IV. In contrast, differences in fruit size in L. esculentum due to position on the truss did not correlate with GA1 concentration in either the pericarp or seeds.  相似文献   

9.
Evidence was obtained by gas chromatography-mass spectrometry and gas chromatography-selected ion monitoring for the presence of gibberellin A20), GA1, GA29, GA8 and 2-epiGA29 in vegetative shoots of tall sweet pea, Lathyrus odoratus L. Both tall (genotype L –) and dwarf (genotype II ) sweet peas elongated markedly in response to exogenous GA1 attaining similar internode lengths at the highest dose levels. Likewise internode length in both genotypes was reduced by application of the GA biosynthesis inhibitor, PP333. The ratio of leaflet length to width was reduced by application of PP333 to tall plants and this effect was reversed by GA1. When applied to plants previously treated with PP333, GA20 promoted internode elongation of L – plants as effectively as GA1, but GA29 was not as effective as GA1 when applied to II plants. In contrast, GA20 and GA1 were equally effective when applied to the semidwarf lb mutant but GA-treated lblb plants did not attain the same internode length as comparable GA-treated Lb – plants. The difference in stature between the tall and dwarf types persisted in dark-grown plants. It is concluded that GA1 may be important for internode elongation and leaf growth in sweet pea. Mutant l may influence GA1 synthesis by reducing 3β-hydroxylation of GA20 whereas mutant lb appears to affect GA sensitivity.  相似文献   

10.
Three rapid cycling Brassica rapa genotypes were grown in greenhouse conditions to investigate the possible relationships between endogenous gibberellin (GA) content and shoot growth. Endogenous GA1 GA3 and GA20 were extracted from stem samples harvested at 3 weekly intervals and analyzed by gas chromatography-mass spectrometry with selected ion monitoring, using [2H2]-GA1 and [2H2]-GA20 as quantitative internal standards. During the first 2 weeks, GA levels of the dwarf, rosette ( ros ), averaged 36% of levels in normal plants (on a per stem basis). Levels in the tall mutant, elongated internode (ein) , were consistently higher, averaging 305% of levels in normal plants.
Differences in shoot height across the genotypes resulted from varying internode length which resulted from epidermal cell length and number being increased in ein and decreased in ros relative to the normal genotype. The exogenous application of GA3 to normal plants increased cell length while the application of paclobutrazol (PP333), a triazole plant growth retardant, reduced cell size. Thus, exogenous GA manipulations mimicked the influence of the mutant genes ros and ein. The dwarf, ros , had reduced shoot dry weights and relative growth rates compared to the other genotypes. Total dry weights were similar in ein and the normal genotype but stem weights were increased in ein , compensating for decreased leaf weights. Thus, the gibberellin-deficiency of ros resulted in generally reduced shoot growth. The overproduction of endogenous GA by ein did not result in enhanced shoot growth but rather a specific enhancement of internode elongation and stem growth at the expense of leaf size.  相似文献   

11.
Gibberellins A1, A3, A4 and A7 were identified by combined gas chromatography mass spectrometry (GC-MS) in leaf and stem tissues of 17-day-old seedlings of wheat ( Triticum aestivum L. ), cvs Siete Cerros (semi-dwarf, Rht1) and Møystad (tall), of F1, hybrids from the cross Møystad × Siete Cerros and of 2 selected lines from the cross Møystad x Sonora 64 (Rht1 and Rht2). GA, and GA, were identified by full scan mass spectra separately in all 5 extracts, GA4 and GA7, were identified by selected ion monitoring in a bulked fraction. About 90% of the biological activity (Tan-ginbozu dwarf rice bioassay) in all 5 extracts was due to the GA1/GA3-fraction.  相似文献   

12.
The highly active, polar gibberellin-like substance found in the apical region of shoots of tall (genotype Le ) peas ( Pisum sativum L.) is shown by combined gas chromatography-mass spectrometry (GC/MS) to be GA1. This substance is either absent or present at only low levels in dwarf ( le ) plants. Multiple ion monitoring (MIM) tentatively suggests that GA8 may also be present in shoot tissue of tall peas. Gibberellin A1 is the first 3 β-hydroxylated gibberellin positively identified in peas, and its presence in shoot tissue demonstrates the organ specificity of gibberellin production since GA1 has not been detected in developing seeds. Application of GA1 can mask the Le/le gene difference. However, whilst Le plants respond equally to GA20 and GA1, le plants respond only weakly to GA20, the major biologically active gibberellin found in dwarf peas. These results suggest that the Le gene controls the production of a 3 β-hydroxylase capable of converting GA20 to GA1. Further support for this view comes from feeds of [3H] GA20 to Le and le plants. Plants with Le metabolise [3H] GA20 to three major products whilst le plants produce only one major product after the same time. The metabolite common to Le and le plants co-chromatographs with GA29. The additional two metabolites in Le peas co-chromatograph with GA1 and GA8.  相似文献   

13.
After the application of [13C3H]-gibberellin A20 to wild-type (tall) sweet peas ( Lathyrus odoratus L.) labelled gibberellin A1 (GA1), GA8, GA29 and 2-epiGA29 were identified as major metabolities by gas chromatography-mass spectrometry after high performance liquid chromatography. By contrast in genetically comparable dwarf ( II ) plants only labelled GA29 and 2-epiGA29 were produced in significant amounts, although evidence was obtained for trace amounts of labelled GA1 and GA8. The apical portions of dwarf plants contained 8–10 times less GA1 than those of tall plants but at least as much GA20 (measured using di-deuterated internal standards). In conjunction with previous data these results strongly indicate that in genotype ll internode length is reduced and leaf growth altered by a reduction in GA1 levels attributable to a partial block in the 3β-hydroxylation of GA20 to GA1.
In contrast to dwarf plants, semidwarf plants (genotype lblb ) contained more GA1 in the apical portion than wild-type counterparts. This is consistent with the suggestion that lb alters some aspect of GA sensitivity.  相似文献   

14.
The recessive dwarfing alleles of rye ( Secale cereale L.), ct1 and ct2 , caused a 35–55% reduction in the length of leaf 2 compared with corresponding tall lines grown at both 10°C and 20°C. The dwarf lines were 45–50% as responsive to applied GA3 as the tall lines at 20°C but the absolute GA-responsiveness of the dwarfs was greater at 10°C than at 20°C. There was no significant difference in the contents of GA19, GA20, GA29, GA1, GA3 and GA8 in the leaf extension zone of tall and dwarf seedlings grown at 20°C. It was concluded that the mechanism whereby GA homeostasis is maintained is functional in both tall and dwarf lines despite marked differences in leaf extension rate. The recessive rye mutations may cause loss of function late in the GA-cell elongation pathway or, alternatively, indirectly affect GA-responsiveness in vegetative tissues. The genetic and physiological evidence indicates that ct1 and ct2 are unrelated to the GA-insensitive Rht genes in hexaploid bread wheat.  相似文献   

15.
The extreme dwarf d x tomato ( Lycopersicon esculentum Mill.) mutant has very short internodes which were found to contain shorter and fewer epidermal cells. The leaves are highly abnormal. The mutant showed a substantial stem growth response to GA3, without approaching normal stature or morphology. The active gibberellin GA1 and its precursors GA19 and GA20 were identified by coupled gas chromatography-mass spectrometry (GC/MS) in d x shoots. Quantitative GC/MS revealed that GA20 accumulated to far higher levels than normal in stems and leaves of the mutant.  相似文献   

16.
Four-week-old sunflower plants ( Helianthus annuus L. cv. Halcón), grown in different nutrient solutions, were used to study the effects of gibberellic acid (GA3) on K+ (Rb+) uptake by roots or transport to the shoot. Gibberellic acid application to the nutrient solution did not affect the exudation process of excised roots. When GA3 was sprayed on leaves 2 to 6 days before excising the roots, the rate of exudation and the K+ flux increased. When the exudation study was done keeping the roots in a nutrient solution in which Rb+ replaced K+, the GA3 effects were evident also on Rb+ uptake and transport. In intact plants, GA3 increased the Rb+ transported to the shoot but did not affect Rb+ accumulation in the root. It is suggested that these GA3 effects can be explained if it is assumed that GA3 acts on the transport of ions to the xylem vessels.  相似文献   

17.
Gibberellic acid (GA3) applied at different times during the growth of wild carrot ( Daucus carota ssp. Carota ) cell suspension cultures inhibited anthocyanin accumulation. Application of 3 × 10–6 M GA3 to cultures on day 0 or day 4 gave, respectively, 10 or 35% of anthocyanin accumulation relative to levels occurring when GA3 was applied at the end of the growth period. Endogenous GAs were separated by high pressure liquid chromatography, and identified and quantified by gas chromatography-selected ion monitoring. Gibberellins GA1, GA3 and traces of GA8. GA19 and GA20 were identified in carrot cell suspension cultures of both high and low anthocyanin-accumulating clones. The concentrations of GA1. GA3 and GA8 in the two clones were similar and were not significantly different after the application of uniconazole which promoted anthocyanin accumulation. This suggests that these endogenous GAs are not the sole factors controlling the accumulation of anthocyanin in these different clones. Exogenous GA3 and uniconazole had no effect on 3'-nucleotidase and 5'-nucleotidase activity in the carrot cell suspension cultures. Thus 3'-nucleotidase does not appear to play a role in the inhibition of anthocyanin accumulation by exogenous GA3.  相似文献   

18.
Gibberellin biosynthesis pathways were investigated using isotopically-labelled C19- and C20-gibberellins and cell-free preparations from immature seed of Phaseous coccineus cv. Prizewinner. The initial steps in an early 13-hydroxylation pathway involved the conversion gibberellin A12-aldehyde (GA12-aldehyde) to GA12 which was 13-hydroxylated to yield GA53, Metabolism of GA53 yielded GA44. In contrast to other cell-free systems, GA44 was not further converted, either as a δ-lactone or an open-lactone structure, to the C-20 aldehyde GA19. GA19 was, however, metabolised to GA20, GA5 and GA1. GA20 represented a branch point in the pathway as it was converted both to GA1, which was an end product, and GA5 which was further converted to GA6. Like GA1, GA6 was also an end-product of the early 13-hydroxylation pathway.
A non-13-hydroxylation pathway involving GA4, GA15, GA24 GA37 and GA36 also originated from GA12. The terminal product of this pathway was the 3β-hydroxy C19-gibberellin, GA4.  相似文献   

19.
A mixture of tritiated and deuterated gibberellin A9 (GA9) was injected into elongating shoots of Norway spruce [ Picea abies (L.) Karst.] grafts grown under environmental conditions that were either inductive (heat and drought, HD) or noninductive (cool and wet, CW) for flowering. The shoots were divided into needles and shoot stems. The metabolites were purified by high performance liquid chromatography (HPLC), detected by liquid scintillation counting of aliquots of collected fractions and identified by gas chromatography-mass spectrometry (GC-MS). Deuterated GA9 was converted to deuterated GA4 in both treatments. The major metabolite in the CW-treated material was GA51. The HD-treated material did not convert GA9 to GA51, but a cellulase-hydrolysable GA9-conjugate was formed. The same metabolites were found in the shoot stems, though in smaller amounts. The amounts of detected metabolites were higher in the HD material, caused by a higher rate of metabolism and/or smaller losses of the metabolites during sample purification. The estimated amounts of endogenous GAs show that the HD-treated material contained higher amounts of GA9 but no differences in the amounts of GA4 were found.  相似文献   

20.
Three-week-old shoots of the spring oilseed rape cv. Petranova ( Brassica napus L. ssp. napus ) were found by combined gas chromatography-mass spectrometry to contain GA1, GA8, GA15, GA17, GA19, GA20, GA24, GA29, 3-epi-GA1 and a previously uncharacterised C19 dicarboxylic acid that is probably structurally related to GA24. Shoots of the winter cultivar Belinda, harvested at the early flowering stage, contained the same GAs with the exception of the C19 dicarboxylic acid and, in addition, GA34 and GA51 were identified. All material contained higher levels of GA20 than of GA1; the ratio of GA1 to GA20 was highest in shoots containing the largest proportion of young immature tissues. Soil treatment of cv. Petranova seedlings with the growth retardant BAS 111¨W [1-phenoxy-5,5-dimethyl-3-(1,2,4-triazol-1-yl)-hexan-4-ol] caused 80% reduction in height 18 days after treatment and the levels of all GAs were 20% or less that of control plants. Foliar treatment at the same dosage reduced height by 50% and caused an 85% or greater reduction in the concentrations of the GA1 precursors GA20, GA19 and GA44. However, the levels of GA1, GA8 and GA29 were affected to a much smaller extent. Foliar application of BAS 111¨W to cv. Belinda 1 month after sowing resulted in only a 20% height reduction at flowering, but no uniform decrease in the concentrations of endogenous GAs at this stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号