首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat brain synaptic plasma membranes were solubilised in either 1% Triton X-100 or potassium cholate and subjected to batch affinity adsorption on L-glutamate/bovine serum albumin reticulated glass fibre. The fibre was extensively washed, and bound proteins eluted with 0.1 mM L-glutamate in 0.1% detergent, followed by repeated dialysis to remove the glutamate from the eluted proteins. Aliquots of the dialysed extracts were assayed for L-[3H]glutamate binding activity in the presence or absence of 0.1 mM unlabelled L-glutamate (to define displaceable binding). Incubations were conducted at room temperature and terminated by rapid filtration through nitrocellulose membranes. Binding to solubilised fractions could be detected only following affinity chromatography. Binding was saturable and of relatively low affinity: KD = 1.0 and 1.8 microM for Triton X-100 and cholate extracts, respectively. The density of binding sites was remarkably high: approximately 18 nmol/mg protein for Triton X-100-solubilised preparations, and usually double this when cholate was employed. Analysis of structural requirements for inhibition of binding revealed that only a very restricted number of compounds were effective, i.e., L-glutamate, L-aspartate, and sulphur-containing amino acids. Binding was not inhibited significantly by any of the selective excitatory amino acid receptor agonists--quisqualate, N-methyl-D-aspartate, or kainate. The implication from this study is that the glutamate binding protein is similar if not identical to one previously isolated and probably is not related to the pharmacologically defined postsynaptic receptor subtypes, unless solubilisation of synaptic membranes resulted in major alterations to binding site characteristics. Since solubilisation with Triton X-100 is known to preserve synaptic junctional complexes, it seems likely that the origin of the glutamate binding protein may be extrajunctional, although its functional role is unknown.  相似文献   

2.
The specific binding of L-[3H]glutamate was investigated in the presence and the absence of sodium ions in freshly prepared membranes from rat hippocampus. Sodium ions were found to have a biphasic effect; low concentrations induced a marked inhibition of the binding (in the range 0.5-5.0 mM), whereas higher concentrations resulted in a dose-dependent stimulation of binding (in the range 10-150 mM). These results permit the discrimination of two binding sites in hippocampal membranes. Both Na+-independent and Na+-dependent binding sites were saturable, exhibiting dissociation constants at 30 degrees C of 750 nM and 2.4 microM, respectively, with Hill coefficients not significantly different from unity, and maximal number of sites of 6.5 and 75 pmol/mg protein, respectively. [3H]Glutamate binding to both sites reached equilibrium between 5 and 10 min and was reversible. The relative potencies of a wide range of compounds, with known pharmacological activities, to inhibit [3H]glutamate binding were very different for the Na+-independent and Na+-dependent binding and suggested that the former sites were related to post-synaptic glutamate receptors, whereas the latter were related to high-affinity uptake sites. This conclusion was also supported by the considerable variation in the regional distribution of the Na+-dependent binding site, which paralleled that of the high-affinity glutamate uptake; the Na+-independent binding exhibited less regional variation.  相似文献   

3.
Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient.  相似文献   

4.
Membrane fractions prepared from astrocytes grown in culture exhibit a specific binding site for L-[3H]glutamate that is Cl--dependent and Na+-independent. The binding site is a single saturable site with a KD of about 0.5 microM, is inhibited by L-aspartate, L-cysteate, and quisqualate, and is insensitive to kainate, N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate, and 2-amino-4-phosphonobutyrate. The pharmacological characteristics of the binding site indicate that it is distinct from any site previously described in synaptic membrane preparations. Comparisons of ionic requirements, ligand specificity, and inhibitor sensitivities, however, suggest the described binding is the first step in a Cl--dependent high-affinity glutamate uptake system. Such binding studies provide a useful model system in which to investigate the close association between excitatory amino acids, astrocytes, the termination of glutamate's excitatory action by high-affinity uptake, and the excitotoxic action of acidic amino acids in membranes of a single cell type.  相似文献   

5.
The present study investigates the possible effects of Hg2+, Pb2+, and Cd2+ on [3H]-glutamate binding. To better understand the role of the thiol-disulfide status on the toxicity of such metals toward glutamatergic neurotransmission, we used three thiol chelating agents, 2,3-dimercaptopropanol (BAL), 2,3-dimercaptopropane 1-sulfonate (DMPS), and meso-2,3-dimercaptosuccinic acid (DMSA). Dithiotreitol (DTT) was tested for its ability to prevent metals-induced inhibition on [3H]-glutamate binding. Hg2+, Pb2+, and Cd2+ showed a concentration-dependent inhibition on [3H]-glutamate binding, and mercury was the most effective inhibitor. BAL did not prevent [3H]-glutamate binding inhibition by Hg2+, Cd2+, and Pb2+. However, DMPS and DMSA prevented the inhibition caused by Cd2+ and Pb2+, but not by Hg2+. DTT did not prevent the inhibition on [3H]-glutamate binding caused by 10 M Hg2+. In contrast, it was able to partially prevent [3H]-glutamate binding inhibition caused by 40 M Pb2+ and Cd2+. These results demonstrated that the heavy metals present an inhibitory effect on [3H]-glutamate binding. In addition, BAL was less effective to protect [3H]-glutamate binding inhibition caused by these metals than other chelating agents studied.  相似文献   

6.
Na+-dependent "binding" of acidic amino acids in brain plasma membranes was examined by procedures similar to those employed in earlier studies, using the metabolically inert D-[3H]aspartate as a probe. The "binding" showed characteristics similar to those described before in terms of affinity (KD, 400 nM), density of sites (Bmax, 300 pmol/mg protein), sensitivity to D,L-threo-3-hydroxyaspartate, and requirement for Na+. It turned out that the "binding" represents uptake into membrane-bounded saccules (which according to the inulin and H2O spaces constituted 3.4 microliters/mg protein and comprised about 50% of the volume of the sedimented membranes), rather than binding to the transport carrier. This conclusion is based on the observations that the "binding" of D-aspartate was released by osmotic shock; was abolished by thorough washing of membranes in H2O prior to assay, which removed endogenous contents of amino acids, and could be recovered by loading the washed membranes with glutamate; was reduced by prior freezing and thawing; was low on incubation at 0 degree C; had a bell-shaped time course similar to that reported for uptake; and had a slow rate of reversal compared to the apparent KD. True binding would have considerably lower apparent Bmax than the carrier-mediated uptake. This and its likely rapid rate of dissociation would make binding to the carrier difficult to detect by the methods used up to now.  相似文献   

7.
Abstract: The interactions of two forms of porcine brain glutamate decarboxylase (β-GAD and γ-GAD) with the effector ATP were studied by affinity chromatography. A third form, γk-GAD, was only slightly retarded by the affinity matrix and was eluted in the buffer wash. The interaction of GAD with the ATP affinity matrix was qualitatively similar to its interaction with free ATP as reported in previous kinetic studies. The rank order of adenine nucleotides as eluting agents and affinity ligands was ATP > ADP > AMP. GAD was also eluted by its cofactor, pyridoxal 5'-phosphate, and this was enhanced by 1 mM Pi In contrast, a high concentration (140 mM) of Pi by itself was required to elute the enzyme. GAD remained active while bound to the affinity column and was eluted in the holoenzyme form by ATP, indicating that the affinity ligand did not bind in the active site and did not displace catalytically active cofactor from the enzyme.  相似文献   

8.
Analysis of the equilibrium binding of [3H]-neurotensin(1-13) at 25 degrees C to its receptor sites in bovine cortex membranes indicated a single population of sites with an apparent equilibrium dissociation constant (KD) of 3.3 nM and a density (Bmax) of 350 fmol/mg protein (Hill coefficient nH = 0.97). Kinetic dissociation studies revealed the presence of a second class of sites comprising less than 10% of the total. KD values of 0.3 and 2.0 nM were obtained for the higher and lower affinity classes of sites, respectively, from association-dissociation kinetic studies. The binding of [3H]neurotensin was decreased by cations (monovalent and divalent) and by a nonhydrolysable guanine nucleotide analogue. Competition studies gave a potency ranking of [Gln4]neurotensin greater than neurotensin(8-13) greater than neurotensin(1-13). Smaller neurotensin analogues and neurotensin-like peptides were unable to compete with [3H]neurotensin. Stable binding activity for [3H]neurotensin in detergent solution (Kd = 5.5 nM, Bmax = 250 fmol/mg protein, nH = 1.0) was obtained in 2% digitonin/1 mM Mg2+ extracts of membranes which had been preincubated (25 degrees C, 1 h) with 1 mM Mg2+ prior to solubilization. Association-dissociation kinetic studies then revealed the presence of two classes of sites (KD1 = 0.5 nM, KD2 = 3.6 nM) in a similar proportion to that found in the membranes. The solubilized [3H]-neurotensin activity retained its sensitivity to cations and guanine nucleotide.  相似文献   

9.
Abstract: Previous studies in brain and recombinant NMDA receptors have observed heterogeneity in NMDA-sensitive glutamate binding site. We further characterized the glutamate site assembled from NR1a, NR2A, and NR2B NMDA receptor subunits using l -[3H]glutamate and [3H]CGP 39653 binding assays. In contrast to earlier reports, we demonstrate a unique pharmacology for the NR2A subunit alone, which has high affinity for agonists but low affinity for competitive antagonists compared with heteromeric combinations of NR1a + NR2A and NR1a + NR2B. Similar to previous reports, we find unequal antagonist affinity between heteromeric combinations of NR1a + NR2A and NR1a + NR2B. However, unlike earlier reports, we describe two binding components within each heteromeric transfection that more closely resemble data obtained for binding to brain membranes. In addition, we show Mg2+ can alter [3H]CGP 39653 binding in both the NR1a + NR2A and the NR1a + NR2B combination, thus allowing comparison of the [3H]CGP 39653-labeled site between the two heteromeric combinations. Agonist inhibition of [3H]CGP 39653 binding revealed differences between the heteromeric combinations as well as within each heteromeric combination, the latter of which more closely resembled results from brain. These results further determine components of the agonist and antagonist binding sites of the NMDA receptor as well as suggest additional possible mechanisms of heterogeneity of the glutamate site in the brain.  相似文献   

10.
Crude as well as purified synaptic plasma membrane (SPM) preparations were analyzed for the influence of the ganglioside galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylgluc osyl ceramide (GM1) on high-affinity binding of L-[3H]glutamate. Assayed in two different buffer systems, SPM consistently exhibited increased (40-50%) binding upon incubation with GM1 plus Ca2+, as compared to controls without GM1. Incorporation experiments with 3H-labeled GM1 proved trypsin-stable insertion of GM1 into SPM, with a maximum incorporation of four times the endogenous amount (35 nmol/mg of protein). The observed increase in glutamate binding was not due to a change in the affinity of the binding sites, but to a change in the number of binding sites, and it was absolutely dependent on the presence of Ca2+. A pharmacological profile of the GM1/Ca2+-stimulated glutamate binding is presented. The original classification of the stimulatory effect as an effect on glutamate receptor binding had to be revised to take into account the observed temperature sensitivity of the ganglioside effect, its sensitivity to high osmolarity and to ultrasonication, and the lack of binding stimulation after detergent treatment of membranes or after receptor solubilization. Vesicular space measured in both SPM preparations was found to be around 7 microliters/mg of protein, in ganglioside-treated as well as in control membranes. From the data, it is concluded that a special, Na+- and Cl- -independent form of glutamate transport into resealed membrane vesicles is stimulated by gangliosides in the presence of Ca2+.  相似文献   

11.
Antibodies Against the Bovine Brain Glutamate Binding Protein   总被引:2,自引:2,他引:0  
Abstract: Antibodies against the purified bovine brain glutamate binding protein (GBP) were raised in rabbits. Both nonderivatized and dinitrobenzene-derivatized GBP produced strong immunological responses in rabbits. Using the enzyme-linked immunosorbent assay (ELISA), we have quantified the antibody production and determined the specificity of the antibodies. Bovine brain GBP and the analogous protein from rat brain interacted most strongly with the antibodies. A bacterial glutamate-aspartate binding protein, as well as the enzymes glutamate dehydrogenase (EC 1.4.1.3), glutamine synthetase (EC 6.3.1.2), and γ-glutamyl transpeptidase (EC 2.3.2.2), showed little or no cross-reactivity with the anti-GBP antibodies. A crude bacterial glutamate decarboxylase (EC 4.1.1.15) preparation gave a small to moderate cross-reaction with the anti-GBP antibodies. The sensitivity of the ELISA assay and the specificity of the antibodies were such that GBP levels as low as 3–10 ng could be detected.  相似文献   

12.
In immature rodent brain, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) is a potent neurotoxin. In postnatal day (PND)-7 rats, intrastriatal injection of 25 nmol of NMDA results in extensive ipsilateral forebrain injury. In this study, we examined alterations in high-affinity [3H]glutamate uptake (HAGU) in NMDA-lesioned striatum. HAGU was assayed in synaptosomes, prepared from lesioned striatum, the corresponding contralateral striatum, or unlesioned controls. Twenty-four hours after NMDA injection (25 nmol), HAGU declined 44 +/- 8% in lesioned tissue, compared with the contralateral striatum (mean +/- SEM, n = 6 assays, p less than 0.006, paired t test). Doses of 5-25 nmol of NMDA resulted in increasing suppression of HAGU (5 nmol, n = 3; 12.5 nmol, n = 3; and 25 nmol, n = 5 assays; p less than 0.01, regression analysis). The temporal evolution of HAGU suppression was biphasic. There was an early transient suppression of HAGU (-28 +/- 4% at 1 h; p less than 0.03, analysis of variance, comparing changes at 0.5, 1, 2, and 3 h after lesioning); 1 or 5 days postinjury there was sustained loss of HAGU (at 5 days, -56 +/- 11%, n = 3, p less than 0.03, paired t test, lesioned versus contralateral striata).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Strychnine-insensitive [3H]glycine binding was detected in brain synaptic membranes treated with Triton X-100 using a filtration assay method. The binding was a time-dependent, inversely temperature-dependent, and reversible process with a relatively high affinity for the neuroactive amino acid. Scatchard analysis revealed that Triton treatment doubled both the affinity and density of the binding sites, which consisted of a single component. The binding was not only displaced by structurally-related amino acid such as D-serine and D-alanine, but also inhibited by some peptides containing glycine, including glycine methylester and N-methylglycine. These ligands invariably potentiated the binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]- cyclohepten-5,10-imine ([3H]MK-801), a noncompetitive antagonist for the N-methyl-D-aspartate-sensitive subclass of the central excitatory amino acid receptors, in a concentration-dependent manner. Among various endogenous tryptophan metabolites, kynurenic acid significantly inhibited the strychnine-insensitive [3H]glycine binding. The Triton treatment did not affect the pharmacological profile of [3H]MK-801 binding sites. These results suggest that brain synaptic membranes treated with Triton X-100 are useful in evaluating the strychnine-insensitive and kynurenate-sensitive binding sites of glycine, which are functionally linked to N-methyl-D-aspartate- sensitive receptor channels.  相似文献   

14.
GMP-PNP, a non-hydrolyzable analog of GTP binds tightly to G-protein in the presence of Mg2+, so that the binding is stable even after exhaustive washings. This property was exploited to prepare membrane samples of rat brain where G-protein GTP-binding sites were saturated with GMP-PNP. Experiments carried out with these membranes showed that GTP, GMP-PNP, GDP-S and GMP (1 mM) inhibit the sodium-independent [3H]glutamate binding by 30–40% [F(4,40) = 5.9; p < .001], whereas only GMP-PNP activates adenylate cyclase activity [F(6,42) = 3.56; p < .01]. The inhibition of sodium-independent [3H]glutamate binding occurred in the absence of Mg2+. These findings suggest that guanine nucleotides may inhibit glutamate binding and activate adenylate cyclase through distinct mechanisms by acting on different sites.  相似文献   

15.
Abstract: Isolated brain nuclei possess binding sites for S-100 protein. The interaction of S-100 with these sites is specific and time-, temperature-, and Ca+-dependent. The profile of the 125I-labelled S-100 binding inhibition is biphasic, displaying a high-affinity component and a low-affinity component. The S-100 binding to brain nuclei is largely irreversible, probably owing to the formation of a tight complex between the protein and its nuclear binding sites. The S-100 binding to brain nuclei is in most aspects similar to that to synaptosomal membranes. Several lines of evidence indicate, however, that the S-100 binding to nuclei is not due to contamination of these structures with plasma membranes. Isolated liver nuclei do not possess the high-affinity component of S-100 binding.  相似文献   

16.
The current study measured extracellular fluid (ECF) levels of excitatory amino acids before and during the onset of thiamine deficiency-induced pathologic lesions. Male Sprague-Dawley rats were treated with daily pyrithiamine (0.25 mg/kg i.p.) and a thiamine-deficient diet (PTD). Microdialysates were simultaneously collected from probes inserted acutely via guide cannulae into right paracentral and ventrolateral nuclei of thalamus and left hippocampus of PTD and pair-fed controls. Hourly samples were collected from unanesthetized and freely moving animals. Basal levels obtained at a prelesion stage (day 12 of PTD treatment) were unchanged from levels in pairfed controls. In samples collected 4–5 h after onset of seizures (day 14 of PTD), the levels of glutamate were elevated an average 640% of basal levels in medial thalamus and 200% in hippocampus. Glutamine levels declined, taurine and glycine were elevated, and aspartate, GABA, and alanine were unchanged during this period. Within 7 h after seizure onset glutamine was undetectable in both areas, whereas glutamate had declined to ~200% in thalamus and 70% in hippocampus. No significant change in glutamate, aspartate, or other amino acids was observed in dialysates collected from probes located in undamaged dorsal-lateral regions of thalamus. Number of neurons within ventrolateral nucleus of thalamus was significantly greater in PTD animals in which the probe was dialyzed compared with nondialyzed, suggesting that removal of excitatory amino acids was protective. No significant pathologic damage was evident in hippocampus. Pretreatment with MK-801 completely blocked the rise of ECF glutamate and significantly reduced the pathologic damage within thalamus of PTD rats and produced a significant decrease in ECF glutamate in control rats.  相似文献   

17.
The excitatory glutamate analogs quisqualate and ibotenate were employed to distinguish multiple binding sites for L-[3H]glutamate on freshly prepared hippocampal synaptic membranes. The fraction of bound radioligand that was displaceable by 5 microM quisqualate was termed GLU A binding. That which persisted in the presence of 5 microM quisqualate, but was displaceable by 100 microM ibotenate, was termed GLU B binding. GLU A binding equilibrated within 5 min and remained unchanged for up to 80 min. GLU B binding appeared to equilibrate at least as rapidly, but incubation with ligand unmasked latent binding sites. Saturation binding curves were best fitted by single exponentials, which yielded KD values of about 200 nM (GLU A) and 1 microM (GLU B). On the average, GLU B binding sites were about twice as abundant in these membranes as were GLU A sites. Rapid freezing of the membranes, followed by storage at -26 degrees C and rapid thawing markedly diminished GLU A binding, but nearly tripled GLU B binding. Both site bound L-glutamate with 10-30 times the affinity of D-glutamate. The GLU A site also bound L-glutamate with about 10 times the affinity of L-aspartate and discriminated poorly between L- and D-aspartate. In contrast, the GLU B site bound L-aspartate with an affinity similar to that for L-glutamate, and with an order-of-magnitude greater affinity than D-aspartate. The structural specificities of the GLU A and GLU B binding sites suggest that these sites may correspond to receptors on hippocampal pyramidal cell dendrites that are activated by iontophoretically applied L-glutamate.  相似文献   

18.
Abstract: Ascorbate-induced lipid peroxidation, as measured by malonyldialdehyde (MDA) production, caused irreversible decreases in Bmax of both [3H]5-HT and [3H]spiperone binding. Cacl2 (4mM) inhibited ascorbateinduced MDA formation at ascorbate concentrations >0.57 mM, but not at ≤ 0.57 mM. Under the standard assay conditions (5.7 mM ascorbate and 4mM CaCl2), Cacl2 inhibited the MDA production casued by ascorbate by 88%, and the loss in [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding by 57%. Ascorbate still decreased [3H]5-HT binding when lipid peroxidation was completely inhibited by EDTA. This additional effect of ascorbate was reversible after washing the membranes. Other reducing agents (dithiothreitol, glutathione, and metabisulfite) also decreased the binding of [3H]serotonin. In contrast, [3H]spiperone binding was not affected by ascorbate in the absence of lipid peroxidation or by other reducing agents. These experiments demonstrate that ascorbate has a dual and differential effect on serotonin binding sites. First, ascorbate-induced lipid peroxiation irreversibly inactivates both [3H]5-HT and [3H]spiperone binding. Second, independent of lipid peroxidation, there is a direct, reversible effect of ascorbate on [3H]serotonin but not on [3H]spiperone binding, which is probably due to the difference in the biochemical nature of the two serotonin binding sites.  相似文献   

19.
Because previous work showed that in the newborn brain, but not in the adult brain, glutamate decarboxylase (GAD) is notably susceptible to heat, we have studied the possible involvement of GAD inhibition in febrile convulsions and the related changes in gamma-aminobutyric acid (GABA) content. Rats of different ages were subjected to hyperthermia, and GAD activity was determined in brain homogenates by measuring the release of 14CO2 from labeled glutamate and by measuring the formation of GABA. The latter method gave considerably lower values than the former in the youngest rats, and was considered more reliable. With this method, we found a 37-48% inhibition of GAD activity in rat pups 2-5 days old, which showed febrile seizures at progressively higher body temperatures, whereas in 10- and 15-day-old animals, which did not show convulsions, GAD activity was not affected by hyperthermia. Whole-brain GABA levels, however, did not change at any age. In contrast to GAD, choline acetyltransferase and lactic dehydrogenase activities were not altered by hyperthermia at any of the ages studied. These results suggest that a decreased efficiency of the inhibitory neurotransmission mediated by GABA, consequent to the inhibition of GAD activity, may be a factor related to febrile convulsions.  相似文献   

20.
Abstract: [3H]Glutamate uptake and binding studies were performed in the visual cortices, lateral geniculate nuclei (LGN), and superior colliculi of 3-month-old rats with one eyelid surgically closed from postnatal day 10 (monocular deprivation). Uptake and binding were highest in the lateral geniculate nucleus followed by the visual cortex (69% and 15%, respectively compared to LGN values) and the superior colliculus (32% and 59% of LGN values). Monocular deprivation did not affect [3H]glutamate uptake in any of the visual regions examined. However, a 46% decrease in [3H]glutamate binding in the lateral geniculate nucleus ipsilateral to the sutured eye was detected. Binding levels in other regions were not affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号