首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The phylogeny and population history of Meladema diving beetles (Coleoptera, Dytiscidae) were examined using mitochondrial DNA sequence from 16S ribosomal RNA and cytochrome oxidase I genes in 51 individuals from 22 populations of the three extant species (M. imbricata endemic to the western Canary Islands, M. lanio endemic to Madeira and M. coriacea widespread in the Western Mediterranean and on the western Canaries), using a combination of phylogenetic and nested clade analyses. Four main lineages are observed within Meladema, representing the three recognized species plus Corsican populations of M. coriacea. Phylogenetic analyses demonstrate the sister relationship of the two Atlantic Island taxa, and suggest the possible paraphyly of M. coriacea. A molecular clock approach reveals that speciation within the genus occurred in the Early Pleistocene, indicating that the Atlantic Island endemics are not Tertiary relict taxa as had been proposed previously. Our results point to past population bottlenecks in all four lineages, with recent (Late-Middle Pleistocene) range expansion in non-Corsican M. coriacea and M. imbricata. Within the Canary Islands, M. imbricata seems to have independently colonized La Gomera and La Palma from Tenerife (although a colonization of La Palma from La Gomera cannot be discarded), and M. coriacea has independently colonized Tenerife and Gran Canaria from separate mainland lineages. In the Mediterranean basin this species apparently colonized Corsica on a single occasion, relatively early in its evolutionary history (Early Pleistocene), and has colonized Mallorca recently on multiple occasions. On the only island where M. coriacea and M. imbricata are broadly sympatric (Tenerife), we report evidence of bidirectional hybridization between the two species.  相似文献   

2.
Abstract Volcanic archipelagos represent excellent areas to study colonization and speciation processes. The grasshopper genus Arminda is one of many endemic taxa of the Canary Islands. It consists of seven wingless species, most of which are single‐island endemics. We sequenced two mitochondrial (12s rRNA, ND5) and two nuclear gene fragments (28s rRNA, ITS2) to reconstruct the colonization pattern of the genus. Our results are in accordance with a stepping‐stone colonization model from east to west, corresponding to the prevailing ocean currents, but alternative hypotheses cannot be fully rejected. The populations of A. brunneri from Tenerife belong to two different lineages (east and west) consistent with the geological history of the island. It remains to be tested whether these lineages represent different species and whether further lineages exist on this island. The five clades of the four western islands (A. brunneri group) have approximately similar branch lengths. The short internodes between these lineages resulted in a poorer phylogenetic resolution. Specimens from La Palma were genetically distinct and are subsequently described as a new species, Arminda palmae sp.n. Our results suggest in situ speciation on Gran Canaria, which was accompanied by a stronger degree of morphological diversification than the inter‐island speciation processes. The aberrant species A. canariensis has formerly been assigned to a monotypic subgenus Chopardminda, which is now synonymized with Arminda syn.n. based on its phylogenetic position. Gran Canaria seems to be the only island where Arminda species occur sympatrically, although allopatric speciation seems likely due to the long history of volcanism and erosion on the island.  相似文献   

3.
That chromosomal rearrangements may play an important role in maintaining postzygotic isolation between well-established species is part of the standard theory of speciation. However, little evidence exists on the role of karyotypic change in speciation itself--in the establishment of reproductive barriers between previously interbreeding populations. The large genus Agrodiaetus (Lepidoptera: Lycaenidae) provides a model system to study this question. Agrodiaetus butterflies exhibit unusual interspecific diversity in chromosome number, from n= 10 to n= 134; in contrast, the majority of lycaenid butterflies have n= 23/24. We analyzed the evolution of karyotypic diversity by mapping chromosome numbers on a thoroughly sampled mitochondrial phylogeny of the genus. Karyotypic differences accumulate gradually between allopatric sister taxa, but more rapidly between sympatric sister taxa. Overall, sympatric sister taxa have a higher average karyotypic diversity than allopatric sister taxa. Differential fusion of diverged populations may account for this pattern because the degree of karyotypic difference acquired between allopatric populations may determine whether they will persist as nascent biological species in secondary sympatry. This study therefore finds evidence of a direct role for chromosomal rearrangements in the final stages of animal speciation. Rapid karyotypic diversification is likely to have contributed to the explosive speciation rate observed in Agrodiaetus, 1.6 species per million years.  相似文献   

4.
The geographical pattern of speciation and the relationship between floral variation and species ranges were investigated in the tribe Sinningieae (Gesneriaceae), which is found mainly in the Atlantic forests of Brazil. Geographical distribution data recorded on a grid system of 0.5 x 0.5 degree intervals and a near-complete species-level phylogenetic tree of Sinningieae inferred from a simultaneous analysis of seven DNA regions were used to address the role of geographical isolation in speciation. Geographical range overlaps between sister lineages were measured across all nodes in the phylogenetic tree and analyzed in relation to relative ages estimated from branch lengths. Although there are several cases of species sympatry in Sinningieae, patterns of sympatry between sister taxa support the predominance of allopatric speciation. The pattern of sympatry between sister taxa is consistent with range shifts following allopatric speciation, except in one clade, in which the overlapping distribution of recent sister species indicates speciation within a restricted geographical area and involving changes in pollinators and habitats. The relationship between floral divergence and regional sympatry was also examined by analyzing floral contrasts, phenological overlap, and the degree of sympatry between sister clades. Morphological contrast between flowers is not increased in sympatry and phenological divergence is more apparent between allopatric clades than between sympatric clades. Therefore, our results failed to indicate a tendency for sympatric taxa to minimize morphological and phenological overlap (geographic exclusion and/or character displacement hypotheses). Instead, they point toward adaptation in phenology to local conditions and buildup of sympatries at random with respect to flower morphology. Additional studies at a lower geographical scale are needed to identify truely coexisting species and the components of their reproductive isolation.  相似文献   

5.
Sympatric speciation is often proposed to account for species-rich adaptive radiations within lakes or islands, where barriers to gene flow or dispersal may be lacking. However, allopatric speciation may also occur in such situations, especially when ranges are fragmented by fluctuating water levels. We test the hypothesis that Miocene fragmentation of Cuba into three palaeo-archipelagos accompanied species-level divergence in the adaptive radiation of West Indian Anolis lizards. Analysis of morphology, mitochondrial DNA (mt DNA) and nuclear DNA in the Cuban green anoles (carolinensis subgroup) strongly supports three pre dictions made by this hypothesis. First, three geographical sets of populations, whose ranges correspond with palaeo-archipelago boundaries, are distinct and warrant recognition as independent evolutionary lineages or species. Coalescence of nuclear sequence fragments sampled from these species and the large divergences observed between their mtDNA haplotypes suggest separation prior to the subsequent unification of Cuba ca. 5 Myr ago. Second, molecular phylogenetic relationships among these species reflect historical geographical relationships rather than morphological similarity. Third, all three species remain distinct despite extensive geographical contact subsequent to island unification, occasional hybridization and introgression of mtDNA haplotypes. Allopatric speciation initiated during partial island submergence may play an important role in speciation during the adaptive radiation of Anolis lizards.  相似文献   

6.
Abstract. Speciation in four monophyletic species groups of the mirid genus Lopidea is examined. An analysis of twelve speciation events suggests that vicariance can account for at least 50% of speciation in Lopidea , and the frequency of sympatric host plant speciation may be as high as 25%.
In examples attributable to peripheral isolate speciation, the daughter taxa typically occur in recognized areas of endemism, suggesting a common cause (vicariance) for their origins. In addition, seven zones of disjunction between subspecies and allopatric sister species were identified for Lopidea , which correspond with similar disjunctions between sister taxa in other groups of organisms.  相似文献   

7.
The processes of island colonization and speciation are investigated through mtDNA studies on Canary Island beetles. The genus Nesotes (Coleoptera: Tenebrionidae) is represented by 19 endemic species on the Canary Islands, the majority of which are single island endemics. Nesotes conformis is the most widespread, occurring on Gran Canaria, Tenerife, La Palma and El Hierro. Nesotes conformis forms a paraphyletic assemblage, with a split between Gran Canaria and the other three islands. Nesotes conformis of the western Canary Islands cluster with Nesotes altivagans and Nesotes elliptipennis from Tenerife. Fifty‐two individuals from this western islands species complex have been sequenced for 675 base pairs of the mtDNA cytochrome oxidase II gene, representing Tenerife, La Palma and El Hierro. A neighbour joining analysis of maximum likelihood distances resulted in three distinct mtDNA lineages for N. conformis, two of which also include mitotypes of N. altivagans and N. elliptipennis. Through application of parametric bootstrap tests, we are able to reject hypotheses of monophyly for both N. conformis and N. altivagans. Nesotes altivagans and N. elliptipennis are poorly separated morphologically and mtDNA sequence data adds support to this being one species with a highly variable morphology. We propose that N. altivagans/N. elliptipennis is recently derived from two ancestral mtDNA lineages within N. conformis from the Teno region of Tenerife. We further propose colonization of the younger islands of La Palma and El Hierro by N. conformis from a mitochondrial lineage within the Teno massif (colonization; diversification; mitochondrial DNA; Canary Islands; Coleoptera).  相似文献   

8.
While speciation can be found in the presence of gene flow, it is not clear what impact this gene flow has on genome- and range-wide patterns of differentiation. Here we examine gene flow across the entire range of the common sunflower, H. annuus , its historically allopatric sister species H. argophyllus and a more distantly related, sympatric relative H. petiolaris . Analysis of genotypes at 26 microsatellite loci in 1015 individuals from across the range of the three species showed substantial introgression between geographically proximal populations of H. annuus and H. petiolaris , limited introgression between H. annuus and H. argophyllus , and essentially no gene flow between the allopatric pair, H. argophyllus and H. petiolaris. Analysis of sequence divergence levels among the three species in 1420 orthologs identified from EST databases identified a subset of loci showing extremely low divergence between H. annuus and H. petiolaris and extremely high divergence between the sister species H. annuus and H. argophyllus , consistent with introgression between H. annuus and H. petiolaris at these loci. Thus, at many loci, the allopatric sister species are more genetically divergent than the more distantly related sympatric species, which have exchanged genes across much of the genome while remaining morphologically and ecologically distinct.  相似文献   

9.
Divergence in reproductive traits between closely related species that co‐occur contributes to speciation by reducing interspecific gene flow. In flowering plants, greater floral divergence in sympatry than allopatry may reflect reproductive character displacement (RCD) by means of divergent pollinator‐mediated selection or mating system evolution. However, environmental filtering (EF) would prevail for floral traits under stronger selection by abiotic factors than pollination, and lead to sympatric taxa being more phenotypically similar. We determine whether floral UV pigmentation and size show signatures of RCD or EF using a biogeographically informed sister taxa comparison. We determine whether 35 sister pairs in the Potentilleae tribe (Rosaceae) are allopatric or sympatric and confirm that sympatric sisters experience more similar bioclimatic conditions, an assumption of the EF hypothesis. We test whether interspecific differences are greater in allopatry or sympatry while accounting for divergence time. For UV pigmentation, sympatric sisters are more phenotypically similar than allopatric ones. For flower size, sympatric sisters show increased divergence with time since speciation but allopatric ones do not. We conclude that floral UV pigmentation shows a signature of EF, whereas flower size shows a signature of RCD. Discordant results between the traits suggest that the dominant selective agent differs between them.  相似文献   

10.
Sympatric speciation has been contentious since its inception, yet is increasingly recognized as important based on accumulating theoretical and empirical support. Here, we present a compelling case of sympatric speciation in a taxon of marine reef fishes using a comparative and mechanistic approach. Hexagrammos otakii and H. agrammus occur in sympatry throughout their ranges. Molecular sequence data from six loci, with complete sampling of the genus, support monophyly of these sister species. Although hybridization occurrs frequently with an allopatric congener in an area of slight distributional overlap, we found no F1 hybrids between the focal sympatric taxa throughout their coextensive ranges. We present genetic evidence for complete reproductive isolation based on SNP analysis of 382 individuals indicating fixed polymorphisms, with no shared haplotypes or genotypes, between sympatric species. To address questions of speciation, we take a mechanistic approach and directly compare aspects of reproductive isolation between allopatric and sympatric taxa both in nature and in the laboratory. We conclude that the buildup of reproductive isolation is strikingly different in sympatric vs. allopatric taxa, consistent with theoretical predictions. Lab reared hybrids from allopatric species crosses exhibit severe fitness effects in the F1 or backcross generation. No intrinsic fitness effects are observed in F1 hybrids from sympatric species pairs, however these treatments exhibited reduced fertilization success and complete pre‐mating isolation is implied in nature because F1 hybrid adults do not occur. Our study addresses limitations of previous studies and supports new criteria for inferring sympatric speciation.  相似文献   

11.
Analysis of sequence data from the internal transcribed spacers (ITS) and 5.8S region of nuclear ribosomal DNA show that Canarian and Madeiran brooms (Genisteae) of the genera Teline, Adenocarpus, and Genista are related to Mediterranean species and not to species from adjacent parts of Morocco. Each separate colonization of the islands has resulted in contrasting patterns of adaptation and radiation. The genus Teline is polyphyletic, with both groups (the "T. monspessulana group" and the "T. linifolia group") separately nested within Genista. Genista benehoavensis (La Palma) and G. tenera (Madeira) form, with G. tinctoria of Europe, a single clade characterized by vestigially arillate seeds. The Canarian species of Adenocarpus have almost identical sequence to the Mediterranean A. complicatus and are likely to be the result of island speciation after a very recent colonization event. This Canarian/Mediterranean A. complicatus group is sister to the afrotropical montane A. mannii which is probably derived from an earlier colonization from the Mediterranean, possibly via the Red Sea hills. The independent colonization and subsequent radiation of the two Teline groups in the Canary Islands make an interesting comparison: the phylogenies both show geographical structuring, each with a central and western island division of taxa. Within the "T. monspessulana group" there is some evidence that both continental and Madeiran taxa could be derived from the Canary Islands, although it is likely that near contemporaneous speciation occurred via rapid colonization of the mainland and islands. The finding of two groups within Teline also has implications for patterns of hybridization in those parts of the world where Teline species are invasive; in California members of the T. monspessulana group hybridize readily, but no hybrids have been recorded with T. linifolia which has been introduced in the same areas.  相似文献   

12.
The 14 species of Crambe L. sect. Dendrocrambe DC. (Brassicaceae) form a monophyletic group endemic to the Canary and Madeira archipelagos. Both parsimony and maximum likelihood analyses of sequence data from the two internal transcribed spacer regions of nuclear ribosomal DNA were used to estimate phylogenetic relationships within this section. These analyses support the monophyly of three major clades. No clade is restricted to a single island, and therefore it appears that inter-island colonization has been the main avenue for speciation in these two archipelagos. The two species endemic to Fuerteventura (C. sventenii) and Madeira (C. fruticosa) comprise a clade, providing the first evidence for a floristic link between the Eastern Canary Islands and the archipelago of Madeira. Both maximum likelihood and weighted parsimony analyses show that this clade is sister to the two other clades, although bootstrap support for this relationship is weak. Parsimony optimizations of ecological zones and island distribution suggest a colonization route from the low-altitude areas of the lowland scrub toward the high-elevation areas of the laurel and pine forests. In addition, Tenerife is likely the ancestral island for species endemic to the five westernmost islands of Gran Canaria, La Gomera, El Hierro, La Palma, and Tenerife.  相似文献   

13.
Cases of geographically restricted co‐occurring sister taxa are rare and may point to potential divergence with gene flow. The two bat species Murina gracilis and Murina recondita are both endemic to Taiwan and are putative sister species. To test for nonallopatric divergence and gene flow in these taxa, we generated sequences using Sanger and next‐generation sequencing, and combined these with microsatellite data for coalescent‐based analyses. MtDNA phylogenies supported the reciprocally monophyletic sister relationship between M. gracilis and M. recondita; however, clustering of microsatellite genotypes revealed several cases of species admixture suggesting possible introgression. Sequencing of microsatellite flanking regions revealed that admixture signatures stemmed from microsatellite allele homoplasy rather than recent introgressive hybridization, and also uncovered an unexpected sister relationship between M. recondita and the continental species Murina eleryi, to the exclusion of M. gracilis. To dissect the basis of these conflicts between ncDNA and mtDNA, we analysed sequences from 10 anonymous ncDNA loci with *beast and isolation‐with‐migration and found two distinct clades of M. eleryi, one of which was sister to M. recondita. We conclude that Taiwan was colonized by the ancestor of M. gracilis first, followed by the ancestor of M. recondita after a period of allopatric divergence. After colonization, the mitochondrial genome of M. recondita was replaced by that of the resident M. gracilis. This study illustrates how apparent signatures of sympatric divergence can arise from complex histories of allopatric divergence, colonization and hybridization, thus highlighting the need for rigorous analyses to distinguish between such scenarios.  相似文献   

14.
Plethodontid salamanders of the genus Desmognathus exhibit varying levels of genetic differentiation among and within both allopatric and sympatric taxa. This provides excellent opportunities to study population differentiation and speciation. Two morphologically similar species in this genus, D. imitator and D. ochrophaeus, are genetically well-differentiated from one another and occur in sympatry with no evidence of hybridization and introgression. We report that the degree of sexual isolation between these two species is very high, regardless of whether the populations under comparison are allopatric or sympatric with one another. Neither reinforcement nor reproductive character displacement are required to explain the evolution of sexual incompatibility in sympatry. Sexual behaviour apparently diverges while populations are allopatric with one another. Preliminary study indicates that D. imitator consists of populations among which there may be significant sexual isolation in the absence of detectable genetic differentiation.  相似文献   

15.
A meta‐analysis approach was used to test for chromosomal speciation in rodents. Forty‐one pairs of sister species, identified in the two most species‐rich rodent families (Cricetidae and Muridae), were used as phylogenetically independent data points, each resulting from a speciation event. About 30% of sister species have an identical karyotype. There was a significant difference in the number of chromosomal differences between sympatric and allopatric sister species, compatible with a direct role of chromosomal rearrangements in speciation.  相似文献   

16.
One of the challenges in evolutionary biology is to understand the evolution of speciation with incomplete reproductive isolation as many taxa have continued gene flow both during and after speciation. Comparison of population structure between sympatric and allopatric populations can reveal specific introgression and determine if introgression occurs in a unidirectional or bidirectional manner. Simple sequence repeat markers were used to characterize sympatric and allopatric population structure of plant species, Elymus alaskanus (Scribn. and Merr.) Löve, E. caninus L., E. fibrosus (Schrenk) Tzvel., and E. mutabilis (Drobov) Tzvelev. Our results showed that genetic diversity (HE) at species level is E. caninus (0.5355) > E. alaskanus (0.4511) > E. fibrosus (0.3924) > E. mutabilis (0.3764), suggesting that E. caninus and E. alaskanus are more variable than E. fibrosus and E. mutabilis. Gene flow between species that occurs within the same geographic locations versus gene flow between populations within species was compared to provide evidence of introgression. Our results indicated that gene flow between species that occur within the same geographic location is higher than that between populations within species, suggesting that gene flow resulting from introgressive hybridization might have occurred among the sympatric populations of these species, and may play an important role in partitioning of genetic diversity among and within populations. The migration rate from E. fibrosus to E. mutabilis is highest (0.2631) among the four species studied. Asymmetrical rates of gene flow among four species were also observed. The findings highlight the complex evolution of these four Elymus species.  相似文献   

17.

Background  

Many postglacial lakes contain fish species with distinct ecomorphs. Similar evolutionary scenarios might be acting on evolutionarily young fish communities in lakes of remote islands. One process that drives diversification in island freshwater fish species is the colonization of depauperate freshwater environments by diadromous (migratory) taxa, which secondarily lose their migratory behaviour. The loss of migration limits dispersal and gene flow between distant populations, and, therefore, is expected to facilitate local morphological and genetic differentiation. To date, most studies have focused on interspecific relationships among migratory species and their non-migratory sister taxa. We hypothesize that the loss of migration facilitates intraspecific morphological, behavioural, and genetic differentiation between migratory and non-migratory populations of facultatively diadromous taxa, and, hence, incipient speciation of island freshwater fish species.  相似文献   

18.
We combined phylogenetic and biogeographic data to examine the mode of speciation in a group of African monkeys, the Cercopithecini. If allopatric speciation is the major force producing species, then there should be a positive relationship between the relative divergence time of taxa and their degree of geographic range overlap. Alternatively, an opposite relationship between divergence time and geographic range overlap is consistent with sympatric speciation as the main mechanism underlying the cercopithecin radiation. We collected biogeographic and phylogenetic data for 19 guenon species from the literature. We digitized geographic range maps and utilized three different phylogenetic hypotheses based on Y chromosome, X chromosome, and mitochondrial (mtDNA) data. We used regressions with Monte Carlo simulation to examine the relationship between the relative time since divergence of taxa and their degree of geographic range overlap. We found that there was a positive relationship between relative divergence time and the proportion of geographic range overlap between taxa using all three molecular data sets. Our findings provide evidence for allopatric speciation being the common mode of diversification in the cercopithecin clade. Because most of these primates are forest adapted mammals, the cyclical contraction and expansion of African forests from the late Miocene to the present has likely been an important factor driving allopatric speciation. In addition, geographic barriers such as the Congo and Sanaga rivers have probably played a complementary role in producing new species within the clade.  相似文献   

19.
The Canary Islands have been a focus for phylogeographic studies on the colonization and diversification of endemic angiosperm taxa. Based on phylogeographic patterns, both inter island colonization and adaptive radiation seem to be the driving forces for speciation in most taxa. Here, we investigated the diversification of Micromeria on the Canary Islands and Madeira at the inter- and infraspecific level using inter simple sequence repeat PCR (ISSR), the trnK-Intron and the trnT-trnL-spacer of the cpDNA and a low copy nuclear gene. The genus Micromeria (Lamiaceae, Mentheae) includes 16 species and 13 subspecies in Macaronesia. Most taxa are restricted endemics, or grow in similar ecological conditions on two islands. An exception is M. varia, a widespread species inhabits the lowland scrub on each island of the archipelago and could represent an ancestral taxon from which radiation started on the different islands. Our analyses support a split between the "eastern" islands Fuerteventura, Lanzarote and Gran Canaria and the "western" islands Tenerife, La Palma and El Hierro. The colonization of Madeira started from the western Islands, probably from Tenerife as indicated by the sequence data. We identified two lineages of Micromeria on Gomera but all other islands appear to be colonized by a single lineage, supporting adaptive radiation as the major evolutionary force for the diversification of Micromeria. We also discuss the possible role of gene flow between lineages of different Micromeria species on one island after multiple colonizations.  相似文献   

20.
Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister‐species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site‐associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister‐species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174–0.263 Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号