首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanylyl cyclase activating protein-2 (GCAP-2) is a Ca2+-sensitive regulator of phototransduction in retinal photoreceptor cells. GCAP-2 activates retinal guanylyl cyclases at low Ca2+ concentration (<100 nM) and inhibits them at high Ca2+ (>500 nM). The light-induced lowering of the Ca2+ level from approximately 500 nM in the dark to approximately 50 nM following illumination is known to play a key role in visual recovery and adaptation. We report here the three-dimensional structure of unmyristoylated GCAP-2 with three bound Ca2+ ions as determined by nuclear magnetic resonance spectroscopy of recombinant, isotopically labeled protein. GCAP-2 contains four EF-hand motifs arranged in a compact tandem array like that seen previously in recoverin. The root mean square deviation of the main chain atoms in the EF-hand regions is 2.2 A in comparing the Ca2+-bound structures of GCAP-2 and recoverin. EF-1, as in recoverin, does not bind calcium because it contains a disabling Cys-Pro sequence. GCAP-2 differs from recoverin in that the calcium ion binds to EF-4 in addition to EF-2 and EF-3. A prominent exposed patch of hydrophobic residues formed by EF-1 and EF-2 (Leu24, Trp27, Phe31, Phe45, Phe48, Phe49, Tyr81, Val82, Leu85, and Leu89) may serve as a target-binding site for the transmission of calcium signals to guanylyl cyclase.  相似文献   

2.
Photoreceptor guanylyl cyclase activity is modulated by an endogenous calcium-binding protein called recoverin. A modified isolation procedure for recoverin using gel-filtration chromatography instead of a heat denaturation step is presented. The elution volume of recoverin corresponds to a monomer. Recoverin exhibits a calcium-dependent mobility shift in a native gel electrophoresis. Isoelectric focusing revealed a pI of 5.25. No subspecies of recoverin were detected.  相似文献   

3.
We describe the cloning of a receptor guanylyl cyclase, MsGC-II, from the CNS of the insect Manduca sexta. Sequence comparisons with other receptor guanylyl cyclases show that MsGC-II is most similar to a predicted guanylyl cyclase in the Drosophila genome and to vertebrate retinal guanylyl cyclases. When expressed in COS-7 cells, MsGC-II exhibited a low level of basal activity that was nearly abolished in the presence of 10 micro m calcium. Incubation with either a mammalian guanylyl cyclase-activating protein or Drosophila frequenin resulted in only mild stimulation of activity, whereas incubation of COS-7 cells expressing MsGC-II with a variety of Manduca tissue extracts failed to stimulate enzyme activity above basal levels. Analysis of the tissue distribution of MsGC-II revealed that it is nervous system specific. In the adult, MsGC-II is present in neurons in the optic lobes, antennal lobes and cellular cortex, but it is most highly expressed in subsets of intrinsic mushroom body neurons. Thus, MsGC-II appears to be a neural-specific receptor guanylyl cyclase whose activity may be regulated either directly or indirectly by calcium.  相似文献   

4.
Electrophysiological recordings on retinal rod cells, horizontal cells and on-bipolar cells indicate that exogenous nitric oxide (NO) has neuromodulatory effects in the vertebrate retina. We report here endogenous NO formation in mammalian photoreceptor cells. Photoreceptor NO synthase resembled the neuronal NOS type I from mammalian brain. NOS activity utilized the substrate L-arginine (Km = 4 microM) and the cofactors NADPH, FAD, FMN and tetrahydrobiopterin. The activity showed a complete dependence on the free calcium concentration ([Ca2+]) and was mediated by calmodulin. NO synthase activity was sufficient to activate an endogenous soluble guanylyl cyclase that copurified in photoreceptor preparations. This functional coupling was strictly controlled by the free [Ca2+] (EC50 = 0.84 microM). Activation of the soluble guanylyl cyclase by endogenous NO was up to 100% of the maximal activation of this enzyme observed with the exogenous NO donor compound sodium nitroprusside. This NO/cGMP pathway was predominantly localized in inner and not in outer segments of photoreceptors. Immunocytochemically, we localized NO synthase type I mainly in the ellipsoid region of the inner segments and a soluble guanylyl cyclase in cell bodies of cone photoreceptor cells. We conclude that in photoreceptors endogenous NO is functionally coupled to a soluble guanylyl cyclase and suggest that it has a neuromodulatory role in visual transduction and in synaptic transmission in the outer retina.  相似文献   

5.
Guanylyl cyclase from bovine rod outer segments was solubilized using Triton X-100 and a high concentration of KCl, and its regulation was studied. The efficiency of solubilization was about 50-90% of total activity. When the Ca2+ content was lowered (less than 80 nM), guanylyl cyclase was activated about 2-fold. In the presence of higher concentrations of Ca2+ (greater than 140 nM), the activity was decreased. The regulation by Ca2+ was also demonstrated with solubilized preparations. In the presence of 186 nM Ca2+ which inhibited guanylyl cyclase, La3+ activated the enzyme about 2-fold, suggesting that the Ca2(+)-binding protein similar to other Ca2(+)-binding proteins associates with guanylyl cyclase regulation. Sodium nitroprusside and nitric oxide which are activators of soluble guanylyl cyclase in other tissues also activated the retinal guanylyl cyclase. Maximum activation by sodium nitroprusside was 20-fold using Mg2+ as a cofactor. Activation by nitric oxide and related compounds suggests that retinal guanylyl cyclase contains a heme prosthetic group that may participate in a novel regulatory mechanism for this enzyme.  相似文献   

6.
Vertebrate photoreceptors can adjust their sensitivity to a wide range of light intensities spanning several orders of magnitude, the phenomenon of which is called light adaptation. Electrophysiological and biochemical studies have revealed that calcium can serve as an intracellular transmitter of light adaptation under the control of cGMP metabolism. After illumination, the cytoplasmic calcium concentration of a photoreceptor decreases, which in turn strongly activates photoreceptor guanylate cyclase. This calcium-dependent effect is mediated by a novel calcium-binding protein (recoverin) and leads to the restoration of the depleted cGMP pool after illumination.  相似文献   

7.
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.  相似文献   

8.
The membrane-bound guanylyl cyclase in rod photoreceptors is activated by guanylyl cyclase-activating protein 1 (GCAP-1) at low free [Ca2+]. GCAP-1 is a Ca2+-binding protein and belongs to the superfamily of EF-hand proteins. We created an oligopeptide library of overlapping peptides that encompass the entire amino acid sequence of GCAP-1. Peptides were used in competitive screening assays to identify interaction regions in GCAP-1 that directly bind the guanylyl cyclase in bovine photoreceptor cells. We found four regions in GCAP-1 that participate in regulating guanylyl cyclase. A 15-amino acid peptide located adjacent to the second EF-hand motif (Phe73-Lys87) was identified as the main interaction domain. Inhibition of GCAP-1-stimulated guanylyl cyclase activity by the peptide Phe73-Lys87 was completely relieved when an excess amount of GCAP-1 was added. An affinity column made from this peptide was able to bind a complex of photoreceptor guanylyl cyclase and tubulin. Using an anti-GCAP-1 antibody, we coimmunoprecipitated GCAP-1 with guanylyl cyclase and tubulin. Complex formation between GCAP-1 and guanylyl cyclase was observed independent of [Ca2+]. Our experiments suggest that there exists a tight association of guanylyl cyclase and tubulin in rod outer segments.  相似文献   

9.
C-type natriuretic peptide binding to natriuretic peptide receptor-B (NPR-B) stimulates cGMP synthesis, which regulates vasorelaxation, cell proliferation, and bone growth. Here, we investigated the mechanistic basis for hyperosmotic and lysophosphatidic acid-dependent inhibition of NPR-B. Whole cell cGMP measurements and guanylyl cyclase assays indicated that acute hyperosmolarity decreased NPR-B activity in a reversible, concentration- and time-dependent manner, whereas chronic exposure had no effect. Acute hyperosmolarity elevated intracellular calcium in a concentration-dependent fashion that paralleled NPR-B desensitization. A calcium chelator, but not a protein kinase C inhibitor, blocked both calcium elevations and desensitization. Hyperosmotic medium stimulated NPR-B dephosphorylation, and the receptor was rapidly rephosphorylated and resensitized when the hypertonic media was removed. Lysophosphatidic acid also inhibited NPR-B in a calcium- and phosphorylation-dependent process, consistent with calcium being a universal regulator of NPR-B. The absolute requirement of dephosphorylation in this process was demonstrated by showing that a receptor with glutamates substituted at all known NPR-B phosphorylation sites is unresponsive to hyperosmotic stimuli. This is the first study to measure the phosphorylation state of an endogenous guanylyl cyclase and to link intracellular calcium elevations with its dephosphorylation.  相似文献   

10.
We investigated the molecular mechanism of cyclic GMP-induced down-regulation of soluble guanylyl cyclase expression in rat aorta. 3-(5'-Hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), an allosteric activator of this enzyme, decreased the expression of soluble guanylyl cyclase alpha(1) subunit mRNA and protein. This effect was blocked by the enzyme inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b-1,4)oxazin-1-one (NS2028) and by actinomycin D. Guanylyl cyclase alpha(1) mRNA-degrading activity was increased in protein extracts from YC-1-exposed aorta and was attenuated by pretreatment with actinomycin D and NS2028. Gelshift and supershift analyses using an adenylate-uridylate-rich ribonucleotide from the 3'-untranslated region of the alpha(1) mRNA and a monoclonal antibody directed against the mRNA-stabilizing protein HuR revealed HuR mRNA binding activity in aortic extracts, which was absent in extracts from YC-1-stimulated aortas. YC-1 decreased the expression of HuR, and this decrease was prevented by NS2028. Similarly, down-regulation of HuR by RNA interference in cultured rat aortic smooth muscle cells decreased alpha(1) mRNA and protein expression. We conclude that HuR protects the guanylyl cyclase alpha(1) mRNA by binding to the 3'-untranslated region. Activation of guanylyl cyclase decreases HuR expression, inducing a rapid degradation of guanylyl cyclase alpha(1) mRNA and lowering alpha(1) subunit expression as a negative feedback response.  相似文献   

11.
Proteins involved in the visual signaling cascade show light-dependent expression levels in photoreceptor cells. Recently, these proteins have been described to be expressed in neuroectodermal tumors and to function as cancer-retina antigens. Here, we show that light can down-regulate gene expression of rhodopsin, transducin, and cyclic guanosine 3',5'-monophosphate phosphodiesterase 6 (PDE6) and up-regulate guanylyl cyclase 1, recoverin, and arrestin in human melanoma cells in vitro, comparable to physiologic changes earlier observed in photoreceptor cells. Similar modulation can be detected at the protein level in melanoma cells except for no changes in PDE6 protein levels. Two regulatory pathways have been identified: Sp1/Sp3/Sp4 proteins for rhodopsin and PDE6, and mitogen-activated protein kinases for recoverin and arrestin. The visual cascade and retinoic acid as its derivate do not play any role in this process. Putative explanations for light-dependent modulation of cancer-retina antigen expression in melanoma cells are discussed.  相似文献   

12.
Nitric oxide (NO) is a mediator of copious biological processes, in many cases through the production of cGMP from the enzyme nitric oxide-sensitive guanylyl cyclase. Natriuretic peptides also elevate cGMP, often with distinct biological effects, raising the issue of how specificity is achieved. Here we show that a recently described alpha(2)beta(1) isoform of guanylyl cyclase is expressed in a number of epithelia, where it is localized to the apical plasma membrane. We measured the functional properties of the alpha(2)beta(1) isoform by utilizing the NO-dependent activation of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR), which occurs by phosphorylation via the membrane-bound type II isoform of cGMP-dependent protein kinase. We found that cGMP generated by NO activation of the alpha(2)beta(1) isoform of guanylyl cyclase is an exceptionally efficient mediator of nitric oxide action on membrane targets, activating CFTR far more effectively than the cytoplasmically located alpha(1)beta(1) guanylyl cyclase isoform. Targeting the alpha(1)beta(1) isoform of guanylyl cyclase to the membrane also dramatically enhanced the effects of nitric oxide on CFTR within the membrane. This was not due to increased enzymatic activity of guanylyl cyclase in a membrane location, but to production of a localised membrane pool of cGMP by membrane-localized NO-dependent guanylyl cyclase that was resistant to degradation by phosphodiesterases. Selective effects of cGMP produced from this enzyme in response to NO are directed at membrane targets and suggest that drugs selectively activating or inhibiting this alpha(2)beta(1) isoform of guanylyl cyclase may have unique pharmacological properties.  相似文献   

13.
In preovulatory ovarian follicles of mice, meiotic prophase arrest in the oocyte is maintained by cyclic GMP from the surrounding granulosa cells that diffuses into the oocyte through gap junctions. The cGMP is synthesized in the granulosa cells by the transmembrane guanylyl cyclase natriuretic peptide receptor 2 (NPR2) in response to the agonist C-type natriuretic peptide (CNP). In response to luteinizing hormone (LH), cGMP in the granulosa cells decreases, and as a consequence, oocyte cGMP decreases and meiosis resumes. Here we report that within 20 min, LH treatment results in decreased guanylyl cyclase activity of NPR2, as determined in the presence of a maximally activating concentration of CNP. This occurs by a process that does not reduce the amount of NPR2 protein. We also show that by a slower process, first detected at 2h, LH decreases the amount of CNP available to bind to the receptor. Both of these LH actions contribute to decreasing cGMP in the follicle, thus signaling meiotic resumption in the oocyte.  相似文献   

14.
H Ma  M Gamper  C Parent    R A Firtel 《The EMBO journal》1997,16(14):4317-4332
We have identified a MAP kinase kinase (DdMEK1) that is required for proper aggregation in Dictyostelium. Null mutations produce extremely small aggregate sizes, resulting in the formation of slugs and terminal fruiting bodies that are significantly smaller than those of wild-type cells. Time-lapse video microscopy and in vitro assays indicate that the cells are able to produce cAMP waves that move through the aggregation domains. However, these cells are unable to undergo chemotaxis properly during aggregation in response to the chemoattractant cAMP or activate guanylyl cyclase, a known regulator of chemotaxis in Dictyostelium. The activation of guanylyl cyclase in response to osmotic stress is, however, normal. Expression of putative constitutively active forms of DdMEK1 in a ddmek1 null background is capable, at least partially, of complementing the small aggregate size defect and the ability to activate guanylyl cyclase. However, this does not result in constitutive activation of guanylyl cyclase, suggesting that DdMEK1 activity is necessary, but not sufficient, for cAMP activation of guanylyl cyclase. Analysis of a temperature-sensitive DdMEK1 mutant suggests that DdMEK1 activity is required throughout aggregation at the time of guanylyl cyclase activation, but is not essential for proper morphogenesis during the later multicellular stages. The activation of the MAP kinase ERK2, which is essential for chemoattractant activation of adenylyl cyclase, is not affected in ddmek1 null strains, indicating that DdMEK1 does not regulate ERK2 and suggesting that at least two independent MAP kinase cascades control aggregation in Dictyostelium.  相似文献   

15.
In Dictyostelium discoideum extracellular cAMP stimulates guanylyl cyclase and phospholipase C; the latter enzyme produces Ins(1,4,5)P3 which releases Ca2+ from internal stores. The following data indicate that intracellular Ca2+ ions inhibit guanylyl cyclase activity. 1) In vitro, Ca2+ inhibits guanylyl cyclase with IC50 = 41 nM Ca2+ and Hill-coefficient of 2.1. 2) Extracellular Ca2+ does not affect basal cGMP levels of intact cells. In electro-permeabilized cells, however, cGMP levels are reduced by 85% within 45 s after addition of 10(-6) M Ca2+ to the medium; halfmaximal reduction occurs at 200 nM extracellular Ca2+. 3) Receptor-stimulated activation of guanylyl cyclase in electro-permeabilized cells is also inhibited by extracellular Ca2+ with half-maximal effect at 200 nM Ca2+. 4) In several mutants an inverse correlation exists between receptor-stimulated Ins(1,4,5)P3 production and cGMP formation. We conclude that receptor-stimulated cytosolic Ca2+ elevation is a negative regulator of receptor-stimulated guanylyl cyclase.  相似文献   

16.
It has been postulated that myristoylation of peripheral proteins would facilitate their binding to membranes. However, the exact involvement of this lipid modification in membrane binding is still a matter of debate. Proteins containing a Ca(2+)-myristoyl switch where the extrusion of their myristoyl group is dependent on calcium binding is best illustrated by the Ca(2+)-binding recoverin, which is present in retinal rod cells. The parameters responsible for the modulation of the membrane binding of recoverin are still largely unknown. This study was thus performed to determine the involvement of different parameters on recoverin membrane binding. We have used surface pressure measurements and PM-IRRAS spectroscopy to monitor the adsorption of myristoylated and nonmyristoylated recoverin onto phospholipid monolayers in the presence and absence of calcium. The adsorption curves have shown that the myristoyl group and hydrophobic residues of myristoylated recoverin strongly accelerate membrane binding in the presence of calcium. In the case of nonmyristoylated recoverin in the presence of calcium, hydrophobic residues alone are responsible for its much faster monolayer binding than myristoylated and nonmyristoylated recoverin in the absence of calcium. The infrared spectra revealed that myristoylated and nonmyristoylated recoverin behave very different upon adsorption onto phospholipid monolayers. Indeed, PM-IRRAS spectra indicated that the myristoyl group allows a proper orientation and organization as well as faster and stronger binding of myristoylated recoverin to lipid monolayers compared to nonmyristoylated recoverin. Simulations of the spectra have allowed us to postulate that nonmyristoylated recoverin changes conformation and becomes hydrated at large extents of adsorption as well as to estimate the orientation of myristoylated recoverin with respect to the monolayer plane. In addition, adsorption measurements and electrophoresis of trypsin-treated myristoylated recoverin in the presence of zinc or calcium demonstrated that recoverin has a different conformation but a similar extent of monolayer binding in the presence of such ions.  相似文献   

17.
Guanylyl cyclase is a heat-stable enterotoxin receptor.   总被引:50,自引:0,他引:50  
S Schulz  C K Green  P S Yuen  D L Garbers 《Cell》1990,63(5):941-948
Plasma membrane forms of guanylyl cyclase have been shown to function as natriuretic peptide receptors. We describe a new clone (GC-C) encoding a guanylyl cyclase receptor for heat-stable enterotoxin. GC-C encodes a protein containing an extracellular amino acid sequence divergent from that of previously cloned guanylyl cyclases; however, the protein retains the intracellular protein kinase-like and cyclase catalytic domains. Expression of GC-C in COS-7 cells results in high guanylyl cyclase activity. In addition, heat-stable enterotoxin from E. coli, but not natriuretic peptides, causes marked elevations of cyclic GMP and is specifically bound by cells transfected with GC-C. The enterotoxin fails to elevate cyclic GMP in nontransfected cells or in cells transfected with the natriuretic peptide/guanylyl cyclase receptors. These results show that a heat-stable enterotoxin receptor responsible for acute diarrhea is a plasma membrane form of guanylyl cyclase.  相似文献   

18.
Guanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca2+-dependent activation of retinal guanylyl cyclase that regulates the visual light response. GCAP1 is genetically linked to retinal degenerative diseases. We report backbone NMR chemical shift assignments of Ca2+-saturated GCAP1 (BMRB no. 18026).  相似文献   

19.
A neuronal type Ca2+ stimulated nitric oxide synthase was earlier reported by us to be present in the protozoan parasite Leishmania donovani. As part of nitric oxide-cyclic GMP transduction signaling operative in higher eukaryotes and involved in the long-term potentiation, a soluble guanylyl cyclase has also been detected in this lower eukaryote. However, detailed biochemical characterization revealed the enzyme to be Ca2+ modulated and unstimulated by nitric oxide donors as opposed to higher eukaryotes. The possible role of intracellular Ca2+ level in the regulation of guanylyl cyclase activity as well as L. donovani infectivity was explored by measuring the intracellular survival of the parasites in mammalian macrophages after treatments, which decrease or elevate the intracellular Ca2+. Parasites loaded with intracellular Ca2+ chelators displayed significantly decreased infectivity and cyclic GMP level. In contrast, pretreatment with Ca2+ ionophores, which elevated Ca2+ levels in L. donovani, significantly enhanced the cyclic GMP level as well as the infectivity of the parasites. Moreover, treatment with selective inhibitors of soluble guanylyl cyclase also reduced infectivity, even in cases of calcium ionophore-treated parasites. The gene encoding the soluble guanylyl cyclase was cloned, sequenced and over expressed in bacterial system. The recombinant protein showed enzyme characteristics similar to that obtained in L. donovani promastigote cytosol. Together these results suggest a possible link between guanylyl cyclase, intracellular Ca2+ content and parasite infectivity.  相似文献   

20.
Plasma membranes from bovine tracheal smooth muscle show guanylyl cyclase activity, which can be stimulated by muscarinic agonists such carbamylcholine and oxotremorine and blocked by atropine. This stimulation was observed in the presence of 150 mM NaCl. In the absence of this salt, guanylyl cyclase activity was considerably higher but was not affected by muscarinic agonists. Carbamylcholine decreased the apparent Km but did not change the Vmax of this enzyme. When plasma membrane fractions were extracted with 1% octylglucoside, guanylyl cyclase activity was preserved, however the muscarinic activation was abolished, despite a muscarinic receptor capable of [3H]quinuclidinylbenzilate binding being present in the extract. The detergent extraction changed the affinity of guanylyl cyclase for GTP but the Mn2+ kinetics was unaltered. Based on these findings and on current information in the literature, we propose that another component is required to restore the link between the muscarinic receptor and guanylyl cyclase, however the nature of this component remains to be established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号