首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the alternative pathway of complement by T. taeniaeformis oncospheres and early stage metacestodes, although a factor in host defense against primary infection, does not directly lead to the killing of the parasite larvae observed prior to day 6 post-infection in innately resistant BALB/cByJ inbred mice. Immunogold labelling techniques clearly demonstrated tegument-associated C3 on in vitro-activated oncospheres incubated with non-immune mouse sera. However, C5, a protease necessary for the assembly of the membrane attack complex, was not detected. Early stage larvae cultured from in vitro-activated oncospheres escaped membrane damage and survived incubation in non-immune sera from both BALB/cByJ and taeniid-susceptible C3H/HeDub mice. Comparisons of cobra venom factor-treated and untreated C5-deficient B10.D2osn mice revealed no significant differences in parasite burden and local eosinophil infiltration at 6 days post-infection, suggesting that the terminal arm of the complement system is necessary for the previously reported role of complement in resistance to primary infection in BALB/cByJ and C3H/HeDub mice. An in vivo test of chemotaxis indicated that although both complement-intact mouse strains examined responded to intraperitoneal injections of inulin, there were lower numbers of eosinophils in C3H/HeDub mice than in BALB/cByJ mice, perhaps pointing to possible mouse strain differences in C5a generation/catabolism or eosinophil ability to respond to C5a. Lectin-binding studies showed an affinity of PNA for the exposed surface of taeniid oncospheres and 4-day post-infection metacestodes; however, binding of lectin to the carbohydrate moiety did not inhibit complement activation.  相似文献   

2.
The role of complement in the control of the primary Schistosoma mansoni infection in mice was investigated in vivo. The number of recovered adult schistosomes 6–7 weeks postinfection was used as a parasitological criterion of immunity. No significant difference in the worm burden was observed between C5-sufficient and C5-deficient mice. In contrast, when cobra venom factor (CVF) was injected into normal or C5-deficient mice 24 hr before challenge, a significant increase of the worm burden was noticed in comparison to the untreated mice. These results indicated that, although C5 and probably the late complement components are not essential for the control of the primary infection, the alternative pathway and some of its components are involved. In fact, the injection of C3 2 hr before infection of CVF-treated mice completely restored the immunity. A role for C3, in association with effector cells, in the nonspecific immunity occurring in the first hours after a primary S. mansoni infection is suggested.  相似文献   

3.
The complement system has been long regarded as an important effector of the innate immune response. Furthermore, complement contributes to various aspects of B and T cell immunity. Nevertheless, the role of complement in CD8(+) T cell antiviral responses has yet to be fully delineated. We examined the CD8(+) T cell response in influenza type A virus-infected mice treated with a peptide antagonist to C5aR to test the potential role of complement components in CD8(+) T cell responses. We show that both the frequency and absolute numbers of flu-specific CD8(+) T cells are greatly reduced in C5aR antagonist-treated mice compared with untreated mice. This reduction in flu-specific CD8(+) T cells is accompanied by attenuated antiviral cytolytic activity in the lungs. These results demonstrate that the binding of the C5a component of complement to the C5a receptor plays an important role in CD8(+) T cell responses.  相似文献   

4.
Highly pathogenic H5N1 influenza infections are associated with enhanced inflammatory and cytokine responses, severe lung damage, and an overall dysregulation of innate immunity. C3, a member of the complement system of serum proteins, is a major component of the innate immune and inflammatory responses. However, the role of this protein in the pathogenesis of H5N1 infection is unknown. Here we demonstrate that H5N1 influenza virus infected mice had increased levels of C5a and C3 activation byproducts as compared to mice infected with either seasonal or pandemic 2009 H1N1 influenza viruses. We hypothesized that the increased complement was associated with the enhanced disease associated with the H5N1 infection. However, studies in knockout mice demonstrated that C3 was required for protection from influenza infection, proper viral clearance, and associated with changes in cellular infiltration. These studies suggest that although the levels of complement activation may differ depending on the influenza virus subtype, complement is an important host defense mechanism.  相似文献   

5.
Bronchoconstriction responses in the airway are caused by multiple insults and are the hallmark symptom in asthma. In an acute lung injury model in mice, IgG immune complex deposition elicited severe airway hyperreactivity that peaked by 1 h, was maintained at 4 h, and was resolved by 24 h. The depletion of complement with cobra venom factor (CVF) markedly reduced the hyperreactive airway responses, suggesting that complement played an important role in the response. Blockade of C5a with specific antisera also significantly reduced airway hyperreactivity in this acute lung model. Complement depletion by CVF treatment significantly reduced tumor necrosis factor and histamine levels in bronchoalveolar lavage fluids, correlating with reductions in airway hyperreactivity. To further examine the role of specific complement requirement, we initiated the immune complex response in C5-sufficient and C5-deficient congenic animals. The airway hyperreactivity response was partially reduced in the C5-deficient mice. Complement depletion with CVF attenuated airway hyperreactivity in the C5-sufficient mice but had a lesser effect on the airway hyperreactive response and histamine release in bronchoalveolar lavage fluids in C5-deficient mice. These data indicate that acute lung injury in mice after deposition of IgG immune complexes induced airway hyperreactivity that is C5 and C5a dependent.  相似文献   

6.
C-reactive protein (CRP) is not an acute-phase protein in mice, and therefore, mice are widely used to investigate the functions of human CRP. It has been shown that CRP protects mice from pneumococcal infection, and an active complement system is required for full protection. In this study, we assessed the contribution of CRP's ability of activating the classical pathway of complement in the protection of mice from lethal infection with virulent Streptococcus pneumoniae type 3. We used two CRP mutants, Y175A and K114A. The Y175A CRP does not bind C1q and does not activate complement in human serum. The K114A CRP binds C1q and activates complement more efficiently than wild-type CRP. Passively administered, both CRP mutants and the wild-type CRP protected mice from infection equally. Infected mice injected with wild-type or mutant CRP had reduced bacteremia, resulting in lower mortality and increased longevity compared with mice that did not receive CRP. Thus, the protection of mice was independent of CRP-mediated activation of the classical pathway of complement. To confirm that human CRP does not differentiate between human and mouse complement, we analyzed the binding of human CRP to mouse C1q. Surprisingly, CRP did not react with mouse C1q, although both mutant and wild-type CRP activated mouse C3, indicating species specificity of CRP-C1q interaction. We conclude that the mouse is an unfit animal for exploring CRP-mediated activation of the classical complement pathway, and that the characteristic of CRP to activate the classical complement pathway has no role in protecting mice from infection.  相似文献   

7.
Many forms of glomerulonephritis are triggered by Ab localization in the glomerulus, but the mechanisms by which this induces glomerular inflammation are not fully understood. In this study we investigated the role of complement in a mouse model of cryoglobulin-induced immune complex glomerulonephritis. Several complement-deficient mice on a C57BL/6 and BALB/c genetic background were used and compared with strain-matched, wild-type controls. Cryoglobulinemia was induced by i.p. injection of 6-19 hybridoma cells producing an IgG3 cryoglobulin with rheumatoid factor activity against IgG2a of allotype a present in BALB/c, but not C57BL/6, mice. Thus, the cryoprecipitate in C57BL/6 mice consisted of the IgG3 cryoglobulin only (type I cryoglobulinemia) compared with IgG3-IgG2a complexes in BALB/c (type II cryoglobulinemia). The survival of mice was not affected by complement deficiency. Glomerular influx of neutrophils was significantly less in C3-, factor B-, and C5-deficient mice compared with wild-type and C1q-deficient mice. It did not correlate with C3 deposition, but did correlate with the amount of C6 deposited. Deficiency of CD59a, the membrane inhibitor of the membrane attack complex, did not induce an increase in neutrophil infiltration, suggesting that the generation of C5a accounts for the effects observed. There was no apparent difference between cryoglobulinemia types I and II regarding the role of complement. Our results suggest that in this model of cryoglobulin-induced glomerulonephritis the neutrophil influx was mediated by C5 activation with the alternative pathway playing a prominent role in its cleavage. Thus, blocking C5 is a potential therapeutic strategy for preventing renal injury in cryoglobulinemia.  相似文献   

8.
This study examines the role of complement components C3 and C5 in innate and adaptive protective immunity to larval Strongyloides stercoralis in mice. Larval survival in naive C3(-/-) mice was increased as compared with survival in wild-type mice, whereas C3aR(-/-) and wild-type mice had equivalent levels of larval killing. Larval killing in naive mice was shown to be a coordinated effort between effector cells and C3. There was no difference between survival in wild-type and naive C5(-/-) mice, indicating that C5 was not required during the innate immune response. Naive B cell-deficient and wild-type mice killed larvae at comparable levels, suggesting that activation of the classical complement pathway was not required for innate immunity. Adaptive immunity was equivalent in wild-type and C5(-/-) mice; thus, C5 was also not required during the adaptive immune response. Larval killing was completely ablated in immunized C3(-/-) mice, even though the protective parasite-specific IgM response developed and effector cells were recruited. Protective immunity was restored to immunized C3(-/-) mice by transferring untreated naive serum, but not C3-depleted heat-inactivated serum to the location of the parasites. Finally, immunized C3aR(-/-) mice killed larvae during the adaptive immune response as efficiently as wild-type mice. Therefore, C3 was not required for the development of adaptive immunity, but was required for the larval killing process during both protective innate and adaptive immune responses in mice against larval S. stercoralis.  相似文献   

9.
The acute-phase response (APR) is regulated by TNF-alpha, IL-1beta, and IL-6 acting alone, in combination, or in concert with hormones. The anaphylotoxin C5a, generated during complement activation, induces in vitro the synthesis of these cytokines by leukocytes and of acute-phase proteins by HepG2 cells. However, there is no clear evidence for a role of C5a or any other complement activation product in regulation of the APR in vivo. In this study, using human C-reactive protein (CRP) transgenic mice deficient in C3 or C5, we investigated whether complement activation contributes to induction of the acute-phase proteins CRP and serum amyloid P-component (SAP). Absence of C3 or C5 resulted in decreased LPS-induced up-regulation of the CRP transgene and the mouse SAP gene. Also, LPS induced both the IL-1beta and IL-6 genes in normocomplementemic mice, but in complement-deficient mice it significantly induced only IL-6. Like LPS injection, activation of complement by cobra venom factor led to significant elevation of serum CRP and SAP in normocomplementemic mice but not in complement-deficient mice. Injection of recombinant human C5a into human CRP transgenic mice induced the IL-1beta gene and caused significant elevation of both serum CRP and SAP. However, in human CRP transgenic IL-6-deficient mice, recombinant human C5a did not induce the CRP nor the SAP gene. Based on these data, we conclude that during the APR, C5a generated as a consequence of complement activation acts in concert with IL-6 and/or IL-1beta to promote up-regulation of the CRP and SAP genes.  相似文献   

10.
Enhanced respiratory syncytial virus disease, a serious pulmonary disorder that affected recipients of an inactivated vaccine against respiratory syncytial virus in the 1960s, has delayed the development of vaccines against the virus. The enhanced disease was characterized by immune complex-mediated airway hyperreactivity and a severe pneumonia associated with pulmonary eosinophilia. In this paper, we show that complement factors contribute to enhanced-disease phenotypes. Mice with a targeted disruption of complement component C5 affected by the enhanced disease displayed enhanced airway reactivity, lung eosinophilia, and mucus production compared to wild-type mice and C5-deficient mice reconstituted with C5. C3aR expression in bronchial epithelial and smooth muscle cells in the lungs of C5-deficient mice was enhanced compared to that in wild-type and reconstituted rodents. Treatment of C5-deficient mice with a C3aR antagonist significantly attenuated airway reactivity, eosinophilia, and mucus production. These results indicate that C5 plays a crucial role in modulating the enhanced-disease phenotype, by affecting expression of C3aR in the lungs. These findings reveal a novel autoregulatory mechanism for the complement cascade that affects the innate and adaptive immune responses.  相似文献   

11.
Promoting complement (C) activation may enhance immunological mechanisms of anti-tumor Abs for tumor destruction. However, C activation components, such as C5a, trigger inflammation, which can promote tumor growth. We addressed the role of C5a on tumor growth by transfecting both human carcinoma and murine lymphoma with mouse C5a. In vitro growth kinetics of C5a, control vector, or parental cells revealed no significant differences. Tumor-bearing mice with C5a-transfected xenografted tumor cells had significantly less tumor burden as compared with control vector tumors. NK cells and macrophages infiltrated C5a-expressing tumors with significantly greater frequency, whereas vascular endothelial growth factor, arginase, and TNF-α production were significantly less. Tumor-bearing mice with high C5a-producing syngeneic lymphoma cells had significantly accelerated tumor progression with more Gr-1(+)CD11b(+) myeloid cells in the spleen and overall decreased CD4(+) and CD8(+) T cells in the tumor, tumor-draining lymph nodes, and the spleen. In contrast, tumor-bearing mice with low C5a-producing lymphoma cells had a significantly reduced tumor burden with increased IFN-γ-producing CD4(+) and CD8(+) T cells in the spleen and tumor-draining lymph nodes. These studies suggest concentration of local C5a within the tumor microenvironment is critical in determining its role in tumor progression.  相似文献   

12.
The complement cascade defines an important link between the innate and the specific immune system. Here we show that mice deficient for the third component of complement (C3-/- mice) are highly susceptible to primary infection with influenza virus. C3-/- mice showed delayed viral clearance and increased viral titers in lung, whereas mice deficient for complement receptors CR1 and CR2 (Cr2-/- mice) cleared the infection normally. Priming of T-helper cells and cytotoxic T cells (CTLs) in lung-draining lymph nodes was reduced, and the recruitment into the lung of virus-specific CD4+ and CD8+ effector T cells producing interferon-gamma was severely impaired in C3-/- but not in Cr2-/- mice. Consequently, T-helper cell-dependent IgG responses were reduced in C3-/- mice but remained intact in Cr2-/- mice. These results demonstrate that complement induces specific immunity by promoting T-cell responses.  相似文献   

13.
The complement system modulates the intensity of innate and specific immunity. While it protects against infections by extracellular bacteria its role in infection with obligate intracellular bacteria, such as the avian and human pathogen Chlamydia (C.) psittaci, is still unknown. In the present study, knockout mice lacking C3 and thus all main complement effector functions were intranasally infected with C. psittaci strain DC15. Clinical parameters, lung histology, and cytokine levels were determined. A subset of infections was additionally performed with mice lacking C5 or C5a receptors. Complement activation occurred before symptoms of pneumonia appeared. Mice lacking C3 were ∼100 times more susceptible to the intracellular bacteria compared to wild-type mice, with all C3−/− mice succumbing to infection after day 9. At a low infective dose, C3−/− mice became severely ill after an even longer delay, the kinetics suggesting a so far unknown link of complement to the adaptive, protective immune response against chlamydiae. The lethal phenotype of C3−/− mice is not based on differences in the anti-chlamydial IgG response (which is slightly delayed) as demonstrated by serum transfer experiments. In addition, during the first week of infection, the absence of C3 was associated with partial protection characterized by reduced weight loss, better clinical score and lower bacterial burden, which might be explained by a different mechanism. Lack of complement functions downstream of C5 had little effect. This study demonstrates for the first time a strong and complex influence of complement effector functions, downstream of C3 and upstream of C5, on the outcome of an infection with intracellular bacteria, such as C. psittaci.  相似文献   

14.
Injection of tumour necrosis factor (TNF) in animals causes severe liver cell toxicity, especially when D-(+)-galactosamine (GalN) is co-administered. After challenge with TNF/GalN, serum complement activity (CH50 and APCH50) decreased dramatically, suggesting strong activation of both the classical and the alternative pathways. TNF or GalN alone had no such effect. A cleavage product of complement protein C3 [C3(b)] was deposited on the surface of hepatocytes of TNF/GalN-treated mice. Intravenous administration of cobra venom factor (CVF), which depletes complement, inhibited the development of hepatitis. However, CVF pretreatment also protected C3-deficient mice. Pretreatment of mice with a C1q-depleting antibody did not prevent TNF/GalN lethality, although the anti-C1q antibody had depleted plasma C1q. Factor B-deficient and C3-deficient mice, generated by gene targeting, proved to be as sensitive to TNF/GalN as control mice. Furthermore, induction of lethal shock by platelet-activating factor, an important mediator in TNF-induced hepatic failure, was not reduced in C3-deficient mice. These data indicate that complement, although activated, plays no major role in the generation of acute lethal hepatic failure in this model and that CVF-induced protection is independent of complement depletion.  相似文献   

15.
The role of the third component of complement (C3) during schistosome infection was investigated using mice deficient in C3. While no effect was observed 8 wk after infection on worm development or liver pathology, Ag-specific Th2-associated cytokine production (IL-13, IL-5, IL-6, and IL-10) was significantly reduced, and IFN-gamma production was enhanced in the absence of C3. IgG1 and IgE, but not IgG2a or IgM, Ab responses were also significantly impaired in infected C3(-/-) mice, suggesting that C3 may play a role in IL-4-mediated Th2 response enhancement during schistosome infection. Furthermore, C3-deficient mice could not effectively clear adult worms after praziquantel (PZQ) treatment and suffered increased morbidity due to the overproduction of proinflammatory mediators following drug administration. However, the ischemic liver damage that normally accompanies PZQ administration in infected wild-type mice was substantially reduced in treated C3-deficient mice, probably due to the absence of dead or dying worms in the livers of these animals. Together these results indicate that C3 enhances Th2 responses during schistosome infection, potentiates PZQ-mediated parasite clearance, and reduces chemotherapy-induced proinflammatory mediator production.  相似文献   

16.
Glucan particles (GPs) are Saccharomyces cerevisiae cell walls chemically extracted so they are composed primarily of particulate β-1,3-D-glucans. GPs are recognized by Dectin-1 and are potent complement activators. Mice immunized with Ag-loaded GPs develop robust Ab and CD4(+) T cell responses. In this study, we examined the relative contributions of Dectin-1 and complement to GP phagocytosis and Ag-specific responses to immunization with OVA encapsulated in GPs. The in vitro phagocytosis of GPs by bone marrow-derived dendritic cells was facilitated by heat-labile serum component(s) independently of Dectin-1. This enhanced uptake was not seen with serum from complement component 3 knockout (C3(-/-)) mice and was also inhibited by blocking Abs directed against complement receptor 3. After i.p. injection, percent phagocytosis of GPs by peritoneal macrophages was comparable in wild-type and Dectin-1(-/-) mice and was not inhibited by the soluble β-glucan antagonist laminarin. In contrast, a much lower percentage of peritoneal macrophages from C3(-/-) mice phagocytosed GPs, and this percentage was further reduced in the presence of laminarin. Subcutaneous immunization of wild-type, Dectin-1(-/-), and C3(-/-) mice with GP-OVA resulted in similar Ag-specific IgG(1) and IgG(2c) type Ab and CD4(+) T cell lymphoproliferative responses. Moreover, while CD4(+) Th1 and Th2 responses measured by ELISPOT assay were similar in the three mouse strains, Th17 responses were reduced in C3(-/-) mice. Thus, although Dectin-1 is necessary for optimal phagocytosis of GPs in the absence of complement, complement dominates when both an intact complement system and Dectin-1 are present. In addition, Th-skewing after GP-based immunization was altered in C3(-/-) mice.  相似文献   

17.
A significant role for the alternative complement pathway in acid aspiration has been demonstrated by the observation that C3 genetic knockout mice are protected from injury. Utilizing C5-deficient mice, we now test the role of the terminal complement components in mediating injury. Lung permeability in C5-deficient mice was 64% less than in wild-type animals and was similar to wild-type mice treated with soluble complement receptor type 1, which gave a 67% protection. Injury was fully restored in C5-deficient mice reconstituted with wild-type serum. The role of neutrophils was established in immunodepleted wild-type animals that showed a 58% protection. Injury was further reduced (90%) with the addition of soluble complement receptor type 1, indicating an additive effect of neutrophils and complement. Similarly, an additional protection was noted in C5-deficient neutropenic mice, indicating that neutrophil-mediated injury does not require C5a. Thus acid aspiration injury is mediated by the membrane attack complex and neutrophils. Neutrophil activity is independent of C5a.  相似文献   

18.
Asthma is a chronic inflammatory disease of the lung resulting in airway obstruction. The airway inflammation of asthma is strongly linked to Th2 lymphocytes and their cytokines, particularly IL-4, IL-5, and IL-13, which regulate airway hyperresponsiveness, eosinophil activation, mucus production, and IgE secretion. Historically, complement was not thought to contribute to the pathogenesis of asthma. However, our previous reports have demonstrated that complement contributes to bronchial hyperreactivity, recruitment of airway eosinophils, IL-4 production, and IgE responses in a mouse model of pulmonary allergy. To define the complement activation fragments that mediate these effects, we assessed the role of the complement anaphylatoxin C3a in a mouse model of pulmonary allergy by challenging C3aR-deficient mice intranasally with a mixed Ag preparation of Aspergillus fumigatus cell culture filtrate and OVA. Analysis by plethysmography after challenge revealed an attenuation in airway hyperresponsiveness in C3aR-deficient mice relative to wild-type mice. C3aR-deficient mice also had an 88% decrease in airway eosinophils and a 59% reduction in lung IL-4-producing cells. Consistent with the reduced numbers of IL-4-producing cells, C3aR-deficient mice had diminished bronchoalveolar lavage levels of the Th2 cytokines, IL-5 and IL-13. C3aR knockout mice also exhibited decreases in IgE titers as well as reduced mucus production. Collectively, these data highlight the importance of complement activation, the C3a anaphylatoxin, and its receptor during Th2 development in this experimental model and implicate these molecules as possible therapeutic targets in diseases such as asthma.  相似文献   

19.
Antigen-specific IgG antibodies, passively administered to mice or humans together with large particulate antigens like erythrocytes, can completely suppress the antibody response against the antigen. This is used clinically in Rhesus prophylaxis, where administration of IgG anti-RhD prevents RhD-negative women from becoming immunized against RhD-positive fetal erythrocytes aquired transplacentally. The mechanisms by which IgG suppresses antibody responses are poorly understood. We have here addressed whether complement or Fc-receptors for IgG (FcγRs) are required for IgG-mediated suppression. IgG, specific for sheep red blood cells (SRBC), was administered to mice together with SRBC and the antibody responses analyzed. IgG was able to suppress early IgM- as well as longterm IgG-responses in wildtype mice equally well as in mice lacking FcγRIIB (FcγRIIB knockout mice) or FcγRI, III, and IV (FcRγ knockout mice). Moreover, IgG was able to suppress early IgM responses equally well in mice lacking C1q (C1qA knockout mice), C3 (C3 knockout mice), or complement receptors 1 and 2 (Cr2 knockout mice) as in wildtype mice. Owing to the previously described severely impaired IgG responses in the complement deficient mice, it was difficult to assess whether passively administered IgG further decreased their IgG response. In conclusion, Fc-receptor binding or complement-activation by IgG does not seem to be required for its ability to suppress antibody responses to xenogeneic erythrocytes.  相似文献   

20.

Introduction

Endotoxin tolerance improves outcomes from gram negative sepsis but the underlying mechanism is not known. We determined if endotoxin tolerance before or after pneumococcal sepsis improved survival and the role of lymphocytes in this protection.

Methods

Mice received lipopolysaccharide (LPS) or vehicle before or after a lethal dose of Streptococcus pneumoniae. Survival, quantitative bacteriology, liver function, and cytokine concentrations were measured. We confirmed the necessity of Toll-like receptor 4 (TLR4) for endotoxin tolerance using C3H/HeN (TLR4 replete) and C3H/HeJ (TLR4 deficient) mice. The role of complement was investigated through A/J mice deficient in C5 complement. CBA/CaHN-Btkxid//J mice with dysfunctional B cells and Rag-1 knockout (KO) mice deficient in T and B cells delineated the role of lymphocytes.

Results

Endotoxin tolerance improved survival from pneumococcal sepsis in mice with TLR4 that received LPS pretreatment or posttreatment. Survival was associated with reduced bacterial burden and serum cytokine concentrations. Death was associated with abnormal liver function and blood glucose concentrations. Endotoxin tolerance improved survival in A/J and CBA/CaHN-Btkxid//J mice but not Rag-1 KO mice.

Conclusions

TLR4 stimulation before or after S. pneumoniae infection improved survival and was dependent on T-cells but did not require an intact complement cascade or functional B cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号