首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA聚合酶高保真机理的新发现及其在SNP分析中的应用   总被引:3,自引:0,他引:3  
高保真DNA聚合酶在遗传与进化等生命活动中具有十分重要的生理与病理意义。高保真聚合酶除具有广为人知的校正功能外,最近的实验进一步表明, 由不能及时校正或难于纠正的错配碱基引发的“关”闭DNA聚合反应的效应, 同样保证了DNA聚合反应终产物的纯度。高保真聚合酶这一“关”闭DNA聚合反应的能力, 促成了其与耐外切酶消化的3´末端碱基特异性引物共同构成一个SNP敏感性纳米级复合分子“开/关”,高保真聚合酶分子中相距三纳米的聚合中心和3´→5´外切酶酶解中心则既合作又独立地起到了复合分子开关中“开”和“关”的效能:对于配对的引物,则直接在该酶的聚合中心进行聚合反应,即“开”的效应;而对于3´末端错配的引物,则从该酶的聚合中心转移至3´→5´外切酶的酶解中心,由于引物修饰了的3´末端耐外切酶的特点,继而出现了一种长时间无酶解产物的酶解过程,最后因酶的聚合中心空转而“关”闭DNA聚合反应,即“关”的效应。这一新的复合分子“开/关”在很大程度上满足了后基因时代对SNP分析的要求。该SNP分子开关的应用, 使基因诊断提高到单碱基水平。同时, 利用该方法通过SNP对基因组扫描, 在单基因遗传病病因研究及法医学鉴定上具有很强的理论和实用价值。  相似文献   

2.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3' exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3' phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3' exonuclease activity and the 3' phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

3.
DNA polymerases without the 3' exonuclease function (exo(-) pol) have been widely used in sequencing and SNP genotyping. As a major player that expedited the coming of the postgenomic era, exo(-) polymerases worked remarkably well in the Human Genome Sequencing Project. However, it has become a challenge for this class of polymerases to efficiently screen the large number of SNPs that are found in the human genome. For more than three decades it has been recognized that polymerase fidelity varied according to the presence of proofreading activity that is mediated by its internal 3' exonuclease. Polymerases with proofreading function are famous for their high fidelity in DNA replication both in vivo and in vitro, but this well-known class of polymerases has been almost completely neglected in genetic analysis in the postgenomic era. We speculate that exo(+) polymerases may exhibit higher nucleotide identification ability when compared to exo- polymerases for an in vitro genetic analysis. With the application of exo(+) polymerases in SNP assays, a novel mechanism for the maintenance of DNA replication, the on/off switch, was discovered. Two new SNP assays have been developed to carry out genome-wide genotyping, taking advantage of the enzymatic properties of exo(+) polymerases. Furthermore, the on/off switch mechanism embodies a powerful nucleotide identification ability, which can be used to discriminate the bases that are upstream of the 3' terminus, and thus defines a new concept in de novo sequencing technology. Application of exo(+) polymerases to genetic analysis, and especially SNP assays, will greatly accelerate the pace to personalized medicine.  相似文献   

4.
DNA polymerases with 3'-5' proofreading function mediate high fidelity DNA replication but their application for mutation detection was almost completely neglected before 1998. The obstacle facing the use of exo(+) polymerases for mutation detection could be overcome by primer-3'-termini modification, which has been tested using allele-specific primers with 3' labeling, 3' exonuclease-resistance and 3' dehydroxylation modifications. Accordingly, three new types of single nucleotide polymorphism (SNP) assays have been developed to carry out genome-wide genotyping making use of the fidelity advantage of exo(+) polymerases. Such SNP assays might also provide a novel approach for re-sequencing and de novo sequencing. These new mutation detection assays are widely adaptable to a variety of platforms, including real-time PCR, multi-well plate and microarray technologies. Application of exo(+) polymerases to genetic analysis could accelerate the pace of personalized medicine.  相似文献   

5.
It has been well known for decades that deoxyribonucleic acid (DNA) polymerases with proofreading function have a higher fidelity in primer extension as compared to those without 3′ exonuclease activities. However, polymerases with proofreading function have not been used in single nucleotide polymorphism (SNP) assays. Here, we describe a new method for single-base discrimination by proofreading the 3′ phosphorothioate-modified primers using a polymerase with proofreading function. Our data show that the combination of a polymerase with 3′ exonuclease activity and the 3′ phosphorothioate-modified primers work efficiently as a single-base mismatch-operated on/off switch. DNA polymerization only occurred from matched primers, whereas mismatched primers were not extended at the broad range of annealing temperature tested in our study. This novel single-base discrimination method has potential in SNP assays.  相似文献   

6.
Replication fidelity is controlled by DNA polymerase proofreading and postreplication mismatch repair. We have genetically characterized the roles of the 5'-->3' Exo1 and the 3'-->5' DNA polymerase exonucleases in mismatch repair in the yeast Saccharomyces cerevisiae by using various genetic backgrounds and highly sensitive mutation detection systems that are based on long and short homonucleotide runs. Genetic interactions were examined among DNA polymerase epsilon (pol2-4) and delta (pol3-01) mutants defective in 3'-->5' proofreading exonuclease, mutants defective in the 5'-->3' exonuclease Exo1, and mismatch repair mutants (msh2, msh3, or msh6). These three exonucleases play an important role in mutation avoidance. Surprisingly, the mutation rate in an exo1 pol3-01 mutant was comparable to that in an msh2 pol3-01 mutant, suggesting that they participate directly in postreplication mismatch repair as well as in other DNA metabolic processes.  相似文献   

7.
The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer-extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by exo(+) DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.  相似文献   

8.
Human DNA apurinic/apyrimidinic endonuclease 1 (APE1) is involved in the DNA base excision repair process. In addition to its AP (apurinic/apyrimidinic) endonucleolytic function, APE1 possesses 3' phosphodiesterase and 3'-5' exonuclease activities. The 3'-5' exonuclease activity is considered important in proofreading of DNA synthesis catalyzed by DNA polymerase beta. Here, we examine the removal of matched and mismatched dNMP from the 3' terminus of the 3'-recessed and nicked DNA by the APE1 activity using two different reaction buffers. To investigate whether the ability of APE1 to excise nucleotides from the 3' terminus depends on the thermal stability of the DNA duplex, we studied this characteristic of the DNAs that were used in the exonuclease assays in these two buffers. Our data confirm that APE1 removes mismatched nucleotides from the 3' terminus of DNA more efficiently than matched pairs. Both the efficiency of the 3'-5' exonuclease activity of APE1 and the thermal stability of DNA duplexes varied depending on the nature of the flanking group at the 5' margin of the nick. The 3'-5' exonuclease activity of APE1 shows a preference for substrates with a hydroxyl group at the 5' margin of the nick as well as for flapped and recessed DNAs.  相似文献   

9.
DNA templates harboring specific single nucleotide polymorphism (SNP) sites are largely needed as positive controls in practical SNP analysis and in determination of the reliability of newly developed methods in high-throughput screening assays. Here we report a one-step method to produce SNP templates by amplifying a wild-type sequence with primers having single nucleotide mismatches at or near their 3′ ends. A short amplicon harboring an EcoRI site was used to evaluate the feasibility of our strategy. Perfectly matched primers and primers with a single base mismatch occurring from the first base to the sixth base of the EcoRI site were used for primer extension. By using polymerase without a proofreading function, we kept mismatched nucleotides from occurring in extended primer products, as confirmed by EcoRI digestion and sequencing analysis. The strategy of using primers with a single mismatched base and exo- polymerase was shown to be an efficient one-step method for preparing SNP templates, either for application in the development of SNP screening assays or as positive controls in practical SNP assays.  相似文献   

10.
Hybridization with introduced rainbow trout threatens most native westslope cutthroat trout populations. Understanding the genetic effects of hybridization and introgression requires a large set of high-throughput, diagnostic genetic markers to inform conservation and management. Recently, we identified several thousand candidate single-nucleotide polymorphism (SNP) markers based on RAD sequencing of 11 westslope cutthroat trout and 13 rainbow trout individuals. Here, we used flanking sequence for 56 of these candidate SNP markers to design high-throughput genotyping assays. We validated the assays on a total of 92 individuals from 22 populations and seven hatchery strains. Forty-six assays (82%) amplified consistently and allowed easy identification of westslope cutthroat and rainbow trout alleles as well as heterozygote controls. The 46 SNPs will provide high power for early detection of population admixture and improved identification of hybrid and nonhybridized individuals. This technique shows promise as a very low-cost, reliable and relatively rapid method for developing and testing SNP markers for nonmodel organisms with limited genomic resources.  相似文献   

11.
We demonstrate that the DNA polymerase isolated from Thermococcus litoralis (VentTM DNA polymerase) is the first thermostable DNA polymerase reported having a 3'----5' proofreading exonuclease activity. This facilitates a highly accurate DNA synthesis in vitro by the polymerase. Mutational frequencies observed in the base substitution fidelity assays were in the range of 30 x 10(-6). These values were 5-10 times lower compared to other thermostable DNA polymerases lacking the proofreading activity. All classes of DNA polymerase errors (transitions, transversions, frameshift mutations) were assayed using the forward mutational assay (1). The mutation frequencies of Thermococcus litoralis DNA polymerase varied between 15-35 x 10(-4) being 2-4 times lower than the respective values obtained using enzymes without proofreading activity. We also noticed that the fidelity of the DNA polymerase from Thermococcus litoralis responds to changes in dNTP concentration, units of enzyme used per one reaction and the concentration of MgSO4 relative to the total concentration of dNTPs present in the reaction. The high fidelity DNA synthesis in vitro by Thermococcus litoralis DNA polymerase provides good possibilities for maintaining the genetic information of original target DNA sequences intact in the DNA amplification applications.  相似文献   

12.
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.  相似文献   

13.
F W Perrino  L A Loeb 《Biochemistry》1990,29(22):5226-5231
Purified DNA polymerase alpha, the major replicating enzyme found in mammalian cells, lacks an associated 3'----5' proofreading exonuclease that, in bacteria, contributes significantly to the accuracy of DNA replication. Calf thymus DNA polymerase alpha cannot remove mispaired 3'-termini, nor can it extend them efficiently. We designed a biochemical assay to search in cell extracts for a putative proofreading exonuclease that might function in concert with DNA polymerase alpha in vivo but dissociates from it during purification. Using this assay, we purified a 3'----5' exonuclease from calf thymus that preferentially hydrolyzes mispaired 3'-termini, permitting subsequent extension of the correctly paired 3'-terminus by DNA polymerase alpha. This exonuclease copurifies with a DNA polymerase activity that is biochemically distinct from DNA polymerase alpha and exhibits characteristics described for a second replicative DNA polymerase, DNA polymerase delta. In related studies, we showed that the 3'----5' exonuclease of authentic DNA polymerase delta, like the purified exonuclease, removes terminal mispairs, allowing extension by DNA polymerase alpha. These data suggest that a single proofreading exonuclease could be shared by DNA polymerases alpha and delta, functioning at the site of DNA replication in mammalian cells.  相似文献   

14.
Although single nucleotide polymorphisms (SNPs) are commonly used in human genetics, they have only recently been incorporated into genetic studies of non‐model organisms, including cetaceans. SNPs have several advantages over other molecular markers for studies of population genetics: they are quicker and more straightforward to score, cross‐laboratory comparisons of data are less complicated, and they can be used successfully with low‐quality DNA. We screened portions of the genome of one of the most abundant cetaceans in U.S. waters, the common bottlenose dolphin (Tursiops truncatus), and identified 153 SNPs resulting in an overall average of one SNP every 463 base pairs. Custom TaqMan® Assays were designed for 53 of these SNPs, and their performance was tested by genotyping a set of bottlenose dolphin samples, including some with low‐quality DNA. We found that in 19% of the loci examined, the minor allele frequency (MAF) estimated during initial SNP ascertainment using a DNA pool of 10 individuals differed significantly from the final MAF after genotyping over 100 individuals, suggesting caution when making inferences about MAF values based on small data sets. For two assays, we also characterized the basis for unusual clustering patterns to determine whether their data could still be utilized for further genetic studies. Overall results support the use of these SNPs for accurate analysis of both poor and good‐quality DNA. We report the first SNP markers and genotyping assays for use in population and conservation genetic studies of bottlenose dolphins.  相似文献   

15.
As the number of single-nucleotide polymorphism (SNP) screening and other mutation scanning studies have increased explosively, following the development of high-throughput instrumentation, it becomes even more important to have sufficient template DNA. The source of DNA is often limited, especially in epidemiological studies, which require many samples as well as enough DNA to perform numerous SNP screenings or mutation scannings. Therefore, the aim is to solve the problem of stock DNA limitation. This need has been an important reason for the development of whole genome amplification (WGA) methods. Several systems are based on Phi29 polymerase multiple displacement amplification (MDA) or on DNA fragmentation (OmniPlex). Using TaqMan SNP genotyping assays, we have tested four WGA systems -- AmpliQ Genomic Amplifier Kit, GenomiPhi, Repli-g, and GenomePlex -- on DNA extracted from Guthrie cards to evaluate the amplification bias, concordance- and call rates, cost efficiency, and flexibility. All systems successfully amplified picograms of DNA from Guthrie cards to micrograms of product without loss of heterozygosity and with minimal allelic bias. A modified AmpliQ set up was chosen for further evaluation. In all, 2,000 SNP genotyping results from amplified and nonamplified samples were compared and the concordance rates between the samples were 99.7%. The call rate using the TaqMan system was 99.8%. DNA extracted from Guthrie cards and amplified with one of the four evaluated WGA systems is applicable in epidemiological genetic screenings. System choice should be based on requirements for system flexibility, product yield, and use in subsequent analysis.  相似文献   

16.
Until recently, the only biological function attributed to the 3'-->5' exonuclease activity of DNA polymerases was proofreading of replication errors. Based on genetic and biochemical analysis of the 3'-->5' exonuclease of yeast DNA polymerase delta (Pol delta) we have discerned additional biological roles for this exonuclease in Okazaki fragment maturation and mismatch repair. We asked whether Pol delta exonuclease performs all these biological functions in association with the replicative complex or as an exonuclease separate from the replicating holoenzyme. We have identified yeast Pol delta mutants at Leu523 that are defective in processive DNA synthesis when the rate of misincorporation is high because of a deoxynucleoside triphosphate (dNTP) imbalance. Yet the mutants retain robust 3'-->5' exonuclease activity. Based on biochemical studies, the mutant enzymes appear to be impaired in switching of the nascent 3' end between the polymerase and the exonuclease sites, resulting in severely impaired biological functions. Mutation rates and spectra and synergistic interactions of the pol3-L523X mutations with msh2, exo1, and rad27/fen1 defects were indistinguishable from those observed with previously studied exonuclease-defective mutants of the Pol delta. We conclude that the three biological functions of the 3'-->5' exonuclease addressed in this study are performed intramolecularly within the replicating holoenzyme.  相似文献   

17.
The DNA mismatch repair (MMR) system recognizes and repairs errors that escaped the proofreading function of DNA polymerases. To study molecular details of the MMR mechanism, in vitro biochemical assays require specific DNA substrates carrying mismatches and strand discrimination signals. Current approaches used to generate MMR substrates are time-consuming and/or not very flexible with respect to sequence context. Here we report an approach to generate small circular DNA containing a mismatch (nanocircles). Our method is based on the nicking of PCR products resulting in single-stranded 3' overhangs, which form DNA circles after annealing and ligation. Depending on the DNA template, one can generate mismatched circles containing a single hemimethylated GATC site (for use with the bacterial system) and/or nicking sites to generate DNA circles nicked in the top or bottom strand (for assays with the bacterial or eukaryotic MMR system). The size of the circles varied (323 to 1100 bp), their sequence was determined by the template DNA, and purification of the circles was achieved by ExoI/ExoIII digestion and/or gel extraction. The quality of the nanocircles was assessed by scanning-force microscopy and their suitability for in vitro repair initiation was examined using recombinant Escherichia coli MMR proteins.  相似文献   

18.
F Bernges  E Holler 《Biochemistry》1988,27(17):6398-6402
The effects of the reaction of cis- and trans-diamminedichloroplatinum(II) with DNA have been measured with regard to DNA synthesis, 3'-5' exonuclease (proofreading), and 5'-3' exonuclease (repair) activities of Escherichia coli DNA polymerase I. Both isomers inhibit DNA synthetic activity of the polymerase through an increase in Km values and a decrease in Vmax values for platinated DNA but not for the nucleoside 5'-triphosphates as the varied substrates. The inhibition is a consequence of lowered binding affinity between platinated DNA and DNA polymerase, and of a platination-induced separation of template and primer strands. Strand separation enhances initial rates of 3'-5' excision of [3H]dCMP from platinated DNA (proofreading), while total excision levels of nucleotides are decreased. In contrast to proofreading activity, the 5'-3' exonuclease activity (repair) discriminates between DNA which had reacted with cis- and with trans-diamminedichloroplatinum(II). While both initial rates and total excision are inhibited for the cis isomer, they are almost not affected for the trans isomer. This differential effect could explain why bacterial growth inhibition requires much higher concentrations of trans- than cis-diamminedichloroplatinum(II).  相似文献   

19.
When we placed an ENA residue into primers at the 3' end, or the n-1, n-2, or n-3 position, which included a single nucleotide polymorphism (SNP) site at the 3' end, only primers containing the ENA residue at the n-2 position were read by Taq DNA polymerase for amplification. The use of the ENA primers avoided the generation of undesired short products, which are thought to be derived from primer-dimers. A greater discrimination of the SNP site by these primers containing the ENA residue was observed compared with that of the corresponding unmodified DNA primers that are often used for allele-specific polymerase chain reaction (AS-PCR). This improvement is probably due to the difficulty of incorporating a nucleotide into the mismatched ENA primer by Taq DNA polymerase in the modified primer-template duplex. These results demonstrate that ENA primer-based AS-PCR would enable a rapid and reliable technique for SNP genotyping.  相似文献   

20.
Over the past few years, several new 3' 5' exonucleases have been identified. In vitro studies of these enzymes have uncovered much about their potential functions in vivo, and certain organisms with a defect in 3' 5' exonucleases have an increased susceptibility to cancer, especially under conditions of stress. Here, we look at not only the newly discovered enzymes, but also at the roles of other 3' 5' exonucleases in the quality control of DNA synthesis, where they act as proofreading exonucleases for DNA polymerases during DNA replication, repair and recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号