首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
1. Phospholipase D [EC 3.1.4.4] from Streptomyces hachijoensis was purified about 570-fold by column chromatography on DEAE-cellulose and Sephadex G-50 followed by isoelectric focusing. 2. The purified preparation was found to be homogeneous both by immunodiffusion and polyacrylamide disc gel electrophoresis. 3. The isoelectric point was found to be around pH 8.6 and the molecular weight was about 16,000. 4. The enzyme has maximal activity at pH 7.5 at 37 degrees. The optimal temperature is around 50 degrees at pH 7.5, using 20 min incubation. 5. The enzyme was stable at 50 degrees for 90 min. At neutral pH, between 6 and 8, the enzyme retained more than 95% of its activity on 24 hr incubation at 25 degrees. However, the enzyme lost 80% of its activity under the same conditions at pH 4.0. 6. The enzyme was stimulated slightly by Ca2+, Mn2+, and Co2+, and significantly by Triton X-100 and ethyl ether. It was inhibited by Sn2+, Fe2+, Fe3+, Al3+, EDTA, sodium dodecyl sulfate, sodium cholate, and cetylpyridinium chloride. 7. This phospholipase D hydrolyzes phosphatidylethanolamine, phosphatidylcholine, cardiolipin, sphingomyelin, phosphatidylserine, and lysophosphatidylcholine, liberating the corresponding bases. 8. The Km value was 4mM, determined with phosphatidylethanolamine as a substrate.  相似文献   

2.
K B Li  K Y Chan 《Applied microbiology》1983,46(6):1380-1387
Lactobacillus acidophilus IFO 3532 was found to produce only intracellular alpha-glucosidase (alpha-D-glucoside glucohydrolase; EC 3.2.1.20). Maximum enzyme production was obtained in a medium containing 2% maltose as inducer at 37 degrees C and at an initial pH of 6.5. The enzyme was formed in the cytoplasm and accumulated as a large pool during the logarithmic growth phase. Enzyme production was strongly inhibited by 4 microM CuSO4, 40 microM CoCl2, and beef extract; MnSO4 and the presence of proteose peptone and yeast extract in the medium greatly enhanced enzyme production. A 16.6-fold purification of alpha-glucosidase was achieved by (NH4)2SO4 fractionation and DEAE-cellulose column chromatography. The enzyme showed high specificity for maltose. The Km for alpha-p-nitrophenyl-beta-D-glucopyranoside was 11.5 mM, and the Vmax for alpha-p-nitrophenyl-beta-D-glucopyranoside hydrolysis was 12.99 mumol/min per mg of protein. The optimal pH and temperature for enzyme activity were 5.0 and 37 degrees C, respectively. The enzyme activity was inhibited by Hg2+, Cu2+, Ni2+, Zn2+, Ca2+, Co2+, urea, rose bengal, and 2-iodoacetamide, whereas Mn2+, Mg2+, L-cysteine, L-histidine, Tris, and EDTA stimulated enzyme activity. Transglucosylase activity was present in the partially purified enzyme, and isomaltose was the only glucosyltransferase product. Amylase activity in the purified preparation was relatively weak, and no isomaltase activity was detected.  相似文献   

3.
K Sakai  K Oshima    M Moriguchi 《Applied microbiology》1991,57(9):2540-2543
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

4.
Purification and properties of urease from bovine rumen.   总被引:5,自引:0,他引:5       下载免费PDF全文
Urease (urea amidohydrolase, EC 3.5.1.5) was extracted from the mixed rumen bacterial fraction of bovine rumen contents and purified 60-fold by (NH4)2SO4 precipitation, calcium phosphate-gel adsorption and chromatography on hydroxyapatite. The purified enzyme had maximum activity at pH 8.0. The molecular weight was estimated to be 120000-130000. The Km for urea was 8.3 X 10(-4) M+/-1.7 X 10(-4) M. The maximum velocity was 3.2+/-0.25 mmol of urea hydrolysed/h per mg of protein. The enzyme was stabilized by 50 mM-dithiothreitol. The enzyme was not inhibited by high concentrations of EDTA or phosphate but was inhibited by Mn2+, Mg2+, Ba2+, Hg2+, Cu2+, Zn2+, Cd2+, Ni2+ and Co2+. p-Chloromercuribenzenesulfphonate and N-ethylmaleimide inhibited the enzyme almost completely at 0.1 mM. Hydroxyurea and acetohydroxamate reversibly inhibited the enzyme. Polyacrylamide-gel electrophoresis showed that the mixed rumen bacteria produce ureases which have identical molecular weights and electrophoretic mobility. No multiple forms of urease were detected.  相似文献   

5.
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

6.
Adenylate cyclase was assayed in a sonicated preparation of silkworm pupal fat body. The adenylate cyclase was found mostly in the particulate fraction. The activity depended upon either Mg2+ or Mn2+, and the degree of stimulation by Mn2+ was 2 times greater than that by Mg2+ compared at the saturating concentrations. In the presence of Mg2+, the enzyme was inhibited by both EGTA and high concentrations of Ca2+, showing biphasical response to Ca2+. The enzyme was stimulated several-fold by NaF. The enzyme exhibited typical Michaelis-Menten kinetics and Km values were 0.13 mM for MgATP and 0.086 mM for MnATP.  相似文献   

7.
Characterization of the zinc binding site of bacterial phosphotriesterase.   总被引:5,自引:0,他引:5  
The bacterial phosphotriesterase has been found to require a divalent cation for enzymatic activity. This enzyme catalyzes the detoxification of organophosphorus insecticides and nerve agents. In an Escherichia coli expression system significantly higher concentrations of active enzyme could be produced when 1.0 mM concentrations of Mn2+, Co2+, Ni2+, and Cd2+ were included in the growth medium. The isolated enzymes contained up to 2 equivalents of these metal ions as determined by atomic absorption spectroscopy. The catalytic activity of the various metal enzyme derivatives was lost upon incubation with EDTA, 1,10-phenanthroline, and 8-hydroxyquinoline-5-sulfonic acid. Protection against inactivation by metal chelation was afforded by the binding of competitive inhibitors, suggesting that at least one metal is at or near the active site. Apoenzyme was prepared by incubation of the phosphotriesterase with beta-mercaptoethanol and EDTA for 2 days. Full recovery of enzymatic activity could be obtained by incubation of the apoenzyme with 2 equivalents of Zn2+, Co2+, Ni2+, Cd2+, or Mn2+. The 113Cd NMR spectrum of enzyme containing 2 equivalents of 113Cd2+ showed two resonances at 120 and 215 ppm downfield from Cd(ClO4)2. The NMR data are consistent with nitrogen (histidine) and oxygen ligands to the metal centers.  相似文献   

8.
Some kinetic properties of N-acetylglutamate 5-phosphotransferase (ATP: N-acetyl-L-glutamate 5-phosphotransferase EC 2.7.2.8) purified approx. 2000-fold from Pseudomonas aeruginosa have been studied. The enzyme required Mg2+ for activity. Mn2+, Zn2+, Co2+, and Ca2+, in this order, could replace Mg2+ partially. The substrate specificity was narrow: N-carbamoyl-L-glutamate and N-formyl-L-glutamate were phosphorylated, but at a lower rate than N-acetyl-L-glutamate; N-propionyl-L-glutamate was almost inactive as a substrate. dATP, but neither GTP nor ITP, could be used instead of ATP. The enzyme had a broad pH optimum from pH 6.5 to 9. Feedback inhibition by L-arginine was markedly dependent on pH. Above pH 9 no inhibition was observed. L-Citrulline was three times less potent an inhibitor than L-arginine. The enzyme showed Michaelis-Menten kinetics, even at low concentration of the second substrate. The apparent Km was 2 mM for N-acetyl-L-glutamate (at 10 mM ATP) and approx. 3 mM for ATP (at 40 mM N-acetyl-L-glutamate). In the presence of L-arginine the rate-concentration curves for N-acetyl-L-glutamate became signoidal, while no cooperativity was detected for ATP. A method was developed allowing the determination of N-acetyl-L-glutamate in the nanomolar range by means of purified enzyme.  相似文献   

9.
Acetylpyruvate hydrolase, the terminal inducible enzyme of the pathway of orcinol catabolism in Pseudomonas putida, catalyzes the quantitative conversion of acetylpyruvate into acetate and pyruvate. The enzyme has been purified approximately 40-fold from extracts of Ps. putida grown on orcinol. Disc gel electrophoresis of the preparations show one major and one minor band of protein. The molecular weight of the enzyme is approximately 38,000 by sodium dodecyl sulfate electrophoresis. Acetylpyruvate is the only known substrate for the enzyme; maleylpyruvate, fumarylpyruvate, acetoacetate, oxalacetate, and acetylacetone are not hydrolyzed by acetylpyruvate hydrolase. Several divalent cations, includ-Mg2+, Mn2+, Co2+, Ca2+, and Zn2+, enhanced hydrolytic activity, but Cu2+ was inhibitory. The enzyme shows a sharp pH optimum at 7.4. Acetylpyruvate hydrolase has an apparent K-m of 0.1 mM for acetylpyruvate with a molecular activity of 36 min minus 1 at 25 degrees. Pyruvate, oxalacetate, and oxalate are competitive inhibitors of acetylpyruvate hydrolysis by the enzyme with K-i values of 6.0, 4.5, and 0.45 mM, respectively.  相似文献   

10.
A microorganism hydrolyzing carboxymethyl cellulose was isolated from a paddy field and identified as Bacillus sp. Production of cellulase by this bacterium was found to be optimal at pH 6.5, 37 degrees C and 150 rpm of shaking. This cellulase was purified to homogeneity by the combination of ammonium sulphate precipitation, DEAE cellulose, and sephadex G-75 gel filtration chromatography. The cellulase was purified up to 14.5 fold and had a specific activity of 246 U/mg protein. The enzyme was a monomeric cellulase with a relative molecular mass of 58 kDa, as determined by SDS-PAGE. The enzyme exhibited its optimal activity at 50 degrees C and pH 6.0. The enzyme was stable in the pH range of 5.0 to 7.0 and its stability was maintained for 30 min at 50 degrees C and its activity got inhibited by Hg2+, Cu2+, Zn2+, Mg2+, Na2+, and Ca2+.  相似文献   

11.
Formaldehyde dehydrogenase was isolated and purified in an overall yield of 12% from cell-free extract of Pseudomonas putida C-83 by chromatographies on columns of DEAE-cellulose, DEAE-Sephadex A-50, and hydroxyapatite. The purified enzyme was homogeneous as judged by disc gel electrophoresis and was most active at pH 7.8 using formaldehyde as a substrate. The enzyme was also active toward acetaldehyde, propionaldehyde, glyoxal, and pyruvaldehyde, though the reaction rates were low. The enzyme was NAD+-linked but did not require the external addition of glutathione, in contrast with the usual formaldehyde dehydrogenase from liver mitochondria, baker's yeast, and some bacteria. The enzyme was markedly inhibited by Ni2+, Pd2+, Hg2+, p-chloromercuribenzoate, and phenylmethanesulfonyl fluoride. The molecular weight of the enzyme was estimated to be 150,000 by the gel filtration method, and analysis by SDS-polyacrylamide gel electrophoresis indicated that the enzyme was composed of two subunit monomers. Kinetic analysis gave Km values of 67 microM for formaldehyde and 56 microM for NAD+, and suggested that the reaction proceeds by a "Ping-pong" mechanism. The enzyme catalyzed the oxidation of formaldehyde accompanied by the stoichiometric reduction of NAD+, but no reverse reaction was observed.  相似文献   

12.
An enzyme which liberates Pi from myo-inositol hexaphosphate (phytic acid) was shown to be present in culture filtrates of Bacillus subtilis. It was purified until it was homogeneous by ultracentrifugation, but it still showed two isozymes on polyacrylamide gel electrophoresis. The enzyme differed from other previously known phytases in its metal requirement and in its specificity for phytate. It had a specific requirement for Ca2+ for its activity. The enzyme hydrolyzed only phytate and had no action on other phosphate esters tested. This B. subtilis phytase is the only known phytate-specific phosphatase. The products of hydrolysis of phytate by this enzyme were Pi and myo-inositol monophosphate. The enzyme showed optimum activity at pH 7.5. It was inhibited by Ba2+, Sr2+, Hg2+, Cd2+, and borate. Its activity was unaffected by urea, diisopropylfluorophosphate, arsenate, fluoride, mercaptoethanol, trypsin, papain, and elastase.  相似文献   

13.
D-Ribulose-1,5-bisphosphate (RuBP) carboxylase has been purified from glutamate-CO2-S2O3(2)-grown Thiobacillus intermedius by pelleting the enzyme from the high-speed supernatant and by intermediary crystallization followed by sedimentation into a discontinuous 0.2 to 0.8 M sucrose gradient. The enzyme was homogeneous by the criteria of electrophoresis on polyacrylamide gels of several acrylamide concentrations, sedimentation velocity and equilibrium measurements, and electron microscopic observations of negatively stained preparations. The molecular weights of the enzyme determined by sedimentation equilibrium and light-scattering measurements averaged 462,500 +/- 13,000. The enzyme consisted of closely similar or identical polypeptide chains of a molecular weight of 54,500 +/- 5,450 determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The S(0)20,w of the enzyme was 18.07S +/- 0.22. Electron microscopic examination suggested that the octomeric enzyme (inferred from the molecular measurements mentioned) had a cubical structure. The specific activity of the enzyme was 2.76 mumol of RuBP-dependent CO2 fixed/min per mg of protein (at pH 8 and 30 C), and the turnover number in terms of moles of CO2 fixed per mole of catalytic site per second was 2.6. The enzyme was stable for 3 months at -20 C and at least 4 weeks at 0 C. The apparent Km for CO2 was 0.75 mM, and Km values for RuBP and Mg2+ were 0.076 and 3.6 mM, respectively. Dialyzed enzyme could be fully reactivated by the addition of 20 mM Mg2+ and partially reactivated by 20 mM Co2+, but Cd2+, Mn2+, Ca2+, and Zn2+ had no effect. The compound 6-phosphogluconate was a linear competitive inhibitor with respect to RuBP when it had been preincubated with enzyme, Mg2+, and HCO3-.  相似文献   

14.
The effects of divalent cations, especially Ca2+ and Mg2+, on the proton-translocating inorganic pyrophosphatase purified from mung bean vacuoles were investigated to compare the enzyme with other pyrophosphatases. The pyrophosphatase was irreversibly inactivated by incubation in the absence of Mg2+. The removal of Mg2+ from the enzyme increased susceptibility to proteolysis by trypsin. Vacuolar pyrophosphatase required free Mg2+ as an essential cofactor (K0.5 = 42 microM). Binding of Mg2+ stabilizes and activates the enzyme. The formation of MgPPi is also an important role of magnesium ion. Apparent Km of the enzyme for MgPPi was about 130 microM. CaCl2 decreased the enzyme activity to less than 60% at 40 microM, and the inhibition was reversed by EGTA. Pyrophosphatase activity was measured under different conditions of Mg2+ and Ca2+ concentrations at pH 7.2. The rate of inhibition depended on the concentration of CaPPi, and the approximate Ki for CaPPi was 17 microM. A high concentration of free Ca2+ did not inhibit the enzyme at a low concentration of CaPPi. It appears that for Ca2+, at least, the inhibitory form is the Ca2(+)-PPi complex. Cd2+, Co2+ and Cu2+ also inhibited the enzyme. The antibody against the vacuolar pyrophosphatase did not react with rat liver mitochondrial or yeast cytosolic pyrophosphatases. Also, the antibody to the yeast enzyme did not react with the vacuolar enzyme. Thus, the catalytic properties of the vacuolar pyrophosphatase, such as Mg2+ requirement and sensitivity to Ca2+, are common to the other pyrophosphatases, but the vacuolar enzyme differs from them in subunit mass and immunoreactivity.  相似文献   

15.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

16.
We purified dextranase from the culture supernatant of Streptococcus mutans Ingbritt by procedures including ammonium sulfate precipitation, ion-exchange chromatography, and gel filtration. The molecular weight of the enzyme was estimated as 78 kDa by SDS-PAGE. The enzyme degraded dextran at the optimum pH of 5.5, but not other glucans and fructans at all. Paper chromatographic analysis revealed that the enzyme cleaved dextran by an endo-type mechanism. The enzyme was inhibited by Hg2+, Fe3+, Zn2+, and anionic detergents SDS and deoxycholic acid, but not inhibited by non-ionic detergents Triton X-100, Lubrol PX, Nonidet P-40, and Tween 80. SDS-blue dextran-PAGE analysis of the culture supernatant revealed that the enzyme activity detected in the 96 kDa band shifted gradually to the 78 kDa band during handling the supernatant. This shift was inhibited by phenylmethylsulfonyl fluoride, suggesting that the shift of the molecular size is due to proteolytic degradation of the enzyme by serine protease.  相似文献   

17.
An intracellular hexose 6-phosphate:phosphohydrolase (EC 3.1.3.2) has been purified from Streptococcus lactis K1. Polyacrylamide disc gel electrophoresis of the purified enzyme revealed one major activity staining protein and one minor inactive band. The Mr determined by gel permeation chromatography was 36,500, but sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single polypeptide of apparent Mr 60,000. The enzyme exhibited a marked preference for hexose 6-phosphates, and the rate of substrate hydrolysis (at 5 mM concentration) decreased in the order, galactose 6-phosphate greater than 2-deoxy-D-glucose 6-phosphate greater than fructose 6-phosphate greater than mannose 6-phosphate greater than glucose 6-phosphate. Hexose 1-phosphates, p-nitrophenylphosphate, pyrophosphate, and nucleotides were not hydrolyzed at a significant rate. In addition, the glycolytic intermediates comprising the intracellular phosphoenolpyruvate potential in the starved cells (phosphoenolpyruvate and 2- and 3-phosphoglyceric acids) were not substrates for the phosphatase. Throughout the isolation, the hexose 6-phosphate:phosphohydrolase was stabilized by Mn2+ ion, and the purified enzyme was dependent upon Mn2+, Mg2+, Fe2+, or Co2+ for activation. Other divalent metal ions including Pb2+, Cu2+, Zn2+, Cd2+, Ca2+, Ba2+, Sr2+, and Ni2+ were unable to activate the enzyme, and the first four cations were potent inhibitors. Enzymatic hydrolysis of 2-deoxy-D-glucose 6-phosphate was inhibited by fluoride when Mg2+ was included in the assay, but only slight inhibition occurred in the presence of Mn2+, Fe2+, or Co2+. The inhibitory effect of Mg2+ plus fluoride was specifically and completely reversed by Fe2+ ion. The hexose 6-phosphate:phosphohydrolase catalyzes the in vivo hydrolysis of 2-deoxy-D-glucose 6-phosphate in stage II of the phosphoenolpyruvate-dependent futile cycle in S. lactis (J. Thompson and B. M. Chassy, J. Bacteriol. 151:1454-1465, 1982).  相似文献   

18.
Phytase from Klebsiella Sp. No. PG-2: purification and properties   总被引:1,自引:0,他引:1  
A phytase (EC 3.1.3.8) was extracted from rat intestinal bacterium, Klebsiella Sp. No. PG.-2, and purified 50-fold by ammonium sulphate fractionation, ion-exchange chromatography and gel filtration. The enzyme is inducible in nature. The pH optimum was at 6.0 for all the inositol phosphates studied and this characterized the enzyme as an acid phosphohydrolase. Of a range of potential substrates tested, only p-nitrophenyl phosphate alongwith the inositol phosphates was hydrolyzed. It exhibits a Km of 2.0 mM; temperature optimum of 37 degrees C and energy of activation 9,120 cal/mole for all the inositol phosphates studied. The activity was inhibited by Ag2+, Hg2+, Cu2+, fluoride and high substrate concentration.  相似文献   

19.
Aspartate transaminase enzyme was prepared from tobacco tissue cultures. Effect of 13 different metal ions on the enzyme activity was preliminarily studied. The enzyme activity was inhibited by five ions, namely Cd2+, Hg2+, Zn2+, Cu2+, and Ag+. None of the ions investigated enhanced the activity. Fe2+ caused an apparent activity increase in the reaction mixture. Pyridoxal-phosphate enhanced this effect of the Fe2+.  相似文献   

20.
The functional significance of the oxidation/reduction state of sulfhydryl groups of cGMP-dependent protein kinase (cGMP kinase) was studied at 30 degrees C using different metal ions as oxidizing agents. Mn2+, Zn2+, Fe2+, Ni2+, and Co2+ failed to activate cGMP kinase, whereas Cu2+, Cu+, Fe3+, Hg2+, and Ag+ activated cGMP kinase by oxidation with an activity ratio (-cGMP/+cGMP) of about 0.7. The activation was not caused by degradation of the enzyme to a cGMP-independent constitutively active form. Reduction of the Cu(2+)-activated and gel-filtered enzyme with dithiothreitol lowered the activity ratio in the absence of cGMP to 0.17. Oxidation did not change the kinetic and binding parameters of cGMP kinase significantly but reduced the number of titratable sulfhydryl groups from 9.5 +/- 0.7 to 6.0 +/- 0.4 cysteines/75-kDa subunit. The free cysteinyl residues of the native and Cu(2+)-oxidized cGMP kinase were labeled with 4-dimethylaminoazobenzene-4'-iodoacetamide or N-(7-dimethylamino-4-methyl-3-coumarinyl)maleimide. Tryptic peptides of the labeled proteins were isolated and sequenced. The cysteinyl residues oxidized by Cu2+ were identified as disulfide bonds between Cys-117 and Cys-195 and Cys-312 and Cys-518, respectively. Cu2+ activation of cGMP kinase was prevented by mild carboxymethylation of the reduced enzyme with iodoacetamide, which apparently modified these four cysteinyl groups. The results show that cGMP kinase is activated by the formation of at least one intrachain disulfide bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号