首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A methane-utilizing organism capable of growth both on methane and on more complex organic substrates as a sole source of carbon and energy, has been isolated and studied in detail. Suspensions of methane-grown cells of this organism oxidized C-1 compounds (methane, methanol, formaldehyde, formate); hydrocarbons (ethane, propane); primary alcohols (ethanol, propanol); primary aldehydes (acetaldehyde, propionaldehyde); alkenes (ethylene, propylene); dimethylether; and organic acids (acetate, malate, succinate, isocitrate). Suspensions of methanol-or succinate-grown cells did not oxidize methane, ethane, propane, ethylene, propylene, or dimethylether, suggesting that the enzymatic systems required for oxidation of these substrates are induced only during growth on methane. Extracts of methane-grown cells contained a particulate reduced nicotinamide adenine dinucleotide-dependent methane monooxygenase activity. Oxidation of methanol, formaldehyde, and primary alcohols was catalyzed by a phenazine methosulfate-linked, ammonium ion-requiring methanol dehydrogenase. Oxidation of primary aldehydes was catalyzed by a phenazine methosulfate-linked, ammonium ion-independent aldehyde dehydrogenase. Formate was oxidized by a nicotinamide adenine dinucleotide-specific formate dehydrogenase. Extracts of methane-grown, but not succinate-grown, cells contained the key enzymes of the serine pathway, hydroxypyruvate reductase and malate lyase, indicating that the enzymes of C-1 assimilation are induced only during growth on C-1 compounds. Glucose-6-phosphate dehydrogenase was induced during growth on glucose. Extracts of methane-grown cells contained low levels of enzymes of the tricarboxylic acid cycle, including alpha-keto glutarate dehydrogenase, relative to the levels found during growth on succinate.  相似文献   

2.
An organism isolated from soil by enrichment on isonicotinic acid (INA) was characterized as Bacillus brevis. It used sugars more readily than amino acids as growth substrates. The organism also used isoniazid, 2-hydorxypyridine, and benzoic and p-hydroxybenzoic acids. This bacterium did not metabolize 2-hydroxy-INA, citrazinic acid, or other mono- and dihydroxypyridine compounds as well as intermediates of the maleamate pathway. Accumulation of hydroxylated pyridine compounds was not detected during fermentation, or incubation of INA with resting cells in the presence or absence of inhibitors. Succinic semialdehyde was isolated and characterized as a key intermediate and was rapidly oxidized by INA-adapted cells. Formate was detected as a product of INA metabolism, and formate but not formamide was oxidized by INA-adapted cells; γ-aminobutyrate or γ-aminocrotonate were oxidized. A pathway for INA degradation involving oxygenative cleavage of a partially reduced pyridine ring is proposed.  相似文献   

3.
1. A bacterium, Achromobacter D, isolated from garden soil by elective culture, utilized N-methylisonicotinic acid (4-carboxy-1-methylpyridinium chloride) as sole carbon source. 2. Extracts of N-methylisonicotinate-grown cells oxidized this substrate only after supplementation with a source of nicotinamide nucleotides and then consumed 1 mol of O2 and released 1 mol of CO2/mol of N-methylisonicotinate supplied. 3. The N-methyl group of the substrate was released as methylamine whereas the five C atoms of the pyridine ring were accounted for as succinate and formate. The CO2 evolved by extracts was believed to derive from the carboxyl group on C-4 of the heterocyclic ring. 4. The immediate precursor of the succinate end-product was succinic semialdehyde; the inducible nature of succinic semialdehyde dehydrogenase in N-methylisonicotinate-grown cells supported this finding. 5. There was no evidence for monohydroxylation of the ring, but the time sequence of the appearance of the end-products indicated that the oxygen-requiring, NADH-requiring and decarboxylation steps clearly preceded the formation of methylamine and succinate. 6. The results are consistent with the oxidative cleavage of a partially reduced heterocyclic ring followed by several hydrolytic and dehydrogenase steps resulting in the appearance of the end-products.  相似文献   

4.
Degradation of Pyridine by Micrococcus luteus Isolated from Soil   总被引:2,自引:1,他引:2       下载免费PDF全文
An organism capable of growth on pyridine was isolated from soil by enrichment culture techniques and identified as Micrococcus luteus. The organism oxidized pyridine for energy and released N contained in the pyridine ring as ammonium. The organism could not grow on mono- or disubstituted pyridinecarboxylic acids or hydroxy-, chloro-, amino-, or methylpyridines. Cell extracts of M. luteus could not degrade pyridine, 2-, 3-, or 4-hydroxypyridines or 2,3-dihydroxypyridine, regardless of added cofactors or cell particulate fraction. The organism had a NAD-linked succinate-semialdehyde dehydrogenase which was induced by pyridine. Cell extracts of M. luteus had constitutive amidase activity, and washed cells degraded formate and formamide without a lag. These data are consistent with a previously reported pathway for pyridine metabolism by species of Bacillus, Brevibacterium, and Corynebacterium. Cells of M. luteus were permeable to pyridinecarboxylic acids, monohydroxypyridines, 2,3-dihydroxypyridine, and monoamino- and methylpyridines. The results provide new evidence that the metabolism of pyridine by microorganisms does not require initial hydroxylation of the ring and that permeability barriers do not account for the extremely limited range of substrate isomers used by pyridine degraders.  相似文献   

5.
Cytochrome spectrum of an obligate anaerobe, Eubacterium lentum.   总被引:8,自引:2,他引:6       下载免费PDF全文
An obligately anaerobic bacterium, Eubacterium lentum, was shown to contain cytochromes a, b, and c and a carbon monoxide-binding pigment. Extracts of cells grown with hemin gave a typical absorption spectrum for cytochrome c with maxima at 424, 525, and 553 nm. Extracts from cells grown in the absence of hemin also had an absorption peak corresponding to cytochrome b (562 nm) in their reduced versus oxidized spectrum. Extraction of hemes and formation of pyridine hemochromes allowed quantitation of protoheme IX and heme c. Large amounts of cytochrome c masked the presence of cytochrome b in cells grown in medium containing hemin. When cells were grown in the presence of 50 mM nitrate, cytochrome A (606 nm) was detected. In anaerobic extracts of cells grown either with or without nitrate, cytochromes b and c were reduced by formate and oxidized by NO3. Cytochrome a appeared to be partially oxidized by NO3 and completely oxidized by air.  相似文献   

6.
1. An organism, identified as Micrococcus sp., was isolated by elective culture on aconate; it also grew on itaconate. 2. Washed suspensions of the aconate-grown organism readily oxidized intermediates of the tricarboxylic acid cycle, aconate and succinic semialdehyde, but not itaconate. Itaconate-grown cells oxidized tricarboxylic acid-cycle intermediates, succinic semialdehyde and itaconate, but not aconate. Succinate-grown cells oxidized neither itaconate nor aconate. 3. Extracts of aconate-grown cells catalysed the formation of succinic semialdehyde and carbon dioxide, in equimolar amounts, from aconate. In the presence of NAD or NADP, succinic semialdehyde was oxidized to succinate with concomitant reduction of the coenzyme. 4. Extracts of itaconate-grown cells catalysed the formation of pyruvate and acetyl-CoA from itaconyl-CoA. 5. Key enzymes involved in the formation of succinate from aconate, and of pyruvate and acetyl-CoA from itaconate, were distinct and inducible: their formation preceded growth on the appropriate substrate.  相似文献   

7.
Methylococcus capsulatus grows only on methane or methanol as its sole source of carbon and energy. Some amino acids serve as nitrogen sources and are converted to keto acids which accumulate in the culture medium. Cell suspensions oxidize methane, methanol, formaldehyde, and formate to carbon dioxide. Other primary alcohols are oxidized only to the corresponding aldehydes. Oxidation of formate by cell suspensions is more sensitive to inhibition by cyanide than is the oxidation of other one carbon compounds. This is due to the cyanide sensitivity of a soluble nicotinamide adenine dinucleotide-specific formate dehydrogenase. Oxidation of formaldehyde and methanol is catalyzed by a nonspecific primary alcohol dehydrogenase which is activated by ammonium ions and is independent of pyridine nucleotides. Some comparisons are made with a strain of Pseudomonas methanica.  相似文献   

8.
1. Several species of micro-organisms that were capable of utilizing pyridine compounds as carbon and energy source were isolated from soil and sewage. Compounds degraded included pyridine and the three isomeric hydroxypyridines. 2. Suitable modifications of the cultural conditions led to the accumulation of pyridinediols (dihydroxypyridines), which were isolated and characterized. 3. Three species of Achromobacter produced pyridine-2,5-diol from 2- or 3-hydroxypyridine whereas an uncommon Agrobacterium sp. (N.C.I.B. 10413) produced pyridine-3,4-diol from 4-hydroxypyridine. 4. On the basis of chemical isolation, induction of the necessary enzymes in washed suspensions and the substrate specificity exhibited by the isolated bacteria, the initial transformations proposed are: 2-hydroxypyridine --> pyridine-2,5-diol; 3-hydroxypyridine --> pyridine-2,5-diol and 4-hydroxypyridine --> pyridine-3,4-diol. 5. A selected pyridine-utilizer, Nocardia Z1, did not produce any detectable hydroxy derivative from pyridine, but carried out a slow oxidation of 3-hydroxypyridine to pyridine-2,3-diol and pyridine-3,4-diol. These diols were not further metabolized. 6. Addition of the isomeric hydroxypyridines to a model hydroxylating system resulted in the formation of those diols predicted by theory.  相似文献   

9.
The metabolism of cyclopentanol by Pseudomonas N.C.I.B. 9872   总被引:5,自引:1,他引:4  
1. Pseudomonas N.C.I.B. 9872 grown on cyclopentanol as carbon source oxidized it at a rate of 228mul of O(2)/h per mg dry wt. and the overall consumption of 5.9mumol of O(2)/mumol of substrate. Cyclopentanone was oxidized at a similar rate with the overall consumption of 5.2mumol of O(2)mumol of substrate. Cells grown with sodium acetate as sole source of carbon were incapable of significant immediate oxidation of these two substrates. 2. Disrupted cells catalysed the oxidation of cyclopentanol to cyclopentanone by the action of an NAD(+)-linked dehydrogenase with an alkaline pH optimum. 3. A cyclopentanolinduced cyclopentanone oxygenase (specific activity 0.11mumol of NADPH oxidized/min per mg of protein) catalysed the consumption of 1mumol of NADPH and 0.9mumol of O(2) in the presence of 1mumol of cyclopentanone. NADPH oxidation did not occur under anaerobic conditions. The only detectable reaction product with 100000g supernatant was 5-hydroxyvalerate. 4. Extracts of cyclopentanol-grown cells contained a lactone hydrolase (specific activity 7.0mumol hydrolysed/min per mg of protein) that converted 5-valerolactone into 5-hydroxyvalerate. 5. Cyclopentanone oxygenase fractions obtained from a DEAE-cellulose column were almost devoid of 5-valerolactone hydrolase and catalysed the formation of 5-valerolactone in high yield from cyclopentanone in the presence of NADPH. 6. Incubation of 5-hydroxyvalerate with the 100000g supernatant, NAD(+) and NADP(+) under aerobic conditions resulted in the consumption of O(2) and the conversion of 5-hydroxyvalerate into glutarate. 7. The high activity of isocitrate lyase in cyclopentanol-grown cells suggests that the further oxidation of glutarate proceeds through as yet uncharacterized reactions to acetyl-CoA. 8. The reaction sequence for the oxidation of cyclopentanol by Pseudomonas N.C.I.B. 9872 is: cyclopentanol --> cyclopentanone --> 5-valerolactone --> 5-hydroxyvalerate --> glutarate --> --> acetyl-CoA.  相似文献   

10.
A pathway of succinate fermentation to acetate and butanoate (butyrate) in Clostridium kluyveri has been supported by the results of 13C nuclear magnetic resonance studies of the metabolic end products of growth and the detection of dehydrogenase activities involved in the conversion of succinate to 4-hydroxybutanoate (succinic semialdehyde dehydrogenase and 4-hydroxybutanoate dehydrogenase). C. kluyveri fermented [1,4-13C]succinate primarily to [1-13C]acetate, [2-13C]acetate, and [1,4-13C]butanoate. Any pathway proposed for this metabolism must account for the reduction of a carboxyl group to a methyl group. Succinic semialdehyde dehydrogenase activity was demonstrated after separation of the crude extracts of cells grown on succinate and ethanol (succinate cells) by anaerobic nondenaturing polyacrylamide gel electrophoresis. 4-Hydroxybutanoate dehydrogenase activity in crude extracts of succinate cells was detected and characterized. Neither activity was found in cells grown on acetate and ethanol (acetate cells). Analysis of cell extracts from acetate cells and succinate cells by sodium dodecyl sulfate-polyacrylamide gel electrophoreses showed that several proteins were present in succinate cell extracts that were not present in acetate cell extracts. In addition to these changes in protein composition, less ethanol dehydrogenase and hydrogenase activity was present in the crude extracts from succinate cells than in the crude extracts from acetate cells. These data support the hypothesis that C. kluyveri uses succinate as an electron acceptor for the reducing equivalents generated from the ATP-producing oxidation of ethanol.  相似文献   

11.
Enzyme activities forming extracellular products from succinate, fumarate, and malate were examined using washed cell suspensions of Pseudomonas fluorescens from chemostat cultures. Membrane-associated enzyme activities (glucose, gluconate, and malate dehydrogenases), producing large accumulations of extracellular oxidation products in carbon-excess environments, have previously been found in P. fluorescens. Investigations carried out here have demonstrated the presence in this microorganism of a malic enzyme activity which produces extracellular pyruvate from malate in carbon-excess environments. Although the three membrane dehydrogenase enzymes decrease significantly in carbon-limited chemostat cultures, malic enzyme activity was found to increase fourfold under these conditions. The regulation of malate dehydrogenase and malic enzyme by malate or succinate was similar. Malate dehydrogenase increased and malic enzyme decreased in carbon-excess cultures. The opposite effect was observed in carbon-limited cultures. When pyruvate or glucose was used as the carbon source, malate dehydrogenase was regulated similarly by the available carbon concentration, but malic enzyme activity producing extracellular pyruvate was not detected. While large accumulations of extracellular oxalacetate and pyruvate were produced in malate-excess cultures, no extracellular oxidation products were detected in succinate-excess cultures. This may be explained by the lack of detectable activity for the conversion of added external succinate to extracellular fumarate and malate in cells from carbon-excess cultures. In cells from carbon-limited (malate or succinate) cultures, very active enzymes for the conversion of succinate to extracellular fumarate and malate were detected. Washed cell suspensions from these carbon-limited cultures rapidly oxidized added succinate to extracellular pyruvate through the sequential action of succinate dehydrogenase, fumarase, and malic enzyme. Succinate dehydrogenase and fumarase activities producing extracellular products were not detected in cells from chemostat cultures using pyruvate or glucose as the carbon source. Uptake activities for succinate, malate, and pyruvate also were found to increase in carbon-limited (malate or succinate) and decrease in carbon-excess cultures. The role of the membrane-associated enzymes forming different pathways for carbon dissimilation in both carbon-limited and carbon-excess environments is discussed.  相似文献   

12.
The enzyme Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase (aka P5CDH and ALDH4A1) is an aldehyde dehydrogenase that catalyzes the oxidation of γ-glutamate semialdehyde to l-glutamate. The crystal structures of mouse P5CDH complexed with glutarate, succinate, malonate, glyoxylate, and acetate are reported. The structures are used to build a structure-activity relationship that describes the semialdehyde carbon chain length and the position of the aldehyde group in relation to the cysteine nucleophile and oxyanion hole. Efficient 4- and 5-carbon substrates share the common feature of being long enough to span the distance between the anchor loop at the bottom of the active site and the oxyanion hole at the top of the active site. The inactive 2- and 3-carbon semialdehydes bind the anchor loop but are too short to reach the oxyanion hole. Inhibition of P5CDH by glyoxylate, malonate, succinate, glutarate, and l-glutamate is also examined. The Ki values are 0.27 mM for glyoxylate, 58 mM for succinate, 30 mM for glutarate, and 12 mM for l-glutamate. Curiously, malonate is not an inhibitor. The trends in Ki likely reflect a trade-off between the penalty for desolvating the carboxylates of the free inhibitor and the number of compensating hydrogen bonds formed in the enzyme-inhibitor complex.  相似文献   

13.
Bacterial degradation of m-nitrobenzoic acid.   总被引:2,自引:0,他引:2       下载免费PDF全文
Pseudomonas sp. strain JS51 grows on m-nitrobenzoate (m-NBA) with stoichiometric release of nitrite. m-NBA-grown cells oxidized m-NBA and protocatechuate but not 3-hydroxybenzoate, 4-hydroxy-3-nitrobenzoate, 4-nitrocatechol, and 1,2,4-benzenetriol. Protocatechuate accumulated transiently when succinate-grown cells were transferred to media containing m-NBA. Respirometric experiments indicated that the conversion of m-NBA to protocatechuate required 1 mol of oxygen per mol of substrate. Conversions conducted in the presence of 18O2 showed the incorporation of both atoms of molecular oxygen into protocatechuate. Extracts of m-NBA-grown cells cleaved protocatechuate to 2-hydroxy-4-carboxymuconic semialdehyde. These results provide rigorous proof that m-NBA is initially oxidized by a dioxygenase to produce protocatechuate which is further degraded by a 4,5-dioxygenase.  相似文献   

14.
Cell suspensions of Campylobacter fetus subsp. intestinalis grown microaerophilically in complex media consumed oxygen in the presence of formate, succinate, and DL-lactate, and membranes had the corresponding dehydrogenase activities. The cells and membranes also had ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine oxidase activity which was cyanide sensitive. The fumarate reductase activity in the membranes was inhibited by p-chloromercuriphenylsulfonate, and this enzyme was probably responsible for the succinate dehydrogenase activity. Cytochrome c was predominant in the membranes, and a major proportion of this pigment exhibited a carbon monoxide-binding spectrum. Approximately 60% of the total membrane cytochrome c, measured with dithionite as the reductant, was also reduced by ascorbate-N,N,N',N'-tetramethyl-p-phenylenediamine. A similar proportion of the membrane cytochrome c was reduced by succinate under anaerobic conditions, whereas formate reduced more than 90% of the total cytochrome under these conditions. 2-Heptyl-4-hydroxyquinoline-N-oxide inhibited reduction of cytochrome c with succinate, and the reduced spectrum of cytochrome b became evident. The inhibitor delayed reduction of cytochrome c with formate, but the final level of reduction was unaffected. We conclude that the respiratory chain includes low- and high-potential forms of cytochromes c and b; the carbon monoxide-binding form of cytochrome c might function as a terminal oxidase.  相似文献   

15.
The growth of the syntrophic propionate-oxidizing bacterium strain MPOB in pure culture by fumarate disproportionation into carbon dioxide and succinate and by fumarate reduction with propionate, formate or hydrogen as electron donor was studied. The highest growth yield, 12.2 g dry cells/mol fumarate, was observed for growth by fumarate disproportionation. In the presence of hydrogen, formate or propionate, the growth yield was more than twice as low: 4.8, 4.6, and 5.2 g dry cells/mol fumarate, respectively. The location of enzymes that are involved in the electron transport chain during fumarate reduction in strain MPOB was analyzed. Fumarate reductase, succinate dehydrogenase, and ATPase were membrane-bound, while formate dehydrogenase and hydrogenase were loosely attached to the periplasmic side of the membrane. The cells contained cytochrome c, cytochrome b, menaquinone-6 and menaquinone-7 as possible electron carriers. Fumarate reduction with hydrogen in membranes of strain MPOB was inhibited by 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO). This inhibition, together with the activity of fumarate reductase with reduced 2,3-dimethyl-1,4-naphtoquinone (DMNH2) and the observation that cytochrome b of strain MPOB was oxidized by fumarate, suggested that menequinone and cytochrome b are involved in the electron transport during fumarate reduction in strain MPOB. The growth yields of fumarate reduction with hydrogen or formate as electron donor were similar to the growth yield of Wolinella succinogenes. Therefore, it can be assumed that strain MPOB gains the same amount of ATP from fumarate reduction as W. succinogenes, i.e. 0.7 mol ATP/mol fumarate. This value supports the hypothesis that syntrophic propionate-oxidizing bacteria have to invest two-thirds of an ATP via reversed electron transport in the succinate oxidation step during the oxidation of propionate. The same electron transport chain that is involved in fumarate reduction may operate in the reversed direction to drive the energetically unfavourable oxidation of succinate during syntrophic propionate oxidation since (1) cytochrome b was reduced by succinate and (2) succinate oxidation was similarly inhibited by HOQNO as fumarate reduction. Received: 18 March 1997 / Accepted: 10 November 1997  相似文献   

16.
Acetate-grown GS-15 whole-cell suspensions were disrupted with detergent and assayed for enzymes associated with acetate catabolism. Carbon monoxide dehydrogenase and formate dehydrogenase were not observed in GS-15. Catabolic levels of acetokinase and phosphotransacetylase were observed. Enzyme activities of the citric acid cycle, i.e., isocitrate dehydrogenase, 2-oxoglutarate sythase, succinate dehydrogenase, fumarase, and malate dehydrogenase, were observed.  相似文献   

17.
1. Halogen analogues of p-nitrobenzoate and benzoate were oxidized by washed cells of Nocardia erythropolis. 2. The oxidation of 2-fluoro-4-nitrobenzoate ceased at the level of acetate, and fluoroacetate was found in the incubation medium and particularly in hot-ethanolic extracts of the cells. 3. Several fluorine-containing intermediates were detected and 2-fluoroprotocatechuate was identified as one of them. 4. The nitro group was also reduced by the organism, as evidenced by the formation of 4-amino-2-fluorobenzoate. 5. Extracts of N. erythropolis activated fluoroacetate and condensed the resulting fluoroacetyl-CoA with oxaloacetate to form fluorocitrate. This product was a very powerful inhibitor of citrate metabolism by guinea-pig kidney homogenates and of the aconitase also present in the bacterial extracts. The inhibitions effected by synthetic fluorocitrate and the natural product were comparable. 6. 2-Fluoro-4-nitrobenzoate had negligible mammalian toxicity. 7. The isolation of fluoroacetate as a product of 2-fluoro-4-nitrobenzoate oxidation implies that the aromatic ring in this bacterium must be degraded via a gamma-carboxymuconolactone; fluoroacetate cannot arise by metabolism through the isomeric beta-carboxymuconolactone.  相似文献   

18.
An aerobic endospore-forming bacterium, tentatively identified as a strain (JJ-lb) of Bacillus macerans, was isolated by enrichment on 4-hydroxybenzoate (4HBA), using as an inoculum soil taken from a 50 degrees C Iadho hot spring. Enzymatic analyses of cells grown on succinate and 4HBA indicated that strain JJ-1b degrades 4HBA by way of the novel protocatechuate (PCA) 2,3-dioxygenase pathway. Purification of the PCA 2,3-dioxygenase by affinity chromatography allowed the first observation of the immediate ring fission product of PCA, namely, 5-carboxy-2-hydroxymuconic semialdehyde (CHMS; labmda max at pH 7.0 = 348 nm). An affinity column fraction was obtained that decarboxylated CHMS to 2-hydroxymuconic semialdehyde (HMS; lambdamax at pH 7.0 = 375 nm). Thus, conversion of PCA to HMS is accomplished in two steps, 2,3-fission of the PCA ring followed by enzymatic decarboxylation of the ring fission product, forming HMS.  相似文献   

19.
Catabolism of protocatechuate by Bacillus macerans.   总被引:5,自引:2,他引:3       下载免费PDF全文
An aerobic endospore-forming bacterium, tentatively identified as a strain (JJ-lb) of Bacillus macerans, was isolated by enrichment on 4-hydroxybenzoate (4HBA), using as an inoculum soil taken from a 50 degrees C Iadho hot spring. Enzymatic analyses of cells grown on succinate and 4HBA indicated that strain JJ-1b degrades 4HBA by way of the novel protocatechuate (PCA) 2,3-dioxygenase pathway. Purification of the PCA 2,3-dioxygenase by affinity chromatography allowed the first observation of the immediate ring fission product of PCA, namely, 5-carboxy-2-hydroxymuconic semialdehyde (CHMS; labmda max at pH 7.0 = 348 nm). An affinity column fraction was obtained that decarboxylated CHMS to 2-hydroxymuconic semialdehyde (HMS; lambdamax at pH 7.0 = 375 nm). Thus, conversion of PCA to HMS is accomplished in two steps, 2,3-fission of the PCA ring followed by enzymatic decarboxylation of the ring fission product, forming HMS.  相似文献   

20.
The disaccharide trehalose is accumulated as a storage product by spores of Streptomyces griseus. Nongerminating spores used their trehalose reserves slowly when incubated in buffer for several months. In contrast, spores rapidly depleted their trehalose pools during the first hours of germination. Extracts of dormant spores contained a high specific activity of the enzyme trehalase. The level of trehalase remained relatively constant during germination or incubation in buffer. Nongerminating spores of Streptomyces viridochromogenes, Streptomyces antibioticus, and Micromonospora echinospora and nongrowing spherical cells of Arthrobacter crystallopoietes and Nocardia corallina also maintained large amounts of trehalose and active trehalase. These trehalose reserves were depleted during spore germination or outgrowth of spherical Arthrobacter and Nocardia cells into rods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号