首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The structural genes (hupSL) of the membrane-bound NiFe-containing H2-uptake hydrogenase (Hup) of Azotobacter chroococcum were identified by oligonucleotide screening and sequenced. The small subunit gene (hupS) encodes a signal sequence of 34 amino acids followed by a 310-amino-acid, 34156D protein containing 12 cysteine residues. The large subunit gene (hupL) overlaps hupS by one base and codes for a predicted 601-amino-acid, 66433D protein. There are two regions of strong homology with other Ni hydrogenases: a Cys-Thr-Cys-Cys-Ser motif near the N-terminus of HupS and an Asp-Pro-Cys-Leu-Ala-Cys motif near the carboxy-terminus of HupL. Strong overall homology exists between Azotobacter, Bradyrhizobium japonicum and Rhodobacter capsulatus Hup proteins but less exists between the Azotobacter proteins and hydrogenases from Desulfovibrio strains. Mutagenesis of either hupS or hupL genes of A. chroococcum yielded Hup- phenotypes but some of these mutants retained a partial H2-evolving activity. Hybridization experiments at different stages of gene segregation confirmed the multicopy nature of the Azotobacter genome.  相似文献   

3.
The first gene cluster encoding for a membrane bound [NiFe] hydrogenase from a methanotroph, Methylococcus capsulatus (Bath), was cloned and sequenced. The cluster consisted of the structural genes hupS and hupL and accessory genes hupE, hupC and hupD. A DeltahupSL deletion mutant of Mc. capsulatus was constructed by marker exchange mutagenesis. Membrane associated hydrogenase activity disappeared. The membrane associated hydrogenase appeared to have a hydrogen uptake function in vivo.  相似文献   

4.
5.
In Azotobacter chroococcum the hydrogenase structural genes (hupSL) cover about 2.8 kb of a 15-kb region associated with hydrogen-uptake (Hup) activity. Two other genes in this region, hupD and hupE, were located 8.9 kb downstream of hupL and were shown to be essential for hydrogenase activity by insertion mutagenesis. A fragment of DNA beginning 3.4 kb downstream of hupL was able to complement the hupE mutant, supporting earlier evidence for a promoter downstream of hupSL. Hybridization experiments showed that hupD and hupE share some similarity with a region of Alcaligenes eutrophus DNA which is apparently involved in the formation of catalytically active hydrogenase. The hupD gene encodes a 379-amino acid, 41.4-kDa polypeptide while hupE codes for a 341-amino acid, 36.1-kDa product. The predicted amino acid sequences of the hupD and hupE genes are homologous to the Escherichia coli hypD and hypE gene products, respectively. A polar mutation in hupD had no effect on beta-galactosidase activity in a strain also carrying a hupL-lacZ fusion, indicating that hupD and hupE are probably not involved in regulating hydrogenase structural gene expression.  相似文献   

6.
7.
8.
The hupT, hupU, and hupV genes, which are located upstream from the hupSLC and hypF genes in the chromosome of Rhodobacter capsulatus, form the hupTUV operon expressed from the hupT promoter. The hupU and hupV genes, previously thought to belong to a single open reading frame, encode HupU, of 34.5 kDa (332 amino acids), and HupV, of 50.4 kDa (476 amino acids), which are >/= 50% identical to the homologous Bradyrhizobium japonicum HupU and HupV proteins and Rhodobacter sphaeroides HupU1 and HupU2 proteins, respectively; they also have 20 and 29% similarity with the small subunit (HupS) and the large subunit (HupL), respectively, of R. capsulatus [NiFe]hydrogenase. HupU lacks the signal peptide of HupS and HupV lacks the C-terminal sequence of HupL, which are cleaved during hydrogenase processing. Inactivation of hupV by insertional mutagenesis or of hupUV by in-frame deletion led to HupV- and Hup(UV)- mutants derepressed for hydrogenase synthesis, particularly in the presence of oxygen. These mutants were complemented in trans by plasmid-borne hupTUV but not by hupT or by hupUV, except when expressed from the inducible fru promoter. Complementation of the HupV- and Hup(UV)- mutants brought about a decrease in hydrogenase activity up to 10-fold, to the level of the wild-type strain B10, indicating that HupU and HupV participate in negative regulation of hydrogenase expression in concert with HupT, a sensor histidine kinase involved in the repression process. Plasmid-borne gene fusions used to monitor hupTUV expression indicated that the operon is expressed at a low level (50- to 100-fold lower than hupS).  相似文献   

9.
10.
The Escherichia coli beta-galactosidase enzyme was used as a reporter molecule for genetic fusions in Rhodobacter capsulatus. DNA fragments that were from the upstream region of the hydrogenase structural operon hupSLM and contained 5' hupS sequences were fused in frame to a promoterless lacZ gene, yielding fusion proteins comprising the putative signal sequence and the first 22 amino acids of the HupS protein joined to the eight amino acid of beta-galactosidase. We demonstrate the usefulness of the hupS::lacZ fusion in monitoring regulation of hydrogenase gene expression. The activities of plasmid-determined beta-galactosidase and chromosome-encoded hydrogenase changed in parallel in response to various growth conditions (light or dark, aerobiosis or anaerobiosis, and presence or absence of ammonia or of H2), showing that changes in hydrogenase activity were due to changes in enzyme synthesis. Molecular hydrogen stimulated hydrogenase synthesis in dark, aerobic cultures and in illuminated, anaerobic cultures. Analysis of hupS::lacZ expression in various mutants indicated that neither the hydrogenase structural genes nor NifR4 (sigma 54) was essential for hydrogen regulation of hydrogenase synthesis.  相似文献   

11.
In this work, we report the cloning and sequencing of the Azorhizobium caulinodans ORS571 hydrogenase gene cluster. Sequence analysis revealed the presence of 20 open reading frames hupTUVhypFhupSLCDFGHJK hypABhupRhypCDEhupE. The physical and genetic organization of A. caulinodans ORS571 hydrogenase system suggests a close relatedness to that of Rhodobacter capsulatus. In contrast to the latter species, a gene homologous to Rhizobium leguminosarum hupE was identified downstream of the hyp operon. A hupSL mutation drastically reduced the high levels of hydrogenase activity induced by the A. caulinodans ORS571 wild-type strain in symbiosis with Sesbania rostrata plants. However, no significant effects on dry weight and nitrogen content of S. rostrata plants inoculated with the hupSL mutant were observed in plant growth experiments.  相似文献   

12.
13.
14.
The photosynthetic bacterium Rhodobacter capsulatus synthesises a membrane-bound [NiFe] hydrogenase encoded by the H2 uptake hydrogenase (hup)SLC structural operon. The hupS and hupL genes encode the small and large subunits of hydrogenase, respectively; hupC encodes a membrane electron carrier protein which may be considered as the third subunit of the uptake hydrogenase. In Wolinella succinogenes, the hydC gene, homologous to hupC, has been shown to encode a low potential cytochrome b which mediates electron transfer from H2 to the quinone pool of the bacterial membrane. In whole cells of R. capsulatus or intact membrane preparation of the wild type strain B10, methylene blue but not benzyl viologen can be used as acceptor of the electrons donated by H2 to hydrogenase; on the other hand, membranes of B10 treated with Triton X-100 or whole cells of a HupC- mutant exhibit both benzyl viologen and methylene blue reductase activities. We report the effect of diphenylene iodonium (Ph2I), a known inhibitor of mitochondrial complex I and of various monooxygenases on R. capsulatus hydrogenase activity. With H2 as electron donor, Ph2I inhibited partially the methylene blue reductase activity in an uncompetitive manner, and totally benzyl viologen reductase activity in a competitive manner. Furthermore, with benzyl viologen as electron acceptor, Ph2I increased dramatically the observed lagtime for dye reduction. These results suggest that two different sites exist on the electron donor side of the membrane-bound [NiFe] hydrogenase of R. capsulatus, both located on the small subunit. A low redox potential site which reduces benzyl viologen, binds Ph2I and could be located on the distal [Fe4S4] cluster. A higher redox potential site which can reduce methylene blue in vitro could be connected to the high potential [Fe3S4] cluster and freely accessible from the periplasm.  相似文献   

15.
16.
17.
18.
In order to determine the effects of the deletion of hydrogenase genes on nitrogenase-based photobiological H(2) productivity by heterocystous N(2)-fixing cyanobacteria, we have constructed three hydrogenase mutants from Anabaena sp. PCC 7120: hupL(-) (deficient in the uptake hydrogenase), hoxH(-) (deficient in the bidirectional hydrogenase), and hupL(-)/ hoxH(-) (deficient in both genes). The hupL(-) mutant produced H(2) at a rate four to seven times that of the wild-type under optimal conditions. The hoxH(-) mutant produced significantly lower amounts of H(2) and had slightly lower nitrogenase activity than wild-type. H(2) production by the hupL(-)/ hoxH(-) mutant was slightly lower than, but almost equal to, that of the hupL(-) mutant. The efficiency of light energy conversion to H(2) by the hupL(-) mutant at its highest H(2) production stage was 1.2% at an actinic visible light intensity of 10 W/m(2) (PAR) under argon atmosphere. These results indicate that deletion of the hupL gene could be employed as a source for further improvement of H(2) production in a nitrogenase-based photobiological H(2) production system.  相似文献   

19.
Deletion of a 2.9-kb chromosomal EcoRI fragment of DNA located 2.2 kb downstream from the end of the hydrogenase structural genes resulted in the complete loss of hydrogenase activity. The normal 65- and 35-kDa hydrogenase subunits were absent in the deletion mutants. Instead, two peptides of 66.5 and 41 kDa were identified in the mutants by use of anti-hydrogenase subunit-specific antibody. A hydrogenase structural gene mutant did not synthesize either the normal hydrogenase subunits or the larger peptides. Hydrogenase activity in the deletion mutants was complemented to near wild-type levels by plasmid pCF1, containing a 6.5-kb BglII fragment, and the 65- and 35-kDa hydrogenase subunits were also recovered in the mutants containing pCF1.  相似文献   

20.
Diversity and evolution of hydrogenase systems in rhizobia   总被引:1,自引:0,他引:1  
Uptake hydrogenases allow rhizobia to recycle the hydrogen generated in the nitrogen fixation process within the legume nodule. Hydrogenase (hup) systems in Bradyrhizobium japonicum and Rhizobium leguminosarum bv. viciae show highly conserved sequence and gene organization, but important differences exist in regulation and in the presence of specific genes. We have undertaken the characterization of hup gene clusters from Bradyrhizobium sp. (Lupinus), Bradyrhizobium sp. (Vigna), and Rhizobium tropici and Azorhizobium caulinodans strains with the aim of defining the extent of diversity in hup gene composition and regulation in endosymbiotic bacteria. Genomic DNA hybridizations using hupS, hupE, hupUV, hypB, and hoxA probes showed a diversity of intraspecific hup profiles within Bradyrhizobium sp. (Lupinus) and Bradyrhizobium sp. (Vigna) strains and homogeneous intraspecific patterns within R. tropici and A. caulinodans strains. The analysis also revealed differences regarding the possession of hydrogenase regulatory genes. Phylogenetic analyses using partial sequences of hupS and hupL clustered R. leguminosarum and R. tropici hup sequences together with those from B. japonicum and Bradyrhizobium sp. (Lupinus) strains, suggesting a common origin. In contrast, Bradyrhizobium sp. (Vigna) hup sequences diverged from the rest of rhizobial sequences, which might indicate that those organisms have evolved independently and possibly have acquired the sequences by horizontal transfer from an unidentified source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号