首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial sepsis is frequently accompanied by increased blood concentration of lactic acid, which traditionally is attributed to poor tissue perfusion, hypoxia and anaerobic glycolysis. Therapy aimed at improving oxygen delivery to tissues often does not correct the hyperlactatemia, suggesting that high blood lactate in sepsis is not due to hypoxia. Various tissues, including skeletal muscle, demonstrate increased lactate production under well-oxygenated conditions when the activity of the Na+-K+ ATPase is stimulated. Although both muscle Na+-K+ ATPase activity and muscle plasma membrane content of Na+, K+-ATPase subunits are increased in sepsis, no studies in vivo have demonstrated correlation between lactate production and changes in intracellular Na+ and K+ resulting from increased Na+-K+ pump activity in sepsis. Plasma concentrations of lactate and epinephrine, a known stimulator of the Na+-K+ pump, were increased in rats made septic by E. coli injection. Muscle lactate content was significantly increased in septic rats, although muscle ATP and phosphocreatine remained normal, suggesting oxygen delivery remained adequate for mitochondrial energy metabolism. In septic rats, muscle intracellular ratio of Na+:K+ was significantly reduced, indicating increased Na+-K+ pump activity. These data thus demonstrate that increased muscle lactate during sepsis correlates with evidence of elevated muscle Na+-K+ ATPase activity, but not with evidence of impaired oxidative metabolism. This study also further supports a role for epinephrine in this process.  相似文献   

2.
The interrelationships among plasma renin activity (PRA, ng AI/ml plasma/hr), aldosterone concentration (ng%), and renal Na+-K+-ATPase activity (mumole PO4/mg protein/hr) were studied in 9 weanling normotensive spontaneously hypertensive rats (SHR), 9 adult hypertensive SHR, and 9 weanling and 9 adult normotensive Wistar-Kyoto rats (WKY). All groups were placed on a normal (0.4% sodium) diet. PRA and plasma aldosterone, measured in samples drawn from the ether-anesthetized rat, were higher in weanling SHR (15.2 +/- 2.0, 37 +/- 4.2) than in WKY. PRA measured in samples collected from a separate group of unanesthetized weanling SHR was also greater than in age-matched WKY. In adult SHR, PRA (6.1 +/- 0.9) and plasma aldosterone (20.0 +/- 2.7) were decreased. During the weanling period Na+-K+-ATPase activity in SHR was not only greater than in age-matched WKY but was also increased compared to adult normotensive and hypertensive rats (137 +/- 9 weanling SHR, 89 +/- 7 weanling WKY, 73 +/- 11 adult SHR, 84 +/- 17 adult WKY). Thus, during the weanling period the renin-angiotensin-aldosterone (R-A-A) system and renal Na+-K+-ATPase activity are activated in SHR. The elevation of Na+-K+-ATPase activity may be due to increased aldosterone levels. It was noted, however, that plasma aldosterone was similar in adult WKY and weanling SHR, while Na+-K+-ATPase activity was higher in SHR. These findings involving R-A-A and renal Na+-K+-ATPase activity prior to the elevation of blood pressure suggest that the kidneys may play a role in the initiation of hypertension in SHR.  相似文献   

3.
Using ouabain sensitive 86Rb uptake by the vessel wall, we previously showed that sodium-potassium pump activity is decreased in the arteries and veins, and that the sodium-potassium pump inhibitor (SPI) is increased in the plasma of dogs with one-kidney, one wrap (1-K, 1W) hypertension, a low renin model of hypertension. We also showed in rats with a similar type of hypertension that the membrane potential of vascular smooth muscle cells in arteries is decreased, and that this decrease can be reproduced in arterial cells in arteries from normal rats by applying plasma from the hypertensive animals. One endogenous SPI in human plasma has been reported to be ouabain or its isomer. In this study, we used a newly available Dupont ouabain enzyme immunoassay kit to examine plasma and kidneys for SPI in dogs with 1-K, 1W hypertension. We also examined 1) the inhibiting activity of plasma of Na+, K(+)-ATPase obtained from normal kidneys, and 2) the Na+, K(+)-ATPase activity of the kidneys from these hypertensive animals. 1-K, 1W hypertension was produced in dogs by wrapping the left kidney in a silk bag and removing the right kidney. The removed kidney was kept at -70 degrees C till assayed. After 4 weeks of hypertension, the remaining kidney was removed and stored at -70 degrees C till assayed. Blood samples were drawn before and at weeks 3 and 4 of hypertension. Plasma levels of "ouabain" and Na+, K(+)-ATPase inhibitory activity were increased at weeks 3 and 4 of hypertension, compared to pre-hypertension levels. Renal tissue "ouabain" levels were also increased at week 4 of hypertension. However, renal Na+, K(+)-ATPase activity was unchanged. These findings, using two different assays, confirm our 1980 conclusion that SPI is elevated in the plasma of dogs with 1-K, 1W hypertension. The absence of renal Na+, K(+)-ATPase inhibition, despite increased plasma and renal SPI in these animals, may have important implications for the development of this type of hypertension.  相似文献   

4.
The effect of TNF-alpha on the renal Na+-K+ pump and the Na+-K+2Cl- cotransporter was investigated in the rat. Animals were injected with the cytokine, and 4h later, a homogenate from the cortical and medullary tissues was prepared and used to assay the activity of the Na+-K+ ATPase and the protein expression of the pump and symporter. TNF-alpha reduced the activity and expression of the pump in both cortex and medulla, and its effect disappeared when animals were pre-treated with indomethacin, suggesting that TNF-alpha acts via PGE2. Higher levels of PGE2 were detected by enzyme immunoassay, in kidney tissues isolated from rats treated with PGE2, thus confirming this hypothesis. The cytokine also down-regulated the Na+-K+2Cl- cotransporter but this effect was not abrogated by indomethacin. PGE2, injected into animals, exerted a dose-dependent effect. Low doses did not have any effect on the two transporters in the cortex while high doses inhibited and down-regulated the pump and up-regulated the cotransporter. In the medulla low doses increased the activity and expression of the pump but down-regulated the cotransporter while high doses exerted an exactly opposite effect on the two transporters. It was concluded that the effect of TNF-alpha on the pump is mediated via PGE2 which is released at relatively high doses. The effect of the cytokine on the cotransporter is, however, independent of PGE2.  相似文献   

5.
We have recently concentrated our efforts on bioassay of plasma supernatant from animals with experimental low-renin hypertension (one-kidney, one-wrapped in dogs, and one-kidney, one-clip, and reduced renal mass in rats) for sodium-potassium pump inhibiting activity. We have observed changes compatible with inhibitory activity by using three different in vitro bioassays: 1) ouabain-sensitive 86Rb uptake by the normal rat tail artery, 2) short-circuit current in the toad bladder, and 3) membrane potential in the rat tail artery. We have also generated evidence suggesting that the humoral pump inhibitor(s) comes from or is influenced by the anteroventral third ventricle area of the brain and that it acts on the vascular smooth muscle cell at least in part by depolarizing the membrane. These findings are compatible with our 1976 hypothesis in which we proposed that in volume-expanded hypertension there is a circulating agent that suppresses cardiovascular membrane Na+,K+-ATPase, which results in reduced activity of the Na+-K+ pump and hence increased contractility of heart, arteries, and veins and that in blood vessels the increased contractility may be secondary to depolarization. We attempt to relate these findings to those in the literature on monovalent ion transport in blood cells of hypertensive subjects.  相似文献   

6.
Distinct changes of membrane lipid content could contribute to the abnormalities of ion transport that take part in the development of salt hypertension in Dahl rats. The relationships between lipid content and particular ion transport systems were studied in red blood cells (RBC) of Dahl rats kept on low- and high-salt diets for 5 weeks since weaning. Dahl salt-sensitive (SS/Jr) rats on high-salt diet had increased blood pressure, levels of plasma triacylglycerols and total plasma cholesterol compared to salt-resistant (SR/Jr) rats. Furthermore, RBC of SS/Jr rats differed from SR/Jr ones by increased content of total membrane phospholipids, but membrane cholesterol was not changed significantly. SS/Jr rats had higher RBC intracellular Na+ (Na(i)+) content and enhanced bumetanide-sensitive Rb+ uptake. RBC membrane content of cholesterol and phospholipids correlated positively with RBC Na(i)+ content, with the activity of Na+-K+ pump and Na+-K+-2Cl- cotransport and also with Rb+ leak. The content of phosphatidylserines plus phosphatidylinositols was positively associated with RBC Na(i)+ content, with the activity of Na+-K+ pump and Na+-K+-2Cl- cotransport and with Rb+ leak. The content of sphingomyelins was positively related to Na+-K+-2Cl- cotransport activity and negatively to ouabain-sensitive Rb+-K+ exchange. We can conclude that observed relationships between ion transport and the membrane content of cholesterol and/or sphingomyelins, which are known to regulate membrane fluidity, might participate in the pathogenesis of salt hypertension in Dahl rats.  相似文献   

7.
Despite the fact that numerous studies have been published regarding the possible presence in plasma of an endogenous Na-K pump inhibitor with a digitalis-like structure in essential hypertension, very little is known about this factor in heart disease in general, and in situations characterized by low cardiac output. We measured the ability of plasma obtained from the femoral vein to inhibit a human renal Na(+)-K+ ATPase before and immediately after percutaneous transluminal coronary angioplasty (PTCA) in 6 patients suffering from angina pectoris and severe coronary stenosis. Intraerythrocyte sodium and potassium concentrations were also measured simultaneously. Na(+)-K+ ATPase inhibition proved significantly greater after angioplasty as compared to basal activity (percentage inhibition: 31.5 +/- 7.8 vs 16.1 +/- 12.2). No significant changes in intraerythrocyte sodium and potassium were detected. Though we are not in a position to define the mechanism underlying the increase in the digitalis-like factor, a plausible hypothesis may be that the reduction in cardiac output during PTCA by raising cardiac pressures may stimulate the production of a factor of compensatory inotropic significance.  相似文献   

8.
Atrial cardiocytes contain specific atrial granules ( SAGs ) which are the storage site of atrial natriuretic factor (ANF). The purpose of the present study was to determine whether ANF produces natriuresis by inhibiting Na+-K+ pump activity and whether this factor is similar to the humoral sodium transport inhibiting factor ( HSTIF ) previously demonstrated in acutely volume expanded animals and humans as well as in experimental and human essential hypertension. Our results indicate that, in contrast to the HSTIF , ANF does not inhibit membrane Na+,K+-ATPase, vascular smooth muscle cell Na+-K+ pump activity, or sodium transport in the toad bladder. Intravenous infusion of ANF in the bilaterally nephrectomized, hexamethonium-treated rat produces only a small transient pressor response, probably due to potentiation of endogenous norepinephrine. These findings strongly suggest that the ANF is not the same as the HSTIF detected on acute volume expansion and in some forms of hypertension. They also suggest that the diuretic and natriuretic effects of ANF are due to mechanism(s) other than blood pressure elevation and inhibition of Na+-K+ pump activity.  相似文献   

9.
Prostacyclin (PGI2) generation of cultured human vascular endothelial cells (VEC) was observed coincidentally with the increase of 45Ca net influx. Ca ionophore A23187 enhanced not only PGI2 generation and 45Ca net influx but also 45Ca efflux. PGI2 generation was completely abolished by the pretreatment with Ca++ immobilizer, TMB-8. A Na+-K+ ATPase inhibitor, ouabain increased 45Ca net influx, but decreased 45Ca efflux, and enhanced PGI2 generation. These observation indicate that PGI2 generation of VEC may be regulated by not only Ca++ but also Na+, and it was suggested that enhanced PGI2 generation by ouabain might be derived from the increased cytosolic Ca++concentration by the decreased Ca++ efflux, and it was considered to be originated from the suppression of Na+-Ca++ exchange systems by the increased intracellular Na+ concentration via inhibition of Na+-K+ ATPase activity by ouabain. Enhancement of PGI2 generation of VEC by the increased ouabain like substances (OLS) in hypertension is suspected to be beneficial on the maintenance of vascular homeostasis.  相似文献   

10.
Nitric oxide (NO) plays an important role in the control of numerous vascular functions including basal Na+-K+-ATPase activity in arterial tissue. Hyperglycemia inhibits Na+-K+-ATPase activity in rabbit aorta, in part, through diminished bioactivity of NO. The precise mechanism(s) for such observations, however, are not yet clear. The purpose of this study was to examine the role of superoxide in modulating NO-mediated control of Na+-K+-ATPase in response to hyperglycemia. Rabbit aorta incubated with hyperglycemic glucose concentrations (44 mM) demonstrated a 50% reduction in Na+-K+-ATPase activity that was abrogated by superoxide dismutase. Hyperglycemia also produced a 50% increase in steady-state vascular superoxide measured by lucigenin-enhanced chemiluminescence that was closely associated with reduced Na+-K+-ATPase activity. Specifically, the hyperglycemia-induced increase in vascular superoxide was endothelium dependent, inhibited by L-arginine, and stimulated by N(omega)-nitro-L-arginine. Aldose reductase inhibition with zopolrestat also inhibited the hyperglycemia-induced increase in vascular superoxide. In each manipulation of vascular superoxide, a reciprocal change in Na+-K+-ATPase activity was observed. Finally, a commercially available preparation of Na+-K+-ATPase was inhibited by pyrogallol, a superoxide generator. These data suggest that hyperglycemia induces an increase in endothelial superoxide that inhibits the stimulatory effect of NO on vascular Na+-K+-ATPase activity.  相似文献   

11.
In this study, cell permeable diacylglycerols, sn-1,2-dioctanoglycerol (DiC8), and sn-1-oleoyl-2-acetylglycerol (OAG) were found to downregulate the activity of Na(+)-K+ pump in Xenopus laevis oocytes. Both DiC8 and OAG decreased the binding of [3H]ouabain to intact oocytes while phorbol esters did not appreciably influence the same. These diacylglycerols inhibited the amiloride-sensitive 22Na+ influx and ouabain-sensitive 86Rb+ uptake in the oocytes. Furthermore, DiC8 prevented the 22Na+ efflux from the oocytes preloaded with 22Na+. Addition of H-7 to DiC8- and OAG-treated oocytes stimulated the pump activity curtailed by the two latters. The impairment of Na(+)-K+ pump activity by diacylglycerols suggests that protein kinase C activators may stimulate endocytosis of membrane-coupled Na(+)-K+ ATPase.  相似文献   

12.
Evidence is provided that regulation of the Na(+)-K+ pump activity in rat peritoneal mast cells occurs mainly through stimulation of the pump from inside the plasma membrane by sodium. It is demonstrated that there is a large reserve capacity for the exchange of intracellular sodium with extracellular potassium in these cells. The maximal pump activity was estimated to be 3230 pmol/10(6) cells per min and Km for extracellular potassium was 1.5 mM.  相似文献   

13.
The genetic and environmental heterogeneity of essential hypertension is responsible for the individual variability of antihypertensive therapy. An understanding of the molecular mechanisms underlying hypertension and related organ complications is a key aspect for developing new, effective, and safe antihypertensive agents able to cure the cause of the disease. Two mechanisms, among others, are involved in determining the abnormalities of tubular Na+ reabsorption observed in essential hypertension: the polymorphism of the cytoskeletal protein alpha-adducin and the increased circulating levels of endogenous ouabain (EO). Both lead to increased activity and expression of the renal Na+-K+ pump, the driving force for tubular Na transport. Morphological and functional vascular alterations have also been associated with EO. Rostafuroxin (PST 2238) is a new oral antihypertensive agent able to selectively antagonize EO, adducin pressor, and molecular effects. It is endowed with high potency and efficacy in reducing blood pressure and preventing organ hypertrophy in animal models representative of both adducin and EO mechanisms. At molecular level, in the kidney, Rostafuroxin antagonizes EO triggering of the Src-epidermal growth factor receptor (EGFr)-dependent signaling pathway leading to renal Na+-K+ pump, and ERK tyrosine phosphorylation and activation. In the vasculature, it normalizes the increased myogenic tone caused by nanomolar ouabain. A very high safety ratio and an absence of interaction with other mechanisms involved in blood pressure regulation, together with initial evidence of high tolerability and efficacy in hypertensive patients, indicate Rostafuroxin as the first example of a new class of antihypertensive agents designed to antagonize adducin and EO-hypertensive mechanisms.  相似文献   

14.
The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.  相似文献   

15.
The preceding paper (Ciapa et al., 1984) provided biochemical and kinetic characterization of the Na+-K+ exchange in Paracentrotus lividus eggs. The present work is a study of the ionic events involved in the stimulation of the Na+-K+ transporter after fertilization. Fertilization in low Na+-external medium containing amiloride (0.1 mM) suppresses the stimulation of the net efflux of H+ and 86Rb uptake. Activation of eggs with the ionophore A23187 leads to stimulation of both Na+-H+ exchange and ouabain-sensitive 86Rb influx. When eggs were activated with A23187 in artificial seawater, 86Rb uptake and 24Na influx showed similar saturable kinetics with respect to the external Na+. A23187 treatment of eggs in Na+-free artificial seawater did not stimulate the Na+-K+ exchange until 10 mEq Na+ was added. Activation of eggs by NH4Cl (5 mM) stimulated 86Rb influx and Na+ exit; both fluxes were ouabain sensitive. Monensin increased cell Na+ of unfertilized eggs without any significant increase in intracellular pH: a condition in which 86Rb influx was not markedly stimulated. Addition of 10 mEq Na+ to unfertilized eggs in Na+-free artificial seawater stimulated 86Rb uptake but to a lower extent that did 10 mEq Na+ plus sperm. It is concluded that (1) the stimulation of the Na+-K+ pump at fertilization has an absolute requirement for the Na+-H+ exchange; (2) the alkalinization of eggs resulting from the acid efflux is a prerequisite for the enhancement of the Na+-K+ pump; (3) the amount of Na+ entering eggs at fertilization determines the intensity of the Na+-K+ exchange; (4) early events of fertilization such as exocytosis and calcium release which may be involved in the stimulation of the Na+-K+ pump must necessarily be coupled to cell alkalinization.  相似文献   

16.
TNF-alpha is believed to play a pivotal role in the pathogenesis of inflammatory bowel diseases which have diarrhea as one of their symptoms. This work studies the effect of the cytokine on electrolyte and water movements in the rat distal colon using an intestinal perfusion technique and attempts to determine its underlying mechanism of action. TNF-alpha inhibited net water and chloride absorption, down-regulated in both surface and crypt colonocytes the Na+-K+-2Cl- cotransporter, and reduced the protein expression and activity of the Na+-K+ ATPase. Indomethacin up-regulated the pump and the cotransporter in surface cells but not in crypt cells, and in its presence, TNF-alpha could not exert its effect, suggesting an involvement of PGE2 in the cytokine action. The effect of TNF-alpha on the pump and symporter was studied also in cultured Caco-2 cells in isolation of the effect of other cells and tissues, to test whether the cytokine acts directly on intestinal cells. In these cells, TNF-alpha and PGE2 had a similar effect on the pump expression and activity as that observed in crypt cells but were without any effect on the Na+-K+-2Cl- cotransporter. It was concluded that the effect of the cytokine on colonocytes is mediated via PGE2. By inhibiting the Na+-K+ ATPase, it reduces the Na+ gradient needed for NaCl absorption, and by down-regulating the expression of the Na+-K+-2Cl- symporter, it reduces basolateral Cl- entry and luminal Cl- secretion. The inhibitory effect on absorption is more significant than the inhibitory effect on secretion resulting in a decrease in net electrolyte uptake and consequently in more water retention in the lumen.  相似文献   

17.
Changes in the number of Na+-K+-ATPase alpha-subunits, Na+-K+-ATPase activity and glycogen content of the crucian carp (Carassius carassius) brain were examined to elucidate relative roles of energy demand and supply in adaptation to seasonal anoxia. Fish were collected monthly around the year from the wild for immediate laboratory assays. Equilibrium dissociation constant and Hill coefficient of [3H]ouabain binding to brain homogenates were 12.87+/-2.86 nM and -1.18+/-0.07 in June and 11.93+/-2.81 nM and -1.17+/-0.06 in February (P>0.05), respectively, suggesting little changes in Na+-K+-ATPase alpha-subunit composition of the brain between summer and winter. The number of [3H]ouabain binding sites and Na-K-ATPase activity varied seasonally (P<0.001) but did not show clear connection to seasonal changes in oxygen content of the fish habitat. Six weeks' exposure of fish to anoxia in the laboratory did not affect Na+-K+-ATPase activity (P>0.05) confirming the anoxia resistance of the carp brain Na pump. Although anoxia did not suppress the Na pump, direct Q10 effect on Na+-K+-ATPase at low temperatures resulted in 10 times lower catalytic activity in winter than in summer. Brain glycogen content showed clear seasonal cycling with the peak value of 203.7+/-16.1 microM/g in February and a 15 times lower minimum (12.9+/-1.2) in July. In winter glycogen stores are 15 times larger and ATP requirements of Na+-K+-ATPase at least 10 times less than in summer. Accordingly, brain glycogen stores are sufficient to fuel brain function for about 8 min in summer and 16 h in winter, meaning about 150-fold extension of brain anoxia tolerance by seasonal changes in energy supply-demand ratio.  相似文献   

18.
Kreydiyyeh SI 《Life sciences》2000,67(11):1275-1283
The effect of epinephrine on the activity of the Na+-K+ ATPase was studied in isolated rat jejunal cells. The activity of the pump was assessed by measuring the ouabain inhibitable K+ accumulation by the enterocytes using 86Rb as a tracer. Epinephrine stimulated significantly the Na+-K+ ATPase in crypt cells but not in villus cells. This effect was still apparent in presence of propranolol and prazocin but disappeared in presence of yohimbine. Amiloride did not affect the epinephrine-induced stimulation. Calcium channel blockers and dibutyryl cAMP enhanced the activity of the pump, and exerted respectively overlapping and additive effects with epinephrine, when added simultaneously. The calcium ionophore A23187 inhibited the basal activity of the ATPase and the stimulatory effect of epinephrine disappeared in its presence. These results suggest that epinephrine stimulates the Na+-K+ ATPase in jejunal crypt cells by activating alpha2 receptors and decreasing intracellular calcium, and not by altering cAMP levels.  相似文献   

19.
Electrogenic sodium pump (Na(+)-K(+)-ATPase) maintains intracellular ionic concentration and controls membrane potential, Therefore, we analyzed the modulation of Na(+)-K(+)-ATPase activity by the endothelium, cyclic AMP-protein kinase A (cAMP-PKA), protein kinase C (PKC) and nitric oxide-cyclic GMP-protein kinase G (NO-cGMP-PKG) in isolated rat thoracic aortas. The potassium-induced relaxation in arteries incubated in K(+)-free solution was used as a functional indicator of Na(+)-K(+)-ATPase activity for ounbain abolished the potassium-induced relaxation in rat aortas. Potasslium-induced relaxations after removal of the endothelium were moderately blunted in these preparations. In the presence of N(omega)-nitro-L-arginine methyl ester, but not indomethacin, the potassium-induced relaxation was also inhibited. Similar inhibitions of potassium-induced relaxations were observed in aortas treated with 8-bromo-cAMP and phorbol 12-myristate 13-acetate (PMA). Although inhibitors of PKA and PKC individually did not affect the potassium-induced relaxation, the combination of both inhibitors significantly potentiated that relaxation. In contrast to 8-bromo, cAMP and PMA, 8-bromo-cGMP enhanced the potassium-induced relaxation whereas 1H-[1,2,4}oxadiazolo[4,3-a]quinoxalin-1-one attenuated that relaxation. These results suggested that endothelium is a functional stimulator of the Na(+)-K(+)-ATPase activity. In addition, cAMP-PKA and PKC pathways inhibited the sodium pump while the NO-cGMP pathway stimulated this pump in the vascular bed.  相似文献   

20.
During prolonged exercise, changes in the ionic milieu in and surrounding the muscle fibers may lead to fatigue or damage of the muscle and thereby impair performance. In 10 male subjects, we investigated the effects of 100 km running on muscle and plasma electrolyte contents, muscle Na+ -K+ pump content, and plasma concentrations of creatine kinase (CK) and lactate dehydrogenase (LDH). After completion of a 100-km run, significant increases were found in plasma K+ (from 4.0 +/- 0.1 to 5.5 +/- 0.2 mM, P < 0.001), muscle Na+ -K+ pump content (from 334 +/- 11 to 378 +/- 17 pmol/g, P < 0.05), and total muscle Ca2+ content (from 0.84 +/- 0.03 to 1.02 +/- 0.04 micromol/g, P < 0.001). There was also a large increase in the plasma levels of the muscle-specific enzymes CK and LDH, which reached peak values at the end of the run and lasted several days after the run, indicating that a significant degree of muscle membrane leakage was present. The simultaneous occurrence of raised cellular Ca2+ content and muscle membrane leakage supports the theory that Ca2+ plays a role in the initiation of degenerative processes in muscles after severe exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号