首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Bicarbonate in the culture medium is essential for DNA synthesis of primary cultured rat hepatocytes stimulated by epidermal growth factor (EGF). When primary cultured hepatocytes in supplemented Leibovitz L15 medium were placed in a 100% air incubator, no increase in DNA synthesis was observed even after stimulation by EGF. However, when these cells were cultured with NaHCO3 and EGF and placed in a 5% CO2:95% air incubator, a stimulus of DNA synthesis more than 10-fold greater than in cultures in air only was seen, and many mitotic figures could be identified. Furthermore, NaHCO3 added to supplemented DMEM/F12 medium enhanced the DNA synthesis of primary cultured rat hepatocytes in this medium. The ideal pH of the medium for DNA synthesis of cultured hepatocytes was in the range of 7.6 to 8.0. A dose response of NaHCO3 in several media showed that DNA synthesis of the cells increased as the concentration of NaHCO3 increased and that 25 to 30 mM NaHCO3 in the medium was optimal for the replication of DNA by primary cultured rat hepatocytes. The investigations described in this study were supported in part by grants CA-07175, CA-22484, and CA-45700 from the National Cancer Institute, Bethesda, MD.  相似文献   

2.
This report presents evidence demonstrating that chick embryo chondrocyte cultures release into the culture medium a factor(s) which itself can act on chondrocytes to promote their own differentiation. Conditioned medium (CM) stimulates the synthesis of both sulfated mucopolysaccharides, as shown by increased incorporation of 35SO4 or glucose-14C into hyaluronidase-sensitive material, and collagen. However, protein synthesis, DNA synthesis, and cell number are not affected. While the identity of the factor is not yet known, it is nondialyzable, trypsin-and heat-sensitive. The factor is evidently a specialized product of chondrocytes, because it is not made by unexpressed chondrocytes or differentiated pigmented retina cultures. CM works rapidly on test cultures and has a significant effect on 35SO4 incorporation after 2 hr of treatment. In addition, the effect is relatively stable and is not reversed when CM is replaced with fresh medium. The results are significant in that they demonstrate that chondrocytes produce a factor that promotes their own differentiation, as defined in terms of the synthesis of two distinct specialized products.  相似文献   

3.
The induction of DNA synthesis in Datura innoxia Mill. cell cultures was determined by flow cytometry. A large fraction of the total population of cells traversed the cell cycle in synchrony when exposed to fresh medium. One hour after transfer to fresh medium, 37% of the cells were found in the process of DNA synthesis. After 24 hours of culture, 66% of the cells had accumulated in G2 phase, and underwent cell division simultaneously. Only 10% of the cells remained in G0 or G1. Transfer of cells into a medium, 80% (v/v) of which was conditioned by a sister culture for 2 days, was adequate to inhibit this simultaneous traverse of the cell cycle. A large proportion of dividing cells could be arrested at the G0 + G1/S boundary by exposure to 10 millimolar hydroxyurea (HU) for 12 to 24 hours. Inhibition of DNA synthesis by HU was reversible, and when resuspended into fresh culture medium synchronized cells resumed the cell cycle. Consequently, a large fraction of the cell population could be obtained in the G2 phase. However, reversal of G1 arrested cells was not complete and a fraction of cells did not initiate DNA synthesis. Seventy-four percent of the cells simultaneously reached 4C DNA content whereas the frequency of cells which remained in G0 + G1 phase was approximately 17%. Incorporation of radioactive precursors into DNA and proteins identified a population of nondividing cells which represents the fraction of cells in G0. The frequency of cells entering G0 was 11% at each generation. Our results indicate that almost 100% of the population of dividing cells synchronously traversed the cell cycle following suspension in fresh medium.  相似文献   

4.
Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.  相似文献   

5.
Phosphatidylinositol (PI) synthesis and its role in controlling the cell cycle has been investigated using fibroblasts and liver cells in culture. PI synthesis as measured by incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material during 0–60 min after serum or growth factor stimulation of serum-starved cells is increased in primary fetal rat liver cells, rat embryo fibroblasts, and 3T3 mouse cells. In contrast, growth stimulation of 3T3 cells and hepatocytes rendered quiescent in G1 by amino acid starvation is not accompanied by increased incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material. This suggests that those cells might be arrested at a different point in G1 than cells arrested by serum depletion. Inhibition of PI synthesis by δ-hexachlorocyclohexane (HCH), a steric analog of myo-inositol, during early times (e.g., 0–4 hr) after growth stimulation, reversibly blocks initiation of DNA synthesis in 3T3 cells. The results support the idea that increased PI synthesis in response to growth stimulation in the cell types studied here is a prerequisite for progression through G1 and subsequent entry into S phase.  相似文献   

6.
Suspension cultures of Chinese hamster cells (line CHO), which had stopped dividing and were arrested in G1 following growth to high cell concentrations in F-10 medium, could be induced to reinitiate DNA synthesis and to divide in synchrony upon addition of the appropriate amounts of isoleucine and glutamine. Both amino acids were required to initiate resumption of cell-cycle traverse. Deficiencies in other amino acids contained in F-10 medium did not result in accumulation of cells in G1, indicating a specific action produced by limiting quantities of isoleucine and glutamine. In the presence of sufficient glutamine, approximately 2 x 10-6 M isoleucine was required for all cells to initiate DNA synthesis in a population initially containing 1.5 x 105 cells/ml. Under similar conditions, about 4 x 10-6 M isoleucine was required for all G1-arrested cells to progress through cell division. In contrast, 1 x 10-4 M glutamine was necessary for maximum initiation of DNA synthesis in G1 cells, along with sufficient isoleucine. A technique for rapid production of G1-arrested cells is described in which cells from an exponentially growing population placed in F-10 medium deficient in both isoleucine and glutamine or isoleucine alone accumulated in G1 after 30 hr.  相似文献   

7.
Adult rat hepatocytes aggregated to form floating multicellular spheroids when cultured in Primaria dishes, which have a positively charged surface, in serum-free Williams' medium E (WE) supplemented with insulin and epidermal growth factor (EGF). These hormones were essential for maintenance of the spheroids, whereas the size of the spheroids depended on the inoculum cell density. The spheroids retained in vivo levels of expressions of albumin and glucokinase and synthesized scarcely any DNA even in the presence of insulin and EGF. On transfer to type I collagen-coated dishes, the spheroids gradually disaggregated and the cells formed monolayers, in which the expressions of albumin and glucokinase were suppressed and DNA synthesis and hexokinase activity were increased. DNA synthesis of hepatocytes in monolayer culture was maximal 24 hr after transfer of the spheroids, ~80% of the hepatocyte nuclei were labelled with bromodeoxyuridine during culture for 48 hr, and the mitotic index was ~70% after 60 hr. These results suggest that, in spheroids, hepatocytes remained in the G0 phase, but that when they formed monolayers, they progressed to the G1 phase and proceeded through the cell cycle in the presence of insulin and EGF. This work shows that the cell cycle of hepatocytes in culture can be manipulated by providing conditions for quiescence as spheroids or growth as monolayers and that the shape of hepatocytes is important for regulating their growth and liver-specific functions. © 1993 Wiley-Liss, Inc.  相似文献   

8.
Chick embryo cells which have been kept overnight at pH 6.8 in the absence of serum multiply very slowly. Only a small fraction of cells is in the S period at any given time, and the rate of uptake of 2-deoxy-D-glucose is very low. Upon raising the pH to 7.4 and adding serum (“turn-on”) the uptake of 2-deoxy-D-glucose increases immediately; the rate of DNA synthesis increases after a lag of about 4 hours, and represents an increase in the fraction of cells synthesizing DNA. The uptake of 2-deoxy-D-glucose is rapidly returned to its original low rate at any time by again lowering the pH and removing serum (“turn-off”). The synthesis of DNA in the culture remains constant or continues to rise at a markedly reduced rate following the same treatment. Lowering pH or removing serum independently of each other is less efficient at inhibiting the increase in DNA synthesis than the combined treatment but each accomplishes a similar result. Cultures which have been “turnedoff” during the early stages of the rapid increase in DNA synthesis, resume their prior rate of increase immediately if “turned-on” again within 2.5 hours. If the cultures have been “turned-off” for 5.5 hours before restoring the “turn-on,” there is a 2 hour delay before they resume an increased rate of DNA synthesis. The results indicate that chick embryo cells do not become committed to the initiation of DNA synthesis until shortly before, or at the time of the onset of the S period. Up to 96% of the cells in post-confluent cultures growing in conventional medium become labeled upon continuous, prolonged exposure to 3H-thymidine. Seventy-eight percent of the cells in serum-deprived cultures growing at a very low rate become labeled. These and other considerations suggest that the inhibition of cell multiplication by high population density or serum deprivation is caused by a lengthening of the time cells remain in the prereplicative G1 period rather than by shifting cells into a qualitatively distinct G0 period. There may, however, be a period common to all cells regardless of growth rate, in which cells are not progressing toward the S period. The length of this variable period would then determine the growth rate of a population of cells.  相似文献   

9.
When mouse thymocytes are stimulated with PHA, the proliferative response is very low, unless the culture medium is enriched with interleukin 1 (IL-1)- or interleukin 2 (IL-2)-containing supernatants. Cytofluorometric analyses show, however, that PHA stimulation generates a significant number of cells with increased RNA content (transition from the G0 to G1 phase of the cell cycle). If IL-2 is added to such cultures, the activated cells complete their process of RNA synthesis and then enter the S phase. The use of IL-2-containing culture medium thus permits one to obtain a high correlation between the number of g1 cells and [3H]thymidine incorporation (r = 0.97). Enrichment with IL-1-containing supernatants also results in a statistically significant correlation (r = 0.68), but the regression lines are markedly different for the two interleukins (s = 20.3 for IL-2 and s = 9.2 for IL-1), when analyzed after 48 hr of incubation. These observations suggest that the G1 phase must be divided into two subcompartments, G1a and G1b, the G1a-G1b transition being an IL-2-dependent event. If the number of G1b cells is used to establish correlations with [3H]thymidine incorporation, all values fall on the same regression line, regardless of culture conditions and of the addition of interleukins. It is concluded that IL-2 regulates lymphocyte proliferation at the level of RNA synthesis (G1a-G1b transition) rather than that of DNA synthesis (G1-S transition).  相似文献   

10.
Sixty to eighty per cent of the cells in a culture of human diploid fibroblasts may be stimulated from the state of density dependent inhibition of replication to active DNA synthesis and division. The maximum response is effected by 50% serum within the pH range 7.2–8.0. The proportion of cells responding depends on the concentration of serum protein in the medium which may be effectively substituted by crystalling serum albumin. There is a differential sensitivity to the stimulus of cells in the densely packed centers of whorls and in the less dense areas between the whorls. The cell response is parasynchronous and the median durations of the various phases of the cell cycle are: G1I 6 β ?æ® ¿ ∞ 8 hours, G2 = 6 hours and doubling time = 30 hours. The stimulatory effect of fresh medium is lost during contact with dense cultures so that it has only 50% of its initial capacity after 14 hours. It can be restored by dialysis against serum-free medium. The stimulus must be applied for at least ten hours to be effective in inducing DNA synthesis. During the latter half of ten hour induction period subsequent DNA synthesis becomes exquisitely sensitive to actinomycin D. After this time an increasing number of cells become irreversibly committed to replicate. The data are interpreted to indicate that during contact with serum proteins (including albumin) changes in the cell surface, if continued long enough, trigger a mechanism which involves the synthesis of a unique RNA species during the fifth to tenth hours. After this RNA has been synthesized the cells are then committed to DNA synthesis.  相似文献   

11.
The non-protein sulfhydryl (NPSH) content of cells moving into S from G1, plateau phase G1, and G0 was measured. Chinese hamster ovary (CHO) cells accumulated in G1 by growth into plateau phase contain only one-fourth the NPSH concentration of cycling C1 cells or G1 cells accumulated by brief growth in isoleucine-deficient medium. Upon dilution of plateau cultures with fresh medium, cellular NPSH content increases rapidly, reaching the same level as that in cycling cells within four hours. This increase is prevented by cycloheximide but not by actinomycin D or hydroxyurea. Neither CHO cells cycling in vitro nor salivary gland G0 cells stimulated with isoproterenol in vivo show significant changes in intracellular NPSH concentrations during S phase. This suggests that the concentration of intracellular NPSH (glutathione) remains constant during the cell cycle except when cells are grown to plateau phase in exhausted or deficient medium, in which case normal degradation exceeds synthesis and the gross level falls until fresh medium is provided and synthesis, apparently on preexisting RNA templates, accelerates.  相似文献   

12.
Epidermal growth factor and transforming growth factor alpha stimulated DNA synthesis in primary cultures of adult rat hepatocytes. Neurotensin amplified epidermal growth factor-stimulated or transforming growth factor alpha-stimulated DNA synthesis by three- to eightfold. Neurotensin by itself did not stimulate DNA synthesis. Amplification of DNA synthesis by neurotensin was observed as low as 10?10 M, and it was increased in a dose-dependent manner with maximal effects at 10–8 M. These results were obtained when hepatocytes were cultured in Williams' medium E, but not in Leibovitz L-15 medium, suggesting that a minor component(s) in the medium is required for hepatocytes to fully respond to neurotensin. Neurotensin effect on DNA synthesis was observed not only in normal rat hepatocytes but also in partially hepatectomized rat hepatocytes, although its effect was stronger in normal hepatocytes. Amplified DNA synthesis was inhibited by transforming growth factor β. Secondary mitogens (co-mitogens) such as insulin, vasopressin, or angiotensin II interacted additively with low concentrations of epidermal growth factor as well as with neurotensin. Neurotensin-related peptides such as kinetensin or neuromedin-N, which was released from blood plasma by pepsin digestion, did not have this amplifying effect on DNA synthesis at any concentrations tested. Neurotensin mRNA was found in several organs including brain and intestine, but not liver. These results suggest that neurotensin can be regarded as a new secondary mitogen and that it may be involved in cell proliferation, including regenerating liver as a gastrointestinal hormone and/or a neurotransmitter. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The relation of AFP production to DNA synthesis was investigated in newborn rat liver and in primary cultures of fetal rat hepatocytes, by combining immunoperoxidase AFP localization and autoradiography after 3H-thymidine labelling. The vast majority of AFP-positive hepatocytes did not incorporate 3H-thymidine after ≤4-h isotope pulses, suggesting that in the developing liver, essentially no production of AFP occurs in S, G2 or M phases of the hepatocyte cell life cycle. Serial or continuous thymidine labelling experiments further indicated that post-mitotic hepatocytes constitute a sizable fraction of AFP-producing cells.  相似文献   

14.
Filtrates (conditioned medium) from high-density Chlorella vulgaris cultures in photobioreactors were obtained and tested for autoinhibitory activity under different conditions. Exponentially growing cells were inoculated at low initial cell concentration (2 × 105 cells/ml) in 90% conditioned medium (CM) supplemented with 10% fresh medium (FM) at low (atmospheric) CO2 levels. The time sequence of DNA histograms of cells in CM cultures showed that there is an accumulation of cells with two and four DNA equivalents in the culture over a period of time, signifying a blockage of cells at the division stage of the cell cycle. Examination of the chemical composition of CM showed the presence of high concentrations (> 10 mM) of bicarbonate. Adding similar bicarbonate concentrations to FM were found to have similar effects as CM cultures, causing blockage of cell division, though the intensity of the blocking effect was lower. The bicarbonate-free CM did not show any cell cycle modulating or inhibitory activity. The growth of cells cultivated at high (5%) CO2 levels in 90% CM supplemented with 10% FM was comparable to 10% FM cultures, indicating nutrient limitation in 90% CM culture. When the 90% CM culture was supplemented with 100% nutrients, the growth rate and final cell concentration was similar to 100% FM culture. Based on these results we conclude that C. vulgaris does not secrete any autoinhibitor(s) or cell cycle modulating compound(s) under the conditions from which the CM was obtained.  相似文献   

15.
Several hypolipidemic drugs and environmental contaminants induce hepatic peroxisome proliferation and hepatic tumors when administered to rodents. These chemicals increase the expression of the peroxisomal β-oxidation pathway and the cytochrome P-450 4A family, which metabolize lipids, including eicosanoids and their precursor fatty acids. We previously found that the peroxisome proliferator ciprofibrate decreases the level of eicosanoids in the liver and in cultured hepatocytes. In this study, we examined the effect of prostaglandins E2 and F (PGE2 and PGF), leukotriene C4 (LTC4) and the peroxisome proliferator ciprofibrate on DNA synthesis in cultured hepatocytes. Primary rat hepatocytes were cultured on collagen gels in serum-free L-15 medium with varying concentrations of eicosanoids and ciprofibrate, and the absence or presence of growth factors. Ciprofibrate lowered hepatocyte eicosanoid concentrations; the addition of eicosanoids restored their levels. After a 48-h exposure with [3H]-thymidine, DNA synthesis was determined by measuring [3H]-thymidine incorporation into DNA. The addition of PGE2, PGF, and LTC4 to cultures along with ciprofibrate increased DNA synthesis, whereas treatment with ciprofibrate or eicosanoids alone resulted in a much smaller increase. The addition of epidermal growth factor (EGF) to the eicosanoid-ciprofibrate combination increased DNA synthesis more than EGF or the eicosanoid-ciprofibrate combination alone. The PGF-ciprofibrate combination also was comitogenic with transforming growth factor-α and hepatocyte growth factor. The addition of both ciprofibrate and prostaglandins also blocked the growth inhibitory effect of transforming growth factor-β on DNA synthesis induced by EGF. These results show that the eicosanoids PGE2, PGF, and LTC4 are comitogenic with the peroxisome proliferator ciprofibrate in cultured rat hepatocytes. © 1996 Wiley-Liss, Inc.  相似文献   

16.
The number of dividing and DNA-synthesizing cells in excised pea roots can be regulated by eliminating the carbohydrate normally supplied in the culture medium. When the excised roots were allowed to remain for 24 hr in a medium lacking carbohydrate, the number of mitotic figures and tritiated thymidine (H3-T) labeled cells was reduced almost to zero. After an additional 24 hr in the incomplete culture medium, 15% of the interphase cells were H3-T labeled, the percentage of the cells that were dividing never exceeded 1.4, and 30% of these were H3-T labeled. When the roots remained in the deficient medium for 72 hr, neither cell division nor cells synthesizing DNA were observed. Upon addition of 2% sucrose, cell division and DNA synthesis were resumed in the roots that were maintained for 24 or 72 hr without an exogenous carbohydrate supply. It has been hypothesized that some proliferative systems consist of two cellular subpopulations which selectively stop or remain in either the pre-DNA synthetic (G1) or post-DNA synthetic (G2) periods of the mitotic cycle. The addition of sucrose, H3-T, and 5-aminouracil to the medium, after the roots had been maintained for 24 hr without a carbohydrate, indicated that most of the proliferative cells in the roots had accumulated in either G1, a quasi-G1 condition, i.e., DNA synthesis stopped sometime before completion, or G2 periods of interphase; the majority, however, were in G1 or quasi-G1 conditions. The results suggested that DNA synthesis (S period) and mitosis or the onset of these processes have the highest metabolic requirements in the mitotic cycle and that G1 and G2 were the most probable states for proliferative cells in a meristem with a low metabolic level.  相似文献   

17.
When Chinese hamster (CHO-K1) cells are grown as monolayer cultures, they eventually reach a population-density plateau after which no net increase in cell numbers occurs. the kinetics of aged cells in nutritionally deprived (starved) or density-inhibited (fed) late plateau-phase cultures were studied by four methods: (i) Reproductive integrity and cell viability were monitored daily by clonogenic-cell assay and erythrosin-b dye-exclusion techniques. (ii) Mitotic frequencies of cells from 18 day old cultures were determined during regrowth by analysing time-lapse video microscope records of dividing cells. (iii) Tritiated-thymidine ([3H]TdR) auto-radiography was used to determine the fractions of DNA-synthesizing cells in cultures entering plateau phase and during regrowth after harvest. (iv) the rate of labelled nucleoside uptake and incorporation into DNA was measured using liquid scintillation or sodium iodide crystal counters after labelling with [3H]TdR or [125]UdR. Non-cycling cells in starved cultures accumulate primarily as G1, phase cells. Most cells not in G1 phase had stopped in G2, phase. Very few cells (< 2%) were found in S phase. In contrast, about half of the cells in periodically fed cultures were found to be in DNA-synthetic phase, and the percentage of these S phase cells fluctuated in a manner reflecting the frequency of medium replacement. Populations of both types of plateau-phase cultures demonstrate extremely coherent cyclic patterns of DNA synthesis upon harvest and reculturing. They retain this high degree of synchrony for more than three generations after the resumption of growth. From these data it is concluded that nutritionally deprived (starved) late plateau-phase cells generally stop in either G1, or G2, phase, whereas periodically fed late plateau-phase cultures contain a very large fraction of cycling cells. Populations of cells from these two types of non-expanding cultures are kinetically dissimilar, and should not be expected to respond to extracellular stimuli in the same manner.  相似文献   

18.
Suspension cultures of Chinese hamster cells (line CHO) were grown to stationary phase (approximately 8–9 x 105 cells/ml) in F-10 medium. Cells remained viable (95%) for at least 80 hr in stationary phase, and essentially all of the cells were in G1 Upon resuspension or dilution with fresh medium, the cells were induced to resume traverse of the life cycle in in synchrony, and the patterns of DNA synthesis and division were similar to those observed in cultures prepared by mitotic selection. Immediately after dilution, the rates of synthesis of RNA and protein increased threefold. This system provides a simple technique for production of large quantities of highly synchronized cells and may ultimately provide information on the biochemical mechanisms regulating cell-cycle traverse.  相似文献   

19.
Myoblasts of the L6 rat cell line were grown in Ham's F12 nutrient medium containing 10% fetal calf serum (F12 + FCS). Although the cells were confluent by 6 days in culture, fusion was not observed even if cultures were maintained for 10–14 days. At least 80% of the cells in such confluent unfused cultures were in the G1 phase of the cell cycle and less than 5% of the cells in confluent cultures synthesized DNA during a 4-day period. The synthesis of muscle-specific proteins (α-actin, β-tropomyosin, and myosin light chains LC1emb and LC2F) was negligible when compared to fused cultures of L6 cells grown for a similar time in Dulbecco's medium with 10% FCS (DME + FCS). When the unfused cultures were shifted from F12 + FCS to DME + FCS, DNA synthesis could be demonstrated in more than 95% of the cells and fusion occurred, indicating that neither proliferative nor myogenic capacity had been irreversibly lost. Raising the levels of calcium, varying the serum concentration from 0 to 20%, or the addition of medium components (present in DME but reduced or absent in F12) all failed to induce fusion in the L6 cells grown in F12. However, L6 cells will fuse in mixtures of F12 + FCS and DME + FCS. Fusion will also occur if L6 cells are grown at clonal density in F12 + FCS supplemented with calcium. While it has not been possible to determine why F12 + FCS is nonpermissive for L6 cells in confluent mass cultures, the results demonstrate that prolonged residence in the G1 phase of the cell cycle is not a sufficient condition for L6 myoblast differentiation to occur.  相似文献   

20.
The role of diacylglycerol (DAG) in hormonal induction of S phase was investigated in primary cultures of rat hepatocytes. In this model, several agonists that bind to G protein-coupled receptors act as comitogens when added to the cells soon after plating (i.e., in Go/early Gl phase), while the cells are most responsive to the mitogenic effect of epidermal growth factor (EGF) at 24–48 h of culturing (i.e., mid/late Gl). It was found that the cellular concentration of DAG rose markedly and progressively during the first 24 h of culturing. Exposure of the hepatocytes at 3 h to αl-adrenergic stimulation (norepinephrine with timolol), vasopressin, or angiotensin II further increased this rise, producing a sustained increase in the DAG level. Norepinephrine, which was the most efficient comitogen, produced the most prolonged DAG elevation. In contrast, no significant increase of DAG was found in response to EGF, neither at 3 nor at 24 h, using concentrations that markedly stimulated the ERK subgroup of the mitogen-activated protein kinases (MAPK) and DNA synthesis. Addition of Bacillus cereus phosphatidylcholine-specific phospholipase C (PC-PLC) strongly elevated DAG, while Streptomyces phospholipase D (PLD) increased phosphatidic acid (PA) but not DAG. B. cereus PC-PLC and the protein kinase C (PKC) activator tetradecanoyl phorbol-acetate (TPA), like norepinephrine, vasopressin, and angiotensin II, stimulated MAPK and enhanced the stimulatory effect of EGF on DNA synthesis. The PKC inhibitor GF109203X did not diminish the effect of EGF on MAPK or DNA synthesis, but strongly inhibited the effects of norepinephrine, vasopressin, angiotensin II, TPA and B. cereus PC-PLC on MAPK and almost abolished the enhancement by these agents of EGF-stimulated DNA synthesis. These results suggest that although generation of DAG is not a direct downstream response mediating the effects of the EGF receptor in hepatocytes, a sustained elevation of DAG with activation of PKC markedly increases the responsiveness to EGF. Mechanisms involving DAG and PKC seem to play a role in the comitogenic effects of various agents that bind to G protein-coupled receptors and activate the cells early in Gl, such as norepinephrine, angiotensin II, and vasopressin. J. Cell. Physiol. 180:203–214, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号