首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Modulation of immune responses is an important strategy employed by pathogens to enable their survival in host organisms. Secreted immunomodulatory molecules are key weapons in the pathogen's battle with the host immune system. In this review, we will discuss the immunomodulatory effects of the phosphorylcholine-containing filarial nematode glycoprotein, ES-62, on the host immune system and summarise the results of our studies to identify the intracellular signalling pathways targeted by ES-62 to achieve these effects.  相似文献   

2.
Parasite survival and host health may depend on the ability of the parasite to modulate the host immune response by the release of immunomodulatory molecules. Excretory-secretory (ES)-62, one such well-defined molecule, is a major secreted protein of the rodent filarial nematode Acanthocheilonema viteae, and has homologues in human filarial nematodes. Previously we have shown that ES-62 is exclusively associated with a Th2 Ab response in mice. Here we provide a rationale for this polarized immune response by showing that the parasite molecule suppresses the IFN-gamma/LPS-induced production, by macrophages, of bioactive IL-12 (p70), a key cytokine in the development of Th1 responses. This suppression of the induction of a component of the host immune response extends to the production of the proinflammatory cytokines IL-6 and TNF-alpha, but not NO. The molecular mechanism underlying these findings awaits elucidation but, intriguingly, the initial response of macrophages to ES-62 is to demonstrate a low and transient release of these cytokines before becoming refractory to further release induced by IFN-gamma/LPS. The relevance of our observations is underscored by the finding that macrophages recovered from mice exposed to "physiological" levels of ES-62 by the novel approach of continuous release from implanted osmotic pumps in vivo were similarly refractory to release of IL-12, TNF-alpha, IL-6, but not NO, ex vivo. Therefore, our results suggest that exposure to ES-62 renders macrophages subsequently unable to produce Th1/proinflammatory cytokines. This likely contributes to the generation of immune responses with an anti-inflammatory Th2 phenotype, a well-documented feature of filarial nematode infection.  相似文献   

3.
Understanding modulation of the host immune system by pathogens offers rich therapeutic potential. Parasitic filarial nematodes are often tolerated in human hosts for decades with little evidence of pathology and this appears to reflect parasite-induced suppression of host proinflammatory immune responses. Consistent with this, we have previously described a filarial nematode-derived, secreted phosphorylcholine-containing glycoprotein, ES-62, with immunomodulatory activities that are broadly anti-inflammatory in nature. We sought to evaluate the therapeutic potential of ES-62 in vitro and in vivo in an autoimmune disease model, namely, collagen-induced arthritis in DBA/1 mice. ES-62 given during collagen priming significantly reduced initiation of inflammatory arthritis. Crucially, ES-62 was also found to suppress collagen-induced arthritis severity and progression when administration was delayed until after clinically evident disease onset. Ex vivo analyses revealed that in both cases, the effects were associated with inhibition of collagen-specific pro-inflammatory/Th1 cytokine (TNF-alpha, IL-6, and IFN-gamma) release. In parallel in vitro human tissue studies, ES-62 was found to significantly suppress macrophage activation via cognate interaction with activated T cells. Finally, ES-62 suppressed LPS-induced rheumatoid arthritis synovial TNF-alpha and IL-6 production. Evolutionary pressure has promoted the generation by pathogens of diverse mechanisms enabling host immune system evasion and induction of "tolerance." ES-62 represents one such mechanism. We now provide proof of concept that parasite-derived immunomodulatory strategies offer a novel therapeutic opportunity in inflammatory arthritis.  相似文献   

4.
ES-62, a protein secreted by filarial nematodes, parasites of vertebrates including humans, has an unusual posttranslational covalent addition of phosphorylcholine to an N-type glycan. Studies on ES-62 from the rodent parasite Acanthocheilonema viteae ascribe it a dominant role in ensuring parasite survival by modulating the host immune system. Understanding this immunomodulation at the molecular level awaits full elucidation but distinct components of ES-62 may participate: the protein contributes aminopeptidase-like activity whereas the phosphorylcholine is thought to act as a signal transducer. We have used biophysical and bioinformatics-based structure prediction methods to define a low-resolution model of ES-62. Sedimentation equilibrium showed that ES-62 is a tightly bound tetramer. The sedimentation coefficient is consistent with this oligomer and the overall molecular shape revealed by small angle x-ray scattering. A 19 A model for ES-62 was restored from the small-angle x-ray scattering data using the program DAMMIN which uses simulated annealing to find a configuration of densely packed scattering elements consistent with the experimental scattering curve. Analysis of the primary sequence with the position-specific iterated basic local alignment search tool, PSI-BLAST, identified six closely homologous proteins, five of which are peptidases, consistent with observed aminopeptidase activity in ES-62. Differences between the secondary structure content of ES-62 predicted using the consensus output from the secondary structure prediction server JPRED and measured using circular dichroism are discussed in relation to multimeric glycosylated proteins. This study represents the first attempt to understand the multifunctional properties of this important parasite-derived molecule by studying its structure.  相似文献   

5.
6.
Phosphorylcholine (PC) is found attached to N-type glycans of proteins secreted by filarial nematodes, where it appears to act as an immunomodulator. Based on information on the structure and biosynthesis of the PC-glycan of a major secreted protein, ES-62, strategies were designed with potential for preparing PC-free material to better understand the importance of PC in filarial nematode immunomodulation. The strategies involve either enzymatic removal of PC or inhibition of its attachment during ES-62 synthesis. No method tested was found to be 100% effective although approximately 70% removal was obtained by culturing worms in Et18OCH3. Reasons for failure to obtain complete absence of PC moieties are discussed in relation to the structure and synthesis of PC-glycans and in addition PC-glycan biosynthesis is briefly commented on as a target for chemotherapy.  相似文献   

7.
Atopic allergy is characterized by an increase in IgE antibodies that signal through the high-affinity Fcepsilon receptor (FcepsilonRI) to induce the release of inflammatory mediators from mast cells. For unknown reasons, the prevalence of allergic diseases has recently increased steeply in the developed world. However, this increase has not been mirrored in developing countries, even though IgE concentrations are often greatly elevated in individuals from these countries, owing to nonspecific IgE induction by universally present parasitic worms. Here we offer one explanation for this paradox based on the properties of ES-62, a molecule secreted by filarial nematodes. We found that highly purified, endotoxin-free ES-62 directly inhibits the FcepsilonRI-induced release of allergy mediators from human mast cells by selectively blocking key signal transduction events, including phospholipase D-coupled, sphingosine kinase-mediated calcium mobilization and nuclear factor-kappaB activation. ES-62 mediates these effects by forming a complex with Toll-like receptor 4, which results in the sequestration of protein kinase C-alpha (PKC-alpha). This causes caveolae/lipid raft-mediated, proteasome-independent degradation of PKC-alpha, a molecule important for the coupling of FcepsilonRI to phospholipase D and mast cell activation. We also show that ES-62 is able to protect mice from mast cell-dependent hypersensitivity in the skin and lungs, indicating that it has potential as a novel therapeutic for allergy.  相似文献   

8.
Phosphorylcholine (PC) is increasingly becoming recognised as a carbohydrate-associated component of a wide variety of procaryotic and eucaryotic pathogens. Studies employing nematode PC-containing molecules indicate that it possesses a plethora of immunomodulatory activities. ES-62 is a PC-containing glycoprotein, which is secreted by the rodent filarial nematode Acanthocheilonema viteae and which provides a model system for the dissection of the mechanisms of immune evasion induced by related PC-containing glycoproteins expressed by human filarial nematodes. At concentrations equivalent to those found for PC-containing molecules in the bloodstream of parasitised humans, ES-62 is able to inhibit antigen receptor-stimulated proliferation of B and T lymphocytes in vitro and in vivo. The active component of ES-62 appears to be PC, as PC conjugated to albumin or even PC alone broadly mimic the results obtained with ES-62. PC-induced impaired lymphocyte responsiveness appears to reflect uncoupling of the antigen receptors from key intracellular proliferative signalling events such as the phosphoinositide 3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways. Although PC-ES-62 can desensitise B and T cells, not all cells are affected, and in fact it is still possible to generate an antibody response to the molecule. Dissection of this response indicates that it is of the TH-2 type. This appears to reflect the ability of ES-62 to direct the polarity of the T cell response by suppressing the production of proinflammatory cytokines, inducing the induction of anti-inflammatory cytokines and by driving the maturation of dendritic cells that direct TH-2 T cell responses.  相似文献   

9.
Theileria parva-infected B cells express Jagged-1 and activate Notch signalling in a parasite-dependent manner. ES-62, a filarial nematode-secreted phosphorylcholine-containing glycoprotein, is able to further stimulate Notch-mediated signalling in parasitized cells. Notch is also activated to a similar extent by addition of exogenous IL-10, and this occurs prior to any increase in proliferation in T. parva-infected B cells.  相似文献   

10.
ES-62 is a phosphorylcholine-containing glycoprotein secreted by filarial nematodes, which has previously been shown to possess a range of immunomodulatory capabilities. We now show, using a CD4+ transgenic TCR T cell adoptive transfer system, that ES-62 can modulate heterologous Ag (OVA)-specific responses in vivo. Thus, in contrast to the mixed IgG1-IgG2a response observed in control animals, ES-62-treated mice exhibited a Th2-biased IgG Ab response as evidenced by stable enhancement of anti-OVA IgG1 production and a profound inhibition of anti-OVA IgG2a. Consistent with this, Ag-specific IFN-gamma produced was suppressed by pre-exposure to ES-62 when T cells were rechallenged ex vivo. However, the response observed was not classical Th2, because although Ag-specific IL-5 production was enhanced by pre-exposure to ES-62, IL-13, and IL-4 were inhibited when T cells were rechallenged ex vivo. Moreover, such T cells produced lower levels of IL-2 and proliferated less upon Ag rechallenge ex vivo. Finally, pre-exposure to ES-62 inhibited the clonal expansion of the transferred Ag-specific CD4+ T cells and altered the functional response of such T cells in vivo, by modulating the kinetics and reducing the extent of their migration into B cell follicles.  相似文献   

11.
We previously demonstrated inhibition of ovalbumin-induced allergic airway hyper-responsiveness in the mouse using ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode, Acanthocheilonema viteae. This inhibition correlated with ES-62-induced mast cell desensitisation, although the degree to which this reflected direct targeting of mast cells remained unclear as suppression of the Th2 phenotype of the inflammatory response, as measured by eosinophilia and IL-4 levels in the lungs, was also observed. We now show that inhibition of the lung Th2 phenotype is reflected in ex vivo analyses of draining lymph node recall cultures and accompanied by a decrease in the serum levels of total and ovalbumin-specific IgE. Moreover, ES-62 also suppresses the lung infiltration by neutrophils that is associated with severe asthma and is generally refractory to conventional anti-inflammatory therapies, including steroids. Protection against Th2-associated airway inflammation does not reflect induction of regulatory T cell responses (there is no increased IL-10 or Foxp3 expression) but rather a switch in polarisation towards increased Tbet expression and IFNγ production. This ES-62-driven switch in the Th1/Th2 balance is accompanied by decreased IL-17 responses, a finding in line with reports that IFNγ and IL-17 are counter-regulatory. Consistent with ES-62 mediating its effects via IFNγ-mediated suppression of pathogenic Th2/Th17 responses, we found that neutralising anti-IFNγ antibodies blocked protection against airway inflammation in terms of pro-inflammatory cell infiltration, particularly by neutrophils, and lung pathology. Collectively, these studies indicate that ES-62, or more likely small molecule analogues, could have therapeutic potential in asthma, in particular for those subtypes of patients (e.g. smokers, steroid-resistant) who are refractory to current treatments.  相似文献   

12.
ES-62 is an immunomodulatory phosphorylcholine (PC)-containing glycoprotein secreted by the rodent filarial nematode Acanthocheilonema viteae. Previously, the use of knockout mice has revealed the effects of ES-62 on macrophages and dendritic cells to be dependent on TLR4. However, it is possible that ES-62 may interact with additional proteins on the surfaces of target cells and hence that cells may vary with respect to receptor usage. In this study, we identified by molecular weight, proteins that interact with ES-62 and found differences amongst the immune system cells studied. Thus, whereas lymphocytes appear to have two major interacting proteins of ~135 and ~82 kDa, U937 monocytes only contain an ES-62-binding protein of the latter molecular weight. Binding to the proteins on B cells and U937 cells was blocked by PC, suggesting a critical role for this ES-62 moiety in facilitating interaction. Finally, ES-62 binding is followed by internalization in both macrophages and B cells but only in the former was absence of TLR4 found to block internalization. These findings are consistent with differences in receptor usage by ES-62 amongst different cell-types.  相似文献   

13.
ES-62, a glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, exhibits anti-inflammatory properties by virtue of covalently attached phosphorylcholine moieties. Screening of a library of ES-62 phosphorylcholine-based small molecule analogues (SMAs) revealed that two compounds, termed 11a and 12b, mirrored the helminth product both in inhibiting mast cell degranulation and cytokine responses in vitro and in preventing ovalbumin-induced Th2-associated airway inflammation and eosinophil infiltration of the lungs in mice. Furthermore, the two SMAs inhibited neutrophil infiltration of the lungs when administered therapeutically. ES-62-SMAs 11a and 12b thus represent starting points for novel drug development for allergies such as asthma.  相似文献   

14.
Immune responses of individuals infected with filarial nematodes are characterized by a marked cellular hyporesponsiveness and a shift of the cytokine balance toward a Th2/Th3 response. This modulation of cellular immune responses is considered as an important mechanism to avoid inflammatory immune responses that could eliminate the parasites. We investigated the immunomodulatory potential of a secreted cysteine protease inhibitor (onchocystatin) of the human pathogenic filaria Onchocerca volvulus. Recombinant onchocystatin (rOv17), a biologically active cysteine protease inhibitor that inhibited among others the human cysteine proteases cathepsins L and S, suppressed the polyclonally stimulated and the Ag-driven proliferation of human PBMC. Stimulated as well as unstimulated PBMC in the presence of rOv17 produced significantly more IL-10, which was paralleled in some situations by a decrease of IL-12p40 and preceded by an increase of TNF-alpha. At the same time, rOv17 reduced the expression of HLA-DR proteins and of the costimulatory molecule CD86 on human monocytes. Neutralization of IL-10 by specific Abs restored the expression of HLA-DR and CD86, whereas the proliferative block remained unaffected. Depletion of monocytes from the PBMC reversed the rOv17-induced cellular hyporeactivity, indicating monocytes to be the target cells of immunomodulation. Therefore, onchocystatin has the potential to contribute to a state of cellular hyporesponsiveness and is a possible pathogenicity factor essential for the persistence of O. volvulus within its human host.  相似文献   

15.
ES-62 is the major secreted protein of the parasitic filarial nematode, Acanthocheilonema viteae. The molecule exists as a large tetramer (MW, ~240kD), which possesses immunomodulatory properties by virtue of multiple phosphorylcholine (PC) moieties attached to N-type glycans. By suppressing inflammatory immune responses, ES-62 can prevent disease development in certain mouse models of allergic and autoimmune conditions, including joint pathology in collagen-induced arthritis (CIA), a model of rheumatoid arthritis (RA). Such protection is associated with functional suppression of “pathogenic” hyper-responsive synovial fibroblasts (SFs), which exhibit an aggressive inflammatory and bone-damaging phenotype induced by their epigenetic rewiring in response to the inflammatory microenvironment of the arthritic joint. Critically, exposure to ES-62 in vivo induces a stably-imprinted CIA-SF phenotype that exhibits functional responses more typical of healthy, Naïve-SFs. Consistent with this, ES-62 “rewiring” of SFs away from the hyper-responsive phenotype is associated with suppression of ERK activation, STAT3 activation and miR-155 upregulation, signals widely associated with SF pathogenesis. Surprisingly however, DNA methylome analysis of Naïve-, CIA- and ES-62-CIA-SF cohorts reveals that rather than simply preventing pathogenic rewiring of SFs, ES-62 induces further changes in DNA methylation under the inflammatory conditions pertaining in the inflamed joint, including targeting genes associated with ciliogenesis, to programme a novel “resolving” CIA-SF phenotype. In addition to introducing a previously unsuspected aspect of ES-62’s mechanism of action, such unique behaviour signposts the potential for developing DNA methylation signatures predictive of pathogenesis and its resolution and hence, candidate mechanisms by which novel therapeutic interventions could prevent SFs from perpetuating joint inflammation and destruction in RA. Pertinent to these translational aspects of ES-62-behavior, small molecule analogues (SMAs) based on ES-62’s active PC-moieties mimic the rewiring of SFs as well as the protection against joint disease in CIA afforded by the parasitic worm product.  相似文献   

16.
Stanley P  Stein PE 《Biochemistry》2003,42(20):6241-6248
The filarial nematode, Brugia malayi, is a causative agent of lymphatic filariasis. Bm-spn-2, one of two serpin genes identified in B. malayi, is expressed only in humans where the encoded protein, BmSPN2, is secreted by blood-dwelling microfilariae. Previous work reported that BmSPN2 could inhibit the activities of elastase and cathepsin G from human neutrophils, despite an atypical amino acid sequence. This did not fit with accepted theories as to the sequence requirements of serpins for proteinase inhibition. We have cloned and expressed Bm-spn-2 in Escherichia coli and characterized the structural and functional properties of recombinant BmSPN2. Sequence alignment, circular dichroism spectroscopy, and susceptibility to cleavage by proteinases all suggest that BmSPN2 shares the tertiary structure typical of the serpin family including an accessible reactive center loop. However, we have found that BmSPN2 has no effect on the activity of neutrophil elastase or cathepsin G and does not form SDS-stable complexes with these proteinases. We provide evidence that BmSPN2 cannot undergo the characteristic stressed to relaxed transition required for proteinase inhibition by serpins. We conclude that BmSPN2 is not an atypical inhibitor but is a new noninhibitory serpin, in keeping with its sequence.  相似文献   

17.
A metabolite of the fungus Meira argovae Boekhout, Scorzetti, Gerson & Sztejnberg (Exobasidiomycetidae) was assayed as an antagonist of mites. Separation of extracted fungal metabolites by reversed phase liquid chromatography (RPLC), with subsequent testing of the obtained fractions, allowed us to isolate a single mite‐antagonistic fraction (also active against a bacterium) that primarily includes one major component. This active compound (herein termed ‘argovin’) was identified by analyzing its spectral characteristics as 4,5‐dihydroxyindan‐1‐one, which has previously only been described as a product of chemical reactions. The growth rate of the fungus was higher at a neutral pH than at an acidic one. Meira argovae adjusts the pH of its media to values optimal for its colony growth and toxic secretions. RPLC‐cleaned argovin at 0.2 mg ml?1 killed 100% of a population of the citrus rust mite, Phyllocoptruta oleivora (Ashmead) (Acari: Eriophyidae). This trait may be used to control citrus rust mites in the field, as well as for toxin production for industrial and pharmaceutical uses.  相似文献   

18.
The molecular masses of three rat-plasma carboxylesterases (ES-1, ES-2, and ES-14) were estimated by transverse-gradient polyacrylamide gel electrophoresis and subsequent application of Ferguson-plot-based calculation methods. Two electrophoretic buffer systems were used and the data subjected to either weighted or unweighted regression analysis. The Tris-boric acid buffer system produced significantly higher retardation coefficients than the Tris-glycine system. Molecular mass estimates were significantly higher with the Tris-glycine buffer system. Unweighted instead of weighted analysis produced significantly higher molecular mass estimates. Molecular mass estimates also depended on the calculation method, that is, the choice of calibration relationship with molecular size as a function of retardation coefficient. Three commonly used calibration relationships were compared. On the basis of their accuracy, both the weighted log[retardation coefficient] versus log[molecular mass] plot and the square root of retardation coefficient versus molecular radius were found suitable, provided that the Tris-boric acid buffer was used for electrophoresis. Using the former calibration relationship, the molecular masses of rat-plasma ES-1, ES-2, and ES-14 were 55.5, 61.1, and 65.3 kDa, respectively.  相似文献   

19.
20.
While interference with the class I MHC pathway by pathogen-encoded gene products, especially those of viruses, has been well documented, few examples of specific interference with the MHC class II pathway have been reported. Potential targets for such interference are the proteases that remove the invariant chain chaperone and generate antigenic peptides. Indeed, recent studies indicate that immature dendritic cells express cystatin C to modulate cysteine protease activity and the expression of class II MHC molecules [1]. Here, we show that Bm-CPI-2, a recently discovered cystatin homolog produced by the filarial nematode parasite Brugia malayi (W. F. Gregory et al., submitted), inhibits multiple cysteine protease activities found in the endosomes/lysosomes of human B lymphocyte lines. CPI-2 blocked the hydrolysis of synthetic substrates favored by two different families of lysosomal cysteine proteases and blocked the in vitro processing of the tetanus toxin antigen by purified lysosome fractions. Moreover, CPI-2 substantially inhibited the presentation of selected T cell epitopes from tetanus toxin by living antigen-presenting cells. Our studies provide the first example of a product from a eukaryotic parasite that can directly interfere with antigen presentation, which, in turn, may suggest how filarial parasites might inactivate the host immune response to a helminth invader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号