首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laboratory strains of enteroviruses, as well as viruses isolated from raw wastewater, were found to exhibit enhanced infectivity in vitro when BGM cell monolayers were pretreated with the cationic polymer polyethyleneimine (PEI). Viruses were assayed by the cytopathic effect technique and as PFU under methylcellulose and agar overlays with monolayers treated with 0 to 5.0 x 10(-3)% (wt/vol) PEI in phosphate-buffered saline supplemented with 2% fetal bovine serum. Poliovirus type 1 cytopathic effect occurred at an enhanced rate in cells treated with 5.0 x 10(-3)% PEI compared with untreated cells. PEI-treated cells were found to adsorb viruses much more effectively than untreated cells did. When the methylcellulose overlay procedure was used, rates of infectivity were enhanced as follows: poliovirus type 1, 5.5-fold; echovirus type 1, 1.2-fold; echovirus type 5, 5.2-fold; and coxsackievirus type B5, 4.9-fold. Viruses concentrated from raw wastewater showed a 3.8-fold increase in titer when quantitated by the most-probable-number method and a 3.3-fold increase when quantitated as PFU under an agar overlay.  相似文献   

2.
Mechanism of Enhancement of Virus Plaques by Cationic Polymers   总被引:7,自引:1,他引:6       下载免费PDF全文
It has been assumed that plaque enhancement by cationic polymers is due to their binding of sulfated polysaccharides in agar. However, viruses that are enhanced by cationic polymers, diethylaminoethyl-dextran, and protamine were found not to be inhibited by polyanions in agar under the usual overlay conditions. In the case of adenovirus, enhancement by protamine seems to be due to the protamine serving as a source of arginine; enzymes released from the cultured cells digest the protamine and provide a reservoir of arginine for the cells. Other viruses (herpes and echovirus types 3, 4, 5, and 6) known to be susceptible to agar inhibitors were found to be enhanced by cationic polymers even under starch gel and methylcellulose overlays, which are free of polyanions. Since cationic polymers enhance the diffusion of virus through agar or starch gel, plaque enhancement seems to be the result of the gel becoming positively charged so that viruses can move effectively through them. The observation that starch gel and methylcellulose enhance plaque formation with viruses known to be inhibited under agar was also reinvestigated. When the consistency of the agar gel was reduced to the same viscosity of starch gel and methylcellulose overlays, the same plaque counts and sizes were observed under all three overlays.  相似文献   

3.
The infectivity of adenovirus type 2 DNA and a DNA-protein complex was studied in 293 cells, a human embryonic kidney cell line transformed by sheared adenovirus type 5 DNA, and in human KB cells. Adenovirus type 2 DNA was more infectious (up to about 40-fold) in 293 cells than in KB cells, whereas a DNA-protein complex (prepared by a rapid procedure) had about the same infectivity in both cell lines. These data may mean that a factor present in 293 cells (perhaps a viral-coded protein) enhances the infectivity of free viral DNA. The infectivity of DNA and the DNA-protein complex was increased up to fivefold by brief treatment of cell monolayers with 25% dimethyl sulfoxide after transfection. Under these conditions, (i) the infectivity of native adenovirus type 2 DNA ranged from 400 to 1,300 PFU/microgram of DNA in 293 cells and from about 9 to 14 PFU/microgram of DNA in KB cells, and (ii) the infectivity of the DNA-protein complex was 6 X 10(3)to 2 X 10(4) PFU/microgram in 293 cells and 1.4 X 10(4) to 1.6 X 10(4) PFU/microgram in KB cells.  相似文献   

4.
COMPARISON OF THE AGAR OVERLAY TECHNIQUE WITH THE FLUID CULTURE TECHNIQUE FOR ISOLATION AND IDENTIFICATION OF ENTEROVIRUSES SHOWED THE FORMER TO BE USEFUL: (i) for isolation of enterovirus when the number of virus particles was too small to produce detectable cytopathic effect (CPE) in fluid cultures, (ii) for isolation of echovirus 22 which did not produce detectable CPE in fluid cultures, (iii) as an aid to rapid differentiation of enteroviruses, and (iv) for differentiation of viruses in mixed infections. Nonpolio enterovirus isolation experience in the New Haven area over a 4-year period is presented. It was concluded that the agar overlay technique is both useful and relatively simple for routine examination of clinical specimens in a diagnostic laboratory.  相似文献   

5.
Aerosol samples collected at the Muskegon County Wastewater Management System Number 1 spray irrigation site in Michigan by using the Army prototype XM2 Biological Sampler/Collector were examined for the presence of animal viruses, coliphages, and bacteria. Air samples, collected in Earle lactalbumen hydrolysate, and wastewater samples were filtered through a 0.45- and 1.2-micron membrane filter sandwich, pretreated with 10% beef extract (pH 7.0), and assayed for animal viruses by the plaque method on Buffalo green monkey kidney cells. Untreated air and wastewater samples were assayed for coliphages by the soft agar overlay method with three Escherichia coli hosts (ATCC 13706, 15597, and 11303) and for bacteria by the heterotrophic plate count method. Filtered air samples were assayed for coliphages by the most-probable-number method with the same three hosts. Although no animal viruses were detected in the aerosol samples, coliphages and bacteria were recovered. E. coli ATCC 13706 coliphage were recovered more often and in greater numbers than either of the other two types of coliphages. Concentrations of animal viruses, coliphages, and bacteria detected in the raw influent decreased as the wastewater was aerated and stored in the lagoons. No animal viruses were detected in the wastewater at the pump station just before distribution to the spray irrigation rigs. The most-probable-number method was more sensitive and consistent than the overlay procedure in detecting low levels of coliphages in air samples.  相似文献   

6.
Aerosol samples collected at the Muskegon County Wastewater Management System Number 1 spray irrigation site in Michigan by using the Army prototype XM2 Biological Sampler/Collector were examined for the presence of animal viruses, coliphages, and bacteria. Air samples, collected in Earle lactalbumen hydrolysate, and wastewater samples were filtered through a 0.45- and 1.2-micron membrane filter sandwich, pretreated with 10% beef extract (pH 7.0), and assayed for animal viruses by the plaque method on Buffalo green monkey kidney cells. Untreated air and wastewater samples were assayed for coliphages by the soft agar overlay method with three Escherichia coli hosts (ATCC 13706, 15597, and 11303) and for bacteria by the heterotrophic plate count method. Filtered air samples were assayed for coliphages by the most-probable-number method with the same three hosts. Although no animal viruses were detected in the aerosol samples, coliphages and bacteria were recovered. E. coli ATCC 13706 coliphage were recovered more often and in greater numbers than either of the other two types of coliphages. Concentrations of animal viruses, coliphages, and bacteria detected in the raw influent decreased as the wastewater was aerated and stored in the lagoons. No animal viruses were detected in the wastewater at the pump station just before distribution to the spray irrigation rigs. The most-probable-number method was more sensitive and consistent than the overlay procedure in detecting low levels of coliphages in air samples.  相似文献   

7.
D Dedera  L Ratner 《Journal of virology》1991,65(11):6129-6136
The mechanism of human immunodeficiency virus type 1 (HIV-1) cytopathicity is poorly understood and might involve formation of multinucleated giant cells (syncytia), single-cell lysis, or both. In order to determine the contributions of the fusion domain to syncytium formation, single-cell lysis, and viral infectivity and to clarify the molecular details of these events, insertion mutations were made in the portion of env encoding this sequence in the functional HIV-1 proviral clone HXB2. Viruses produced from these mutant clones were found to have a partial (F3) or complete (F6) loss of syncytium-forming ability in acutely infected CEM, Sup T1, and MT4 T-cell lines. During the early stage of acute infection by F6 virus, there was a loss of the syncytial cytopathic effect, which resulted in increased cell viability, and a 1.9- to 2.6-fold increase in virus yield in the cell lines tested. In the late stage of acute infection, the single-cell cytopathic effect of F6 virus was similar to that of the parental HXB2 virus. The F3 and F6 viruses were also found to have a 1.7- to 43-fold reduction in infectivity compared with the HXB2 virus. The mutant F3 and F6 and parental HXB2 envelope proteins were expressed in vaccinia virus, and the mutant envelope proteins were observed to be defective in their ability to form syncytia. BSC-40 cells infected with vaccinia virus recombinants revealed no differences in kinetics of cleavage, cell surface expression, or CD4 binding capacity of the mutant and parental envelope proteins. These results demonstrate that a loss of syncytium formation results in an attenuation of infectivity and a loss of the syncytial cytopathic effect without a loss of single-cell lysis. These mutants may reflect in tissue culture the changes observed in the HIV isolates in vivo during disease progression, which exhibit marked differences in syncytium production.  相似文献   

8.
A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.  相似文献   

9.
Plaquing procedure for infectious hematopoietic necrosis virus.   总被引:5,自引:4,他引:1       下载免费PDF全文
A single overlay plaque assay was designed and evaluated for infectious hematopoietic necrosis virus. Epithelioma papillosum carpio cells were grown in normal atmosphere with tris(hydroxymethyl)aminomethane- or HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid)-buffered media. Plaques were larger and formed more quickly on 1- to 3-day-old cell monolayers than on older monolayers. Cell culture medium with a 10% addition of fetal calf serum (MEM 10) or without serum (MEM 0) were the most efficient virus diluents. Dilution with phosphate-buffered saline, saline, normal broth, or deionized water reduced plaque numbers. Variations in the pH (7.0 to 8.0) of a MEM 0 diluent did not affect plaque numbers. Increasing the volume of viral inoculum above 0.15 ml (15- by 60-mm plate) decreased plaquing efficiency. Significantly more plaques occurred under gum tragacanth and methylcellulose than under agar or agarose overlays. Varying the pH (6.8 to 7.4) of methylcellulose overlays did not significantly change plaque numbers. More plaques formed under the thicker overlays of both methylcellulose and gum tragacanth. Tris(hydroxymethyl)aminomethane and HEPES performed equally well, buffering either medium or overlay. Plaque numbers were reduced when cells were rinsed after virus adsorption or less than 1 h was allowed for adsorption. Variation in adsorption time between 60 and 180 min did not change plaque numbers. The mean plaque formation time was 7 days at 16 degrees C. The viral dose response was linear when the standardized assay was used.  相似文献   

10.
Y S Shieh  R S Baric    M D Sobsey 《Applied microbiology》1997,63(11):4401-4407
To detect less prevalent viruses, such as wild-type polioviruses in sewage from a highly immunized community, a method was developed to efficiently recover viruses and remove PCR inhibitors. The method consisted of initial separation of solids from liquid, followed by solvent extractions, polyethylene glycol precipitations, Sephadex G-200 chromatography, and guanidinium isothiocyanate (GIT) extraction. To elute viruses from the separated solids, 0.5 M threonine (pH 7.5) was as efficient as 3% beef extract but conferred no PCR inhibition. In samples that were concentrated approximately 1,000-fold, 21% of the initially seeded viruses were recovered. When poliovirus type 3 (PV3) Sabin strain at low levels and PV1 LSc strain at high levels were seeded in raw sewage, PV3 was specifically detected in the final sample concentrates at sensitivities of 14 PFU by direct PCR and 0.7 PFU by GIT extraction-PCR. While applying the method to international airplane sewage, which contains high levels of solids as well as commercial sanitizers, 44% (7 of 16) of the samples were found to harbor enteroviruses by both cell culture infectivity and pan-enterovirus PCR analyses. Nucleotide sequencing of the PCR products revealed that multiple enterovirus genotypes were amplified from each final sewage concentrate, whereas the fewer virus genotypes detected by cell culture infectivity were probably the better growing strains. By this method, we demonstrated that air travel may contribute to the intercontinental dissemination of enteric pathogens.  相似文献   

11.
Most of the coxsackievirus A9 (CA 9 virus) including the prototype strain formed plaques in HeLa cell monolayers under agar overlay, although they showed little or no cytopathogenicity under fluid medium. These viruses were isolated or passaged in primary cynomolgus monkey kidney (MK) cell cultures, and the infectivity of any strain in terms of plaque-forming units was much higher in MK cells than in HeLa cells, even after plaque purification of the virus in HeLa cell cultures. CA 9 virus contained in the original throat swabs as well as some clones obtained by plaque purification in MK cells failed to form plaques in HeLa cells, but virus preparations obtained after several undiluted passages through MK cells included plaque-formers in HeLa cells, suggesting that such plaque (HeLa)-forming viruses may have developed at a certain rate during multiplication of the original non-plaque (HeLa)-forming virus population in MK cells. Out of four lines of HeLa cells examined, two, including a clonal line S3, failed to support plaque formation by CA 9 virus.  相似文献   

12.
S A Huber  C Haisch    P A Lodge 《Journal of virology》1990,64(9):4516-4522
Six plaque-purified virus isolates were obtained from liver and heart tissues of a DBA/2 mouse infected 7 days earlier with 10(4) PFU of coxsackievirus group B type 3. Each virus isolate was assayed in vitro for infectivity to vascular endothelial cells (VEC) of the liver, lungs, and heart. Both the percentage of VEC infected and the mean progeny PFU produced per infected VEC were determined. Virus isolates from the heart showed greater infectivity and replication in heart VEC than in VEC derived from either the liver or lungs. Similarly, virus isolated from the liver preferentially infected liver VEC. Virus receptor expression varied between VEC populations, as demonstrated by binding studies with a [35S]methionine-radiolabeled heart virus and by enzyme-linked immunoadsorption assay studies with a monoclonal antibody to the coxsackievirus group B type 3 receptor on heart tissue. Finally, the heart and liver virus isolates were injected (10(4) PFU) intraperitoneally into BALB/c mice. After 7 days, the animals were sacrificed, and the hearts, livers, and lungs were evaluated for tissue injury and virus concentrations. Viruses originally isolated from the heart preferentially infected the heart when reinjected into animals and caused severe myocarditis. Viruses originally derived from the liver most consistently reinfected the liver, although significant virus concentrations were also detected in the heart. The liver virus isolates, however, were incapable of causing myocarditis. Thus, selective tropism of viruses for particular organs in vivo corresponds to the ability of these isolates to infect VEC in vitro.  相似文献   

13.
Viral agents producing both a syncytial-type cytopathic effect and type A intranuclear inclusion bodies in vitro were isolated from the kidneys of five of 10 wild turkeys. A plaque assay system for viral infectivity was developed and used to characterize one of the wild turkey viruses (WTV). WTV replication was inhibited by 5-bromodeoxyuridine, indicating the virus contained DNA as its genetic material. Virus infectivity could be transferred only as viable whole cell preparations; one cycle of rapid freezing and thawing completely inactivated the virus. Typical herpes-like virions were found within the nuclei when cells infected with WTV were examined by electron microscopy. WTV had characteristics typical of the herpes group of viruses.  相似文献   

14.
Effect of kaolinite on the specific infectivity of reovirus   总被引:3,自引:0,他引:3  
Abstract The infectivity of enteric viruses (e.g., poliovirus, rotavirus, reovirus) is prolonged when these viruses are adsorbed on naturally occurring particulates (sediments, clay minerals) in terrestrial and aquatic environments. Furthermore, in vitro assays of these and other particulate-associated viruses often display infectivity levels (specific infectivity) greater than those of the same concentration of viruses in the absence of particulates. This investigations attempted to identify interactions at the particulate-virus-cell interface and to define the mechanism(s) whereby the apparent infectivity of viruses is enhanced when complexed with particulates. Reovirus type 3 and the clay mineral, kaolinite, were used as the model systems. Scanning electron micrographs after critical point drying showed that kaolinite was not present on the surface of cell monolayers of L-929 mouse fibroblasts 3 h after inoculation with a kaolinite-reovirus complex. However, the virus was observed on the surface of the cells. No change in dispersion of the virus particles was observed nor was the integrity of the cell surface altered by kaolinite. These results indicated that kaolinite enhanced the transport of viral particles, in conjunction with diffusion and Brownian movement, to receptors for the reovirus on the cell surface.  相似文献   

15.
The Miyadera strain of Newcastle disease virus (NDV) consisted predominantly of virus particles forming small plaques on monolayers of chick embryo fibroblasts (CEF), and contained small amounts of virus particles forming large plaques. These large- and small-plaque-forming clones of this virus (NDV-L and NDV-S) were isolated. The small size of the NDV-S plaques did not appear to be due to an agar inhibitor. NDV-L produced a much higher yield of infective virus particles in CEF and they were released more completely from the infected cells than were those produced by NDV-S. The yield of infective virus of NDV-L per cell from cultures of CEF was comparable to the yield from the allantoic cells. The infectivity/hemagglutinin ratio for NDV-L from CEF was as high as the ratio for virus from the allantoic cells, but the ratio for NDV-S from CEF was lower. NDV-S demonstrated an autointerference phenomenon in CEF when infected at high multiplicities, but NDV-L did not. Contrary to virus multiplication, NDV-S exhibited a more rapid and marked cytopathic effect on monolayers of CEF than NDV-L. In the allantoic cavity of eggs NDV-S produced slightly higher virus yields than NDV-L. No correlation existed between plaque size of the two viruses and the capacity to induce interferon synthesis or the susceptibility to the action of interferon. The properties of both distinctive plaque isolates were stable on egg passage.  相似文献   

16.
Buffalo green monkey kidney cells were adapted to grow as shaker cultures. Replication of environmental and clinical isolates of poliovirus, coxsackievirus, and echovirus in these cultures was analyzed by plaque assay and compared with replication in Buffalo green monkey kidney cell monolayers and HEp-2 cell shaker cultures. Dose-response tests with various concentrations of Mahoney type 1 poliovirus indicated that Buffalo green monkey kidney cell shaker cultures could detect as little as 1 PFU in an inoculum of 0.2 ml. These data suggest that Buffalo green monkey kidney cell shaker cultures can be effectively used for the detection of small quantities of enteroviruses from environmental sources.  相似文献   

17.
Buffalo green monkey kidney cells were adapted to grow as shaker cultures. Replication of environmental and clinical isolates of poliovirus, coxsackievirus, and echovirus in these cultures was analyzed by plaque assay and compared with replication in Buffalo green monkey kidney cell monolayers and HEp-2 cell shaker cultures. Dose-response tests with various concentrations of Mahoney type 1 poliovirus indicated that Buffalo green monkey kidney cell shaker cultures could detect as little as 1 PFU in an inoculum of 0.2 ml. These data suggest that Buffalo green monkey kidney cell shaker cultures can be effectively used for the detection of small quantities of enteroviruses from environmental sources.  相似文献   

18.
With the agar diffusion test and BS-C-1 cells, mycophenolic acid was found to give a straight-line dose-response activity in inhibiting the cytopathic effects of vaccinia, herpes simplex, and measles viruses. Plaque tests have shown 100% reduction of virus plaques by mycophenolic acid over drug ranges of 10 to 50 mug/ml and virus input as high as 6,000 plaque-forming units (PFU) per flask. Back titration studies with measles virus inhibited by mycophenolic acid have indicated that extracellular virus titers were reduced by approximately 3 logs(10) and total virus was reduced by 1 log(10). The agar diffusion test system lends itself readily to drug reversal studies. Mycophenolic acid incorporated into agar at 10 mug/ml gave 100% protection to virus-infected cells. Filter paper discs impregnated with selected chemical agents at concentrations of 1,000 mug/ml (20 mug per filter paper disc) were placed on the agar surface. Reversal of the antiviral activity of mycophenolic acid was indicated by virus breakthrough in those cells in close proximity to the filter paper disc. Chemicals showing the best reversal of the antiviral activity of mycophenolic acid were guanine, guanosine, guanylic acid, deoxyguanylic acid, and 2,6-diaminopurine. The reversal of antiviral activity was confirmed by titrations of virus produced with various amounts of both mycophenolic acid and guanine present and by isotope tracer methods with uptakes of labeled uridine, guanine, leucine, and thymidine in treated and nontreated, infected and noninfected cells as parameters. All antiviral effects of mycophenolic acid at 10 mug/ml could be reversed to the range shown by untreated controls by the addition of 10 mug/ml of those chemicals exhibiting reversal activity.  相似文献   

19.
The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log(10) PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and MRE16sp viruses, we have sequenced the MRE16sp structural genes and found a 90-nucleotide deletion in the E2 glycoprotein that spans the 3' end of the coding region for the putative cell-receptor binding domain (CRBD). We examined the role of this deletion in oral infection of mosquitoes by constructing infectious clones pMRE16icDeltaE200-Y229 and pMRE16ic, representing MRE16 virus genomes with and without the deletion, respectively. A third infectious clone, pMRE16icDeltaE200-C220, was also constructed that contained a smaller deletion extending only to the 3' terminus of the CRBD coding region. Virus derived from pMRE16ic replicated with the same efficiency as parental virus in vertebrate (BHK-21) and mosquito (C6/36) cells and orally infected A. aegypti. Viruses derived from pMRE16icDeltaE200-Y229 and pMRE16icDeltaE200-C220 replicated 10- to 100-fold less efficiently in C6/36 and BHK-21 cells than did MRE16ic virus. Each deletion mutant poorly infected A. aegypti and dramatically reduced midgut infectivity and dissemination. However, all viruses generated nearly equal titers (approximately 6.0 log(10) PFU/ml) in mosquitoes 4 days after infection by intrathoracic inoculation. These results suggest that the deleted portion of the E2 CRBD represents an important determinant of MRE16 virus midgut infectivity in A. aegypti.  相似文献   

20.
The efficacy of a rotary-tube type of trickling filter for removing coxsackievirus A9, poliovirus 1, and echovirus 12 suspended in raw settled sewage was investigated. At filtration rates equivalent to about 10 MGD (million gallons per day)/acre (ca. 3,785 m3/day per acre), the filters removed 95% of the poliovirus, 83% of echovirus 12, and 94% of coxsackievirus A9. Coliform, fecal streptococci, biochemical oxygen demand, and chemical oxygen demand removals were remarkably similar, averaging 94, 92, 93, and 95%, respectively. At filtration rates equivalent to about 23 MGD/acre, 59% of the poliovirus, 63% of the echovirus 23, and 81% of the coxsackievirus A9 were removed. Coliform, fecal streptococci, biochemical oxygen demand, and chemical oxygen demand removals at this filtration rate were 68, 75, 72, and 56%, respectively. Viruses were assumed to be adsorbed to the biological slime growing in the filters, but attempts to disassociate the viruses from the slime were unsuccessful, indicating that the slime-virus complex is very stable or that the viruses were somehow inactivated. The data indicate that coliform and fecal streptococci reductions in this type sewage treatment process can be used as an index of virus reduction. Disinfection, however, must be used to ensure a virus-free final effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号