首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Secretion cloning vectors in Escherichia coli   总被引:28,自引:4,他引:28       下载免费PDF全文
The DNA fragment coding for the signal peptide of the OmpA protein, a major outer membrane protein of Escherichia coli, has been inserted into the high-level expression vectors, pIN-III. A foreign DNA fragment can be cloned in any one of the three reading frames at the unique EcoRI, HindIII or BamHI sites immediately after the ompA signal peptide coding sequence. The cloned foreign gene is under the control of both the lpp promoter and the lac promoter-operator. The expression of the gene is regulated by the lac repressor produced by the same vectors. Using the pIN-III-ompA vector, the DNA fragment coding for only the mature portion of beta-lactamase was inserted into the EcoRI site. Upon induction of gene expression, beta-lactamase was secreted into the periplasmic space. The ompA signal peptide was correctly removed resulting in the production of beta-lactamase with four extra amino acid residues (Gly-Ile-Pro-Gly) at its amino terminus due to the linker sequence in the vector. After a 3-h induction, beta-lactamase was accumulated to 20% of total cellular protein without any detectable accumulation of pro-beta-lactamase. Using oligonucleotide-directed site-specific mutagenesis, we have also removed the linker sequence and upon induction of gene expression, beta-lactamase with the authentic NH2-terminal sequence was produced, in even larger amounts than the beta-lactamase with the linker sequence.  相似文献   

2.
Periplasmic secretion of human growth hormone by Escherichia coli   总被引:2,自引:0,他引:2  
The gene coding for human growth hormone (hGH) was fused to the coding sequence for the signal peptide of a secreted Escherichia coli protein. STII heat-stable enterotoxin. This hybrid gene was expressed in E. coli. The signal peptide is properly processed and hGH is secreted in to the periplasmic space. In E. coli, some of the material made is proteolytically clipped or deamidated. The effect of culture conditions on the expression and secretion of hGH was studied and several important parameters were identified, including culture temperature and duration, cultivation pH, K+ levels, plasmid structure, and nutrient supplements. Alteration of culture conditions significantly improves the recovery yield and product quality of human growth hormone.  相似文献   

3.
A DNA fragment coding for the E. coli phoA signal peptide was synthesized and inserted into the expression vector pKK223-3. A single HindIII restriction site is located just at the end of the signal sequence. A gene coding for the proteinase inhibitor hirudin, which has previously been synthesized, was inserted into this HindIII site. The hybrid protein was expressed under control of the tac-promoter and secreted into the periplasm of E. coli. From the periplasmic fraction two processed proteins were isolated. One of these was identical with desulfatohirudin and also had similar biological properties.  相似文献   

4.
The Bacillus subtilis alpha-amylase structural gene (amyE) lacking its own signal peptide coding sequence was joined to the end of the Escherichia coli alkaline phosphatase (phoA) signal peptide coding sequence by using the technique of oligonucleotide-directed site-specific deletion. On induction of the phoA promoter, the B. subtilis alpha-amylase was expressed and almost all the activity was found in the periplasmic space of E. coli. The sequence of the five amino-terminal amino acids of the secreted polypeptide was Glu-Thr-Ala-Asn-Lys-, and thus the fused protein was correctly processed by the E. coli signal peptidase at the end of the phoA signal peptide.  相似文献   

5.
Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have inserted a C-terminally truncated gene of the major outer membrane protein OmpA of Escherichia coli downstream from the promoter and signal sequence of the secretory alpha-amylase of Bacillus amyloliquefaciens in a secretion vector of Bacillus subtilis. B. subtilis transformed with the hybrid plasmid synthesized a protein that was immunologically identified as OmpA. All the protein was present in the particulate fraction. The size of the protein compared to the peptide synthesized in vitro from the same template indicated that the alpha-amylase derived signal peptide was not removed; this was verified by N-terminal amino acid sequence determination. The lack of cleavage suggests that there was little or no translocation of OmpA protein across the cytoplasmic membrane. This is an unexpected difference compared with periplasmic proteins, which were both secreted and processed when fused to the same signal peptide. A requirement of a specific component for the export of outer membrane proteins is suggested.  相似文献   

6.
Wild-type murine epidermal growth factor (mEGF) and mutants with Leu47 replaced by serine and valine, respectively, have been produced by recombinant DNA methodology. A synthetic gene for mEGF was fused to the coding sequence for the signal peptide of the outer membrane protein A (ompA) of Escherichia coli in the secretion vector pIN-III-ompA3, and the recombinant plasmid was used to transform E. coli. Upon induction of gene expression, mEGF and the mutants was expressed and secreted into the periplasmic space. Purification of the wild-type Leu47-mEGF and the mutants was carried out by reversed-phase and anion-exchange high-performance liquid chromatography (HPLC). Amino acid analysis and Western blot analysis further confirmed the identities of the proteins. Specific activities for wild-type and mutant proteins were measured in both mEGF receptor binding and autophosphorylation assays. The recombinant mEGF has specific activities identical with that of mEGF purified from mouse submaxillary glands, while both mutants have reduced specific activities in both bioassays. The data demonstrate the importance of the highly conserved Leu47 residue in mEGF for full biological activity.  相似文献   

7.
The ompF gene codes for a major outer membrane protein of Escherichia coli. A plasmid was constructed in which the structural gene for human beta-endorphin is preceded by the upstream region of the ompF gene consisting of the promoter region and the coding regions for the signal peptide and the N terminus of the OmpF protein. When the plasmid was introduced into E. coli N99, and OmpF-beta-endorphin fused peptide was synthesized and secreted into the culture medium through both the cytoplasmic and outer membranes. The OmpF signal peptide was cleaved correctly during the secretion, indicating that the export of the fused protein across the cytoplasmic membrane was dependent on the signal peptide. The secretion into the culture medium was apparently selective. Neither beta-lactamase nor alkaline phosphatase (both are periplasmic proteins) appeared in the culture medium in significant amounts. The mode of passage of the fused peptide across the outer membrane is discussed.  相似文献   

8.
High-level secretion of human growth hormone by Escherichia coli   总被引:11,自引:0,他引:11  
C N Chang  M Rey  B Bochner  H Heyneker  G Gray 《Gene》1987,55(2-3):189-196
  相似文献   

9.
10.
Escherichia coli heat-stable enterotoxin STp is presumed from its DNA sequence to be synthesized in vivo as a 72-amino-acid residue precursor that is cleaved to generate mature STp consisting of the 18 carboxy-terminal amino acid residues. There are two methionine residues in the inferred STp sequence in addition to the methionine residue at position 1. In order to confirm production of the STp 72-amino-acid residue precursor, we substituted the additional methionine residues by oligonucleotide-directed site-specific mutagenesis. Since these substitutions did not cause a significant change in STp production, it can be concluded that STp is normally synthesized as the 72-amino-acid residue precursor. The length of the STp precursor indicated the existence of a pro sequence between the signal peptide and the mature protein. In order to identify the pro sequence and determine its role in protein secretion, deletion and fusion proteins were made. A deletion mutant in which the gene fragment encoding amino acid residues 22 to 53 of STp was removed was made. STp activity was found in the culture supernatant of cells. Amino acid sequence analysis of the purified STp deletion mutant revealed that the pro sequence encompasses amino acid residues 20 to 54. A hybrid protein consisting of STp amino acids 1 to 53 fused in frame from residue 53 to nuclease A was not secreted into the culture supernatant. These results indicate that the pro sequence does not function to guide periplasmic protein into the extracellular milieu.  相似文献   

11.
The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.  相似文献   

12.
The structural gene (appA) for the periplasmic acid phosphatase (optimum pH 2.5) of Escherichia coli was cloned into a plasmid by using a combination of in vivo and in vitro techniques. The position and orientation of the appA gene within the cloned DNA fragment were identified by using fusions to the alkaline phosphatase gene (phoA) generated by Tn5 IS50L::phoA (TnphoA) insertions. For TnphoA-generated hybrid proteins to have high enzymatic activity, it appears that the phoA gene must be fused to a target gene coding for a signal which promotes protein export. The approach used to identify the appA gene thus appears to provide a simple general means of selectively identifying genes encoding membrane and secreted proteins.  相似文献   

13.
A secretory high-level expression cloning vector designated as pSBC-20 was constructed by inserting a DNA fragment encoding the signal peptide of ompA protein into pBV 220 vector. Any foreign DNA fragment can be inserted into the polylinker cloning sites located after the secretion signal sequence. The cloned foreign gene is under the control of the P R -P L promoter while the expression of the gene is regulated by the cI-gene product. The products are secreted into the periplasmic space of bacteria or into the medium. A recombinant plasmid (pRSD-220) was constructed by inserting the 210 bp from RSD-2, a cDNA encoding a peptide fragment of human sperm protein, into the EcoRI site of pSBC-20. TheE. coli cells transformed with pRSD-220 were propagated at 30 °C, then incubated at 42 °C for several hrs. The cloned gene product was secreted into the culture medium at a high rate. The yield was about 60 mg of gene product per liter of cultured medium.  相似文献   

14.
Subtilisin E, an alkaline serine protease of Bacillus subtilis 168, is first produced as a precursor, pre-pro-subtilisin, which consists of a signal peptide for protein secretion (pre-sequence) and a peptide extension of 77 amino acid residues (pro-sequence) between the signal peptide and mature subtilisin. When the entire coding region for pre-pro-subtilisin E was cloned into an Escherichia coli expression vector, active mature subtilisin E was secreted into the periplasmic space. When the pre-sequence was replaced with the E. coli OmpA signal peptide, active subtilisin E was also produced. When the OmpA signal peptide was directly fused to the mature subtilisin sequence, no protease activity was detected, although this product had the identical primary structure as subtilisin E as a result of cleavage of the OmpA signal peptide and was produced at a level of approximately 10% of total cellular protein. When the OmpA signal peptide was fused to the 15th or 44th amino acid residue from the amino terminus of the pro-sequence, active subtilisin was also not produced. These results indicate that the pro-sequence of pre-pro-subtilisin plays an important role in the formation of enzymatically active subtilisin. It is proposed that the pro-sequence is essential for guiding appropriate folding of the enzymatically active conformation of subtilisin E.  相似文献   

15.
A method is presented for the simple identification of C-terminal fragment of proteins. The method consists of (i) C-terminal processing of a protein by carboxypeptidase and (ii) comparative peptide mapping of the intact and carboxypeptidase-excised protein after fragmentation by endoproteinase or by chemical cleavage. The peptide mapping was performed by means of high-performance reversed-phase chromatography, where the C-terminal fragment was identified as a peptide peak that was lost or decreased in the carboxypeptidase-excised protein. The C-terminal sequence of the protein could be then determined by sequential Edman degradation of the C-terminal fragment collected from the peptide mapping chromatography. The sensitivity of the method depends solely on the peptide detection and subsequent Edman degradation, currently available techniques of which require a nanomole to subnanomole quantity of protein. The present method can be coupled with conventional carboxypeptidase technology because it utilizes a protein portion remaining after carboxypeptidase digestion while released amino acids are needed in the conventional technique. The method would be particularly valuable in finding a gene probe site for a RNA message coding for the C-terminal portion of a molecule.  相似文献   

16.
17.
Two enzymes, the secreted Staphylococcus aureus nuclease A and the Klenow fragment of the cytoplasmic Escherichia coli DNA polymerase I, were fused, at the genetic level, to MalE, the periplasmic maltose-binding protein of E. coli, or to a signal-sequence mutant. The hybrid proteins were synthesized in large amounts by E. coli under control of promoter malEp. The synthesis was repressed with glucose and could be totally switched off in a malT mutant strain. The hybrid between MalE and the nuclease was exported into the periplasmic space. Several criteria demonstrated that a fraction of the hybrid chains with the Klenow polymerase was exported to the periplasm in a signal-sequence-specific manner and ruled out the possibility of a membrane leakage. The hybrid with the Klenow polymerase was not exported and remained in the cytoplasm when carrying a tight signal-sequence mutation in its MalE portion. The hybrid proteins were purified in one step by affinity chromatography on cross-linked amylose. Most of the hybrid chains in the periplasm but only a fraction of those in the other cell compartments had their MalE portion correctly folded. The nuclease and the Klenow polymerase had their full specific activities in the purified hybrids. The potential of MalE as a vector for the production, export and purification of desirable proteins in E. coli is discussed.  相似文献   

18.
Analysis of signals for secretion in the staphylococcal protein A gene.   总被引:16,自引:1,他引:15  
L Abrahmsn  T Moks  B Nilsson  U Hellman    M Uhln 《The EMBO journal》1985,4(13B):3901-3906
Different constructs of the gene encoding staphylococcal protein A were introduced in Staphylococcus aureus and S. xylosus as well as Escherichia coli. The product of the gene without the cell wall anchoring domain was efficiently secreted in all three hosts. N-terminal sequencing of the affinity-purified mature protein revealed a common processing site after the alanine residue at position 36. In contrast, when an internal IgG-binding fragment of protein A (region B) was inserted after the protein A signal sequence, the product was poorly secreted and N-terminal sequencing revealed no processing at the normal site. This demonstrates that the structure of the polypeptide chain beyond the signal peptide cleavage site can affect cleavage. Another construct, containing the N-terminal IgG-binding part of the mature protein A (region E) followed by region B, gave correct processing and efficient secretion. Unexpectedly, the gene product, EB, was not only secreted and correctly processed, but was also excreted to the culture medium of E. coli. Secretion vectors containing the protein A signal sequence were constructed to facilitate secretion of foreign gene products. Insertion of the E. coli gene phoA, lacking its own promoter and signal sequence, led to efficient secretion of alkaline phosphatase both in E. coli and S. aureus.  相似文献   

19.
The diagnostically important surface antigen pre-S2 of hepatitis B virus was produced in large amounts in the periplasmic space of Escherichia coli. The DNA fragments (pre-S2) coding the pre-S2 antigen were tandemly duplicated or triplicated and ligated in the same reading frame to a fragment containing the promoter and the signal sequence of the alkaline phosphatase-coding gene (phoA) of E. coli. Further, a DNA fragment (bla) coding mature beta-lactamase was joined to the region coding the C terminus of the pre-S2 repeat to stabilize the gene product. Upon induction of the phoA-(pre-S2)3-bla fusion gene, the fusion protein was produced at up to 30% of the total cellular protein. Fractionation of the cellular components and trypsin accessibility of the product showed that the antigen was secreted in the periplasm and formed inclusion bodies there. The signal sequence of alkaline phosphatase was found to be correctly processed in E. coli.  相似文献   

20.
H Kadokura  K Yoda  M Imai    M Yamasaki 《Applied microbiology》1990,56(9):2742-2747
The diagnostically important surface antigen pre-S2 of hepatitis B virus was produced in large amounts in the periplasmic space of Escherichia coli. The DNA fragments (pre-S2) coding the pre-S2 antigen were tandemly duplicated or triplicated and ligated in the same reading frame to a fragment containing the promoter and the signal sequence of the alkaline phosphatase-coding gene (phoA) of E. coli. Further, a DNA fragment (bla) coding mature beta-lactamase was joined to the region coding the C terminus of the pre-S2 repeat to stabilize the gene product. Upon induction of the phoA-(pre-S2)3-bla fusion gene, the fusion protein was produced at up to 30% of the total cellular protein. Fractionation of the cellular components and trypsin accessibility of the product showed that the antigen was secreted in the periplasm and formed inclusion bodies there. The signal sequence of alkaline phosphatase was found to be correctly processed in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号