首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The protein kinase CK2 is composed of two catalytic - or - and two regulatory -subunits. In mammalian cells there is ample evidence for the presence of individual CK2 subunits beside the holoenzyme. By immunofluorescence studies using peptide antibodies which allow us to detect the CK2-, - and -subunits we found all three subunits to be co-localized with a 58 KDa Golgi protein which is specific for the Golgi complex. Subfractionation studies using dog pancreas cells revealed the presence of all three subunits of CK2 at the smooth endoplasmic reticulum (sER)/Golgi fraction whereas the rough endoplasmic reticulum (rER) harboured only the catalytic - and -subunits. We found that the microsomal preparation from dog pancreas cells contained CK2 which phosphorylated a CK2 specific synthetic peptide and which was heparin sensitive. Furthermore, we could immunoprecipitate the CK2-subunit that exhibited a kinase activity which phosphorylated a CK2 specific substrate and which was heparin sensitive. Protease digestion experiments revealed that the CK2 subunits were located on the cytosolic side of the rER and the sER/Golgi complex. Thus, we could demonstrate an asymmetric distribution of the CK2 subunits at the rER and sER/Golgi complex. Since the CK2- and -subunits exhibit a substrate specificity which is different from the CK2 holoenzyme one might speculate that the asymmetric distribution of the CK2 holoenzyme and the CK2 catalytic subunits may have regulatory functions.  相似文献   

2.
Plasma membrane cholesterol both regulates and is regulated by effector proteins in the endoplasmic reticulum (ER) through a feedback system that is poorly understood. We now show that ER cholesterol varies over a fivefold range in response to experimental agents that act upon protein kinase C (PKC). Agents that activate Ca(2+)-dependent PKC [phorbol-12-myristate-13-acetate (PMA) and bryostatin 1] increased the level of ER cholesterol; inhibitors such as staurosporine and calphostin C decreased it. Rottlerin, a selective inhibitor of the PKC-delta isoform, also increased ER cholesterol. The esterification of plasma membrane cholesterol was altered by protein kinase C-directed agents in a corresponding fashion. Furthermore, the regulatory effect of plasma membrane cholesterol on the esterification of ER cholesterol was blocked by PKC-directed agents. These findings suggest that multiple protein kinase C isoforms participate in the regulation of ER cholesterol and therefore in cholesterol homeostasis.  相似文献   

3.
Zhu XM  Liu XH  Cai LR  Xu FF 《生理学报》2006,58(5):463-470
钙网蛋白(calreticulin,CRT)和caspase-12是重要的内质网(endoplasmic reticulum,ER)应激分子,本实验在心肌细胞低氧/复氧(hypoxia/reoxygenation,H/R)模型上观察低氧预处理(hypoxic preconditioning,HPC)对CRT和caspase-12表达及活化的影响,探讨内质网应激(endoplasmic reticulum stress,ERS)在HPC保护机制中的意义及其细胞信号转导机制。原代培养的Sprague-Dawley乳鼠心肌细胞随机分为6组:H/R组、HPC+H/R组、SB203580+HPC+H/R组、SP600125+HPC+H/R组、HPC组和对照组。以细胞存活率、乳酸脱氢酶(lactate dehydrogenase,LDH)活性及流式细胞术检测细胞损伤情况:Western blot方法检测CRT和caspase-12表达、活化及p38丝裂素活化蛋白激酶(mitogen—activated protein kinases,MAPK)、cJun N-terminal kinase(JNK)磷酸化水平。结果表明:(1)HPC具有细胞保护作用,与H/R组比较,HPC+H/R组细胞凋亡率和LDH漏出分别降低6.6%和70.0%,存活率增高6.4%:HPC前以特异性p38MAPK抑制剂SB203580预孵育消除HPC的保护作用,与HPC+H/R组相比,细胞凋亡率和LDH漏出分别增高5.4%和2.1倍,存活率降低5.4%,JNK特异性抑制剂SP600125预孵育对HPC的保护作用无明显影响。(2)H/R明显上调CRT表达(较对照组高8.1倍)和caspase-12活性(较对照组高33.2倍);单独HPC可诱导CRT表达增多(较对照组高2.6倍),但上调程度较H/R组低60%。H/R前进行HPC降低CRT过表达程度(降低72.4%)及caspase-12活化水平(降低59.6%)。(3)HPC前应用p38MAPK抑制剂,抑制CRT表达上调(分别较HPC+H/R组和HPC组低63.9%和71.9%),并消除HPC减轻H/R上调caspase-12活性的作用(较HPC+H/R组高7.1倍);HPC前抑制JNK活性对CRT、caspase-12表达和活化均无明显影响。上述结果提示:HPC可激发适当的ERS,抑制H/R诱导的过度ERS,减少ER凋亡信号介导的细胞凋亡。p38MAPK信号途径在HPC诱导的ER应激分子表达、抑制ER凋亡信号分子活化等机制中发挥重要作用。  相似文献   

4.
A calmodulin-dependent protein kinase (MCK1) appeared important in regulating flowering in tobacco. The expression of modifiedMCK1 that lacks the C-terminal including calmodulin-binding domain upsets the flowering developmental program, leading to the abortion of flower primordia initiated on the main axis of the plant and, as well, caused the prolongation of the vegetative phase in axillary buds. The abortion process of flowers began first in the developing anthers and subsequently the entire flower senesces. In axillary buds the prolonged vegetative phase was characterized by atypical elongated, narrow, twisted leaves. These results suggested a role for calmodulin-dependent protein kinase homologs in mediating flowering.  相似文献   

5.
Identification of estrogenresponsive genes is important to understand the molecular mechanisms of estrogen action. Suppression subtractive hybridization was employed to screen estrogenresponsive genes in chick liver. A single injection of estrogen into 6weekold chick induced upregulation of several known genes encoded for yolk proteins, such as Vitellogenin I and II and very low density lipoprotein II (apo-VLDL II). One novel sequence displayed a dramatic change (3fold increase) in response to estrogen treatment. This cDNA fragment was extended and the resultant sequence was analyzed. Translated amino acid sequence was 90, 88, 83 and 87% identical to the Larginine:glycine amidinotransferase of pig, rat, frog and human, respectively. The sequence has a conservative catalytic site of Larginine:glycine amidinotransferase. The expression pattern of this gene in organs is consistent with previous reports of Larginine:glycine amidinotransferase in chick. Thus, this clone represented the chicken Larginine:glycine amidinotransferase. It appeared that estrogeninduced alteration of arginine:glycine amidinotransferase was not dependent on protein synthesis, because concurrent administration of cycloheximide did not affect the estrogenmediated expression pattern. This is the first study demonstrating that Larginine:glycine amidinotransferase is a target of the estrogen receptor.  相似文献   

6.
Summary Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3,5-monophosphate (cAMP)-dependent and by calcium · calmodulin-dependent protein kinases on a 27 000 proteolipid, called phospholamban. Both types of phosphorylation are associated with an increase in the initial rates of Ca2+ transport by SR vesicles which reflects an increased turnover of elementary steps of the calcium ATPase reaction sequence. The stimulatory effects of the protein kinases on the calcium pump may be reversed by an endogenous protein phosphatase, which can dephosphorylate both the CAMP-dependent and the calcium · calmodulin-dependent sites on phospholamban. Thus, the calcium pump in cardiac sarcoplasmic reticulum appears to be under reversible regulation mediated by protein kinases and protein phosphatases.  相似文献   

7.
Streptococcus mutans is implicated in coronal and dental root decay, and in endocarditis. Comparative study of the amino acid sequence of S. mutans 47 kDa wall-associated protein A (WapA) revealed a collagen-binding domain (CBD) at the N-terminal region. Recombinant AgA (WapA truncated at the carboxyterminal end) was isolated, biotin-labeled, and analyzed by Solid Phase Binding Assay. The results showed that biotin-labeled AgA bound significantly and in a dose-dependent manner to immobilized collagen type I, and to a lesser extent to fibronectin, but not to collagen type IV or laminin. Binding of biotin-labeled S. mutans cells to collagen-coated surfaces was significantly inhibited by antibody to WapA or AgA (P<0.001). The results obtained confirmed the collagen-binding activity of CBD in AgA and WapA, and suggested that WapA may be used, not only as a vaccine against coronal and dental root caries, but also against S. mutans-mediated endocarditis.  相似文献   

8.
A rabbit heart membrane fraction enriched in sarcoplasmic reticulum was incubated in a reaction mixture containing [gamma-32P]ATP. The catalytic subunit of cyclic AMP-dependent protein kinase enhanced the 32P-labelling of both phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate. Ca2 +-calmodulin also increased the 32P-incorporation into both polyphosphoinositides. Upon SDS gel-electrophoretic analysis of the membrane proteins, phospholamban was found to be concurrently phosphorylated by the exogenous catalytic subunit as well as by an endogenous Ca2+-calmodulin-dependent protein kinase.  相似文献   

9.
The AMP-activated protein kinase (AMPK) is a heterotrimeric serine/threonine protein kinase important for the responses to metabolic stress. It consists of a catalytic alpha subunit and two non-catalytic subunits, beta and gamma, and is regulated both by the allosteric action of AMP and by phosphorylation of the alpha and beta subunits catalyzed by AMPKK(s) and autophosphorylation. The Thr172 site on the alpha subunit has been previously characterized as an activating phosphorylation site. Using bacterially expressed AMPK alpha1 subunit proteins, we have explored the role of Thr172-directed AMPKKs in alpha subunit regulation. Recombinant alpha1 subunit proteins, representing the N-terminus, have been expressed as maltose binding protein (MBP) 6x His fusion proteins and purified to homogeneity by Ni(2+) chromatography. Both wild-type alpha1(1-312) and alpha1(1-312)T172D are inactive when expressed in bacteria, but the former can be fully phosphorylated (1 mol/mol) on Thr172 and activated by a surrogate AMPKK, CaMKKbeta. The corresponding AMPKalpha1(1-392), an alpha construct containing its autoinhibitory sequence, can be similarly phosphorylated, but it remains inactive. In an insulinoma cell line, either low glucose or 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) treatment leads to activation and T172 phosphorylation of endogenous AMPK. Under the same conditions of cell incubation, we have identified an AMPKK activity that both phosphorylates and activates the recombinant alpha1(1-312), but this Thr172-directed AMPKK activity is unaltered by low glucose or AICAR, indicating that it is constitutively active.  相似文献   

10.
We have isolated a putative serine/threonine receptor kinase gene with an expression pattern indicating that it may play a role in the stylar response to pollination. Differential display PCR was used to select tobacco mRNAs with increased accumulation following pollination. NTS16, a cDNA identified by this method, is homologous to a ca. 2.4 kb mRNA primarily expressed in pistil tissues. Levels of this mRNA increase during floral development and are further increased by pollination reaching maximal accumulation 12–18 hours after pollination and then declining. mRNA levels can also be increased by the application of ethylene to unpollinated flowers. A polypeptide encoded by the NTS16 open reading frame has sequence similarity to the catalytic domain of several receptor protein kinases from plants including the S-receptor kinases implicated in the rejection of self-pollen in Brassica species and the Pto gene product of tomato which confers resistance to a bacterial pathogen.  相似文献   

11.
Although A-type cyclin-dependent kinase A (CDKA) is required for plant cell division, our understanding of how CDKA is activated before the onset of commitment to cell division is limited. Here we show that phosphorylation of threonine 161 (T161) in plant CDKA is required for activation of its associated kinase. Western blot analysis revealed that phosphorylation of CDKA T161 increased greatly, in parallel with activation of p13(suc1)-associated kinase activity, when stationary-phase tobacco BY-2 cells were subcultured into fresh medium. Although induced over-expression of a dominant-negative CDKA mutant (D146N) fused with green fluorescent protein (GFP) in BY-2 cells resulted in elongated cells after cell division was arrested, over-expression of this CDKA mutant with a non-phosphorylatable alanine in place of T161 (T161A) had no effect on cellular growth. However, immunoprecipitates of both GFP-fused CDKAs exhibited virtually no histone H1 kinase activity, suggesting that both mutants formed kinase-inactive complexes. In a baculovirus expression system, the recombinant CDKA(T161A)/cyclin D complex possessed no detectable kinase activity, indicating that phosphorylation of T161 is required for CDKA activation. To further elucidate the role of T161 phosphorylation, we used a loss-of-function mutation in the CDKA;1 gene, which encodes the only Arabidopsis CDKA. This mutant displays male gametophyte lethality, and produces bicellular pollen grains instead of the tricellular grains produced in wild-type plants. Introduction of CDKA;1(T161E)-GFP, which mimics phosphorylated T161, resulted in successful complementation of the cdka-1 mutation, whereas no recovery was observed when CDKA;1(T161A)-GFP was introduced. Thus, phosphorylation of T161 in Arabidopsis CDKA;1 is essential for cell division during male gametogenesis.  相似文献   

12.
13.
14.
Elongation factor 2 kinase (eEF-2K), also known as calmodulin-dependent protein kinase III, is a member of the calmodulin-mediated signaling pathway that links activation of cell surface receptors to cell division. The activity of eEF-2K is increased in many human cancers and may be a valid target for anti-cancer treatment. It is one of the unconventional eukaryotic protein kinases with respect to its structural domains in comparison to other members of the serine/threonine protein kinase superfamily. eEF-2K is highly conserved in nature. For example, the amino acid sequence of human eEF-2K is 90% identical to mouse and rat eEF-2Ks and 40% identical to that of the C. elegans enzyme. Therefore it has been difficult to generate high-titer and high-specificity antibodies to the human enzyme by traditional techniques. Patients with systemic lupus erythematosus (SLE) produce auto-antibodies to a variety of cellular proteins, including members of the protein translation apparatus. Hence, we developed an ELISA assay that could detect anti-eEF2K antibodies from sera of SLE patients using purified eEF-2K as an antigen. We screened 117 sera from SLE patients. High-titer anti-eEF-2K antibodies were detected in 72 subjects. One of the high-titer sera was used for further characterization. The auto-antibody recognized eEF-2K on immunoblots and immunoprecipitated the kinase with intact enzyme activity. In conclusion, anti-eEF-2K antibodies are found in sera of SLE patients and are useful tools to study the role of this highly conserved enzyme.  相似文献   

15.
Endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that regulates protein synthesis and maturation. Perturbation of ER functions leads to ER stress, which has been previously associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress has been involved in apoptosis induced by several cytotoxic agents. Choline kinase α (ChoKα), the first enzyme in the Kennedy pathway, is responsible for the generation of phosphorylcholine (PCho) that ultimately renders phosphatidylcholine. ChoKα overexpression and high PCho levels have been detected in several cancer types. Inhibition of ChoKα has demonstrated antiproliferative and antitumor properties; however, the mechanisms underlying these activities remain poorly understood. Here, we demonstrate that ChoKα inhibitors (ChoKIs), MN58b and RSM932A, induce cell death in cancer cells (T47D, MCF7, MDA-MB231, SW620 and H460), through the prolonged activation of ER stress response. Evidence of ChoKIs-induced ER stress includes enhanced production of glucose-regulated protein, 78 kDa (GRP78), protein disulfide isomerase, IRE1α, CHOP, CCAAT/enhancer-binding protein beta (C/EBPβ) and TRB3. Although partial reduction of ChoKα levels by small interfering RNA was not sufficient to increase the production of ER stress proteins, silencing of ChoKα levels also show a decrease in CHOP overproduction induced by ChoKIs, which suggests that ER stress induction is due to a change in ChoKα protein folding after binding to ChoKIs. Silencing of CHOP expression leads to a reduction in C/EBPβ, ATF3 and GRP78 protein levels and abrogates apoptosis in tumor cells after treatment with ChoKIs, suggesting that CHOP maintains ER stress responses and triggers the pro-apoptotic signal. Consistent with the differential effect of ChoKIs in cancer and primary cells previously described, ChoKIs only promoted a transient and moderated ER stress response in the non-tumorogenic cells MCF10A. In conclusion, pharmacological inhibition of ChoKα induces cancer cell death through a mechanism that involves the activation of exaggerated and persistent ER stress supported by CHOP overproduction.  相似文献   

16.
17.
Retinal progenitor cells (RPCs) are neural stem cells able to differentiate into any normal adult retinal cell type, except for pigment epithelial cells. Retinoic acid (RA) is a powerful growth/differentiation factor that generally causes growth inhibition, differentiation and/or apoptosis. In this study, we demonstrate that RA not only affects mouse RPC differentiation but also improves cell survival by reducing spontaneous apoptotic rate without affecting RPC proliferation. The enhanced cell survival was accompanied by a significant upregulation of the expression of protein kinase A (PKA) and several protein kinase C (PKC) isoforms. Treatment of cells grown in RA-free media with 8-bromoadenosine3',5'-cyclic monophosphate, a known activator of PKA, resulted in an anti-apoptotic effect similar to that caused by RA; whereas the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesul- fonamide dihydrochloride led to a significant (-32%) increase in apoptosis. In contrast, treatment of RPCs with any of two PKC selective inhibitors, 2,2',3,3',4,4'-hexahydroxy-1,1 '-biphenyl-6,6'-dimethanol dimethyl ether and bisindolylmaleimide XI, led to diminished apoptosis; while a PKC activator, phorbol 12-myristate 13-acetate, increased apoptosis. These and other data suggest that the effect of RA on RPC survival is mostly due to the increased anti-apoptotic activity elicited by PKA, which might in turn be antagonized by PKC. Such a mechanism is a new example of tight regulation of important biological processes triggered by RA. Although the detailed mechanisms remain to be elucidated, we provide evidence that the pro-survival effect of RA on RPCs is not mediated by changed expression of p53 or bcl-2, and appears to be independent of 15-amyloid, Fas ligand, TNF-α, ganglioside GM1 and ceramide C 16-induced apoptotic pathways.  相似文献   

18.
The microtubule cytoskeleton is a dynamic filamentous structure involved in many key processes in plant cell morphogenesis including nuclear and cell division, deposition of cell wall, cell expansion, organelle movement and secretion. The principal microtubule protein is tubulin, which associates to form the wall of the tubule. In addition, various associated proteins bind microtubules either to anchor, cross-link or regulate the microtubule network within cells. Biochemical, molecular biological and genetic approaches are being successfully used to identify these microtubule-associated proteins (MAPs) in plants, and we describe recent progress on three of these proteins.  相似文献   

19.
The relation between CaM kinase II activity and high Ca2+-mediated stress responses was studied in cultured vascular smooth muscle cells. Treatment with ionomycin (1 M) for 5 min caused a significant loss of CaM kinase II activity in whole cell homegenates and prominent vesiculation of the endoplasmic reticulum (ER). Similar losses of CaM kinase II activity were observed in the soluble lysate as assessed by activity measurements and Western blotting. Examination of the post-lysate particulate fraction showed that the loss of CaM kinase II from the soluble lysate was accompanied by a redistribution of CaM kinase II to this fraction. The ionomycin-mediated response was limited to this concentration (1 M); lower concentrations of ionomycin as well as stimulation with angiotensin II (1 M) or ATP (100 M) did not cause a shift in CaM kinase II distribution. Treatment with neither the CaM kinase II inhibitor KN-93 nor the phosphatase inhibitor okadaic acid altered the ionomycin-induced redistribution indicating that CaM kinase II activation and/or phosphorylation was not part of the mechanism. The response, however, was eliminated when the cells were treated in Ca2+-free medium. Washout of ionomycin led to only a partial restoration of the kinase activity in the soluble fraction after 10 min. Immunofluorescence microscopy of resting cells indicated colocalization of antibodies to CaM kinase II and an ER protein marker. ER vesiculation induced by ionomycin coincided with a parallel redistribution of CaM kinase II and ER marker proteins. These data link ionomycin-induced ER restructuring to a progressive redistribution of CaM kinase II protein to an insoluble particulate fraction and loss of cellular CaM kinase II activity. We propose that redistribution of CaM kinase II and loss of cellular activity are components of a common Ca2+-overload induced cellular stress response in cells.  相似文献   

20.
Co-injection of wortmannin (inhibitor of phosphatidylinositol-3 kinase, PI3K) and GF109203X(inhibitor of protein kinase C, PKC) into the rat brain was found to induce spatial memory deficiency and enhance tau hyperphosphorylation in the hippocampus of rat brain. To establish a cell model with durative Alzheimer-like tau hyperphosphorylation in this study, we treated N2a neuroblastoma cells with wortmannin and GF109203X separately and simultaneously, and measured the glycogen synthase kinase 3 (GSK-3)activity by y-32p-labeling and the level of tau phosphorylation by Western blotting. It was found that the application of wortmannin alone only transitorily increased the activity of GSK-3 (about 1 h) and the level of tau hyperphosphorylation at Ser^396/Ser^404 and Ser^199/Ser^202 sites (no longer than 3 h); however, a prolonged and intense activation of GSK-3 (over 12 h) and enhanced tau hyperphosphorylation (about 24 h) were observed when these two selective kinase inhibitors were applied together. We conclude that the simultaneous inhibition of PI3K and PKC can induce GSK-3 overactivation, and further strengthen and prolong the Alzheimerlike tau hyperphosphorylation in N2a cells, suggesting the establishment of a cell model with early pathological events of Alzheimer‘s disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号