首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene pool of five ethnic groups of the Central Asian population was characterized using nine human-specific polymorphic insertion/deletion loci (ACE, PLAT, APOA1, PV92, F13B, A25, B65, CD4, Mt-Nuc). It has been shown for the first time that at the CD4 locus, the frequency of Alu(-) is inversely related to the Mongoloid component of the population. For the Central Asian populations, the lowest and highest frequencies of the Alu deletion at locus CD4 were recorded respectively in Dungans (0.04), immigrants from China, and Tajiks (0.15). The coefficient of gene differentiation in the Central Asian populations for all the genes was 2.8%, which indicates a relatively low level of population genetic subdivision in this region. The unity of the gene pool of the Central Asian Caucasoids was shown.  相似文献   

2.
The DXS52 polymorphic locus mapping to the 5'-region of the blood-clotting factor VIII gene on the X chromosome was genotyped in seven Volga-Ural ethnic groups (Bashkirs, Tatars, Chuvashes, Maris, Mordovians, Udmurts, and Komis). A total of 47 different genotypes and 15 allelic variants of this locus were described. Substantial intra- and interpopulation heterogeneity of the ethnic groups studied in respect to frequency and distribution of the DXS52 alleles and genotypes was demonstrated. The unimodal DXS52 allele frequency distribution pattern with the peak at 1690 bp was typical to Mordovians and Komis. Chuvashes and Maris, as well as Udmurts, were characterized by bimodal frequency distribution patterns, with the peaks at 1690 and 670 bp, and 1690 and 1390 bp, respectively. Moreover, Bashkirs and Tatars displayed trimodal DXS52 allele frequency distribution patterns with the peaks at 1690, 1390, and 670 bp. The DXS52 allele frequency distribution patterns described in populations of the Volga-Ural region were found to be remarkably different from those established for the mixed Moscow population and the population of Western Europe. These data indicate that the DXS52 locus is highly informative, and this polymorphic system can serve as a molecular marker for population genetic studies.  相似文献   

3.
DNA polymorphism was studied in the human diallelic loci MET and D7S23 linked to the cystic fibrosis gene, diallelic locus PAH (the phenylketonuria gene), polyallelic locus ApoB, and hypervariable DNA sequences identified by means of DNA fingerprinting with phage M13 DNA as a probe. The obtained data were used to calculate genetic distances and perform taxonomic analysis of populations of the Volga-Ural region (Turkic and Finno-Ugric ethnic groups). The DNA polymorphic systems studied were demonstrated to be highly informative; their advantages and disadvantages were revealed. According to the data obtained, the genetic distances that were calculated from DNA fingerprints more adequately reflected the genetic relationships between the populations studied than the distances calculated from the allelic frequencies of four DNA loci. It was also found that, in population studies, it would suffice to analyze only the 3.5-6 kb fingerprint fragment that is most suitable for reading, rather than the entire fingerprint obtained.  相似文献   

4.
The review considers the main results of molecular analysis of the genes responsible for cystic fibrosis, phenylketonuria, Wilson-Konovalov disease, Duchenne-Becker progressive muscular dystrophy, myotonic dystrophy, Huntington's disease, and nonsyndromic hereditary hypoacusis in populations of the Volga-Ural region. The results were obtained in the past ten years within the framework of the Russian program Human Genome. The mutation spectra and frequencies of these genes were characterized in the major ethnic groups (Bashkirs, Tatars, Russians) of Bashkortostan. Several diseases were associated with particular alleles or haplotypes of polymorphic loci of relevant genes. The results were used to develop DNA diagnostic procedures optimal for the region and to establish the origin of the mutations involved.  相似文献   

5.
The gene pool of five ethnic groups of the Central Asian population was characterized using nine human-specific polymorphic insertion/deletion loci (ACE, PLAT, APOA1, PV92, F13B, A25, B65, CD4, Mt-Nuc). It has been shown for the first time that at the CD4 locus, the frequency of Alu(–) is inversely related to the Mongoloid component of the population. For the Central Asian populations, the lowest and highest frequencies of the Alu deletion at locus CD4 were recorded respectively in Dungans (0.04), immigrants from China, and Tajiks (0.15). The coefficient of gene differentiation in the Central Asian populations for all the genes was 2.8%, which indicates a relatively low level of population genetic subdivision in this region. The unity of the gene pool of the Central Asian Caucasoids was shown.  相似文献   

6.
The PCR technique was used to analyze the TaqIA- and NcoI-polymorphisms at the dopamine D2 receptor gene (DRD2) in eight populations of the Volga-Ural region belonging to Turkic (Bashkirs, Tatars, and Chuvashes), Finno-Ugric (Maris, Komis, Mordovians, and Udmurts), and Eastern-Slavic (Russians) ethnic groups. Population-specific patterns of the main TaqIA- and NcoI-polymorphisms distribution were established. Specific trends in changes of genotype and allele frequency of the dopamine D2 receptor gene depending on the ethnicity of the population were revealed.  相似文献   

7.
The restriction fragment length polymorphism (RFLP) of the major noncoding region of mitochondrial DNA (mtDNA) was studied in the Bashkir (N = 217), Tatar (N = 57), Chuvash (N = 44), Mari (N = 52), Mordovian (N = 55), Udmurt (N = 62), and Komi (N = 45) populations. Of seven polymorphic AvaII, BamHI, EcoRV, KpnI, and RsaI restriction sites, five were found in Bashkirs and Tatars, and four were found in each of the other populations. In total, 13 mitotypes were detected, and only three of them were common to all populations from the Volga-Ural region. The parameters of gene diversity were calculated with respect to the polymorphic sites and mitotypes. Comparison with published data revealed both Mongoloid and Caucasoid components in the gene pool of the modern populations from the Volga-Ural region. The Mongoloid component was prevalent in the mitochondrial gene pool, which is consistent with historical, anthropological, and ethnographic data.  相似文献   

8.
Eleven populations of the Volga-Ural region were analyzed with respect to three intragenic polymorphisms of the Huntington disease gene (IT15), including highly polymorphic (CAG)n and moderately polymorphic (CCG)n of exon 1 and neutral del2642 of exon 58. In the case of (CAG)n, 101 genotypes were observed, with genotype number varying from 15 in Southeastern Bashkirs to 34 in Mari. Allele diversity RS ranged from 9.70 in Southeastern Bashkirs to 18.00 in Chuvash, averaging 13.79 +/- 2.12. The (CAG)n allele frequency distribution was unimodal and had a maximum at (CAG)17. In the case of (CCG)n, six alleles with 6-10 or 12 repeats were observed. RS was 4.13 +/- 0.44, ranging from 3.73 in Udmurts to 4.99 in Tatars. In the case of del2642, allele del- was detected at a frequency 0.830 in Mari to 0.932 in Udmurts. Of all Volga-Ural ethnic populations, Finno-Ugric ones proved to be most heterogeneous with respect to the three polymorphisms, whereas Turkic populations and, in particular, Bashkirs were homogeneous. Micro-differentiation of the Volga-Ural populations corresponded to the European type.  相似文献   

9.
Polymorphism at the HLA-DRB1 locus in six Turkic (Bashkirs, Tatars, and Chuvashes) and Finno-Ugric (Udmurts, Maris, and Komis) populations of the Volga--Ural region was studied by PCR. A total of 12 DRB1 specificities displaying population-specific frequency distribution patterns were described. The most frequently observed specificities in Bashkirs and Udmurts were DRB1*07 (25 and 34%, respectively) and *15 (by 15%). In Tatars the prevalence of *04 (18%), *01 (17%), *07 (16%) and *15 (13%) specificities was observed, while in Chuvashes these were *04 (28%), *11 (18%), *01 (16%), and *07 (16%). High frequencies of *11 (21%), *04 (17%), *01 (13%), and *04 (11%) specificities were characteristic of Komis, whereas Maris were distinguished by high frequencies of *01 (23%), *11 (14%), *07 (13%), and *04 (11%). In general, the pattern of DRB1 allelic polymorphism in populations of the Volga-Ural region, occupying the intermediate position between the Caucasoid- and Mongoloid-specific allelic frequency distribution patterns, was consistent with their anthropological type rather than with their linguistic affiliation.  相似文献   

10.
11.
The MspI restriction polymorphism of the serotonin 2A receptor gene (5HT2A) was typed in populations of the Volga-Ural region (Bashkirs, Chuvashes, Tatars, Udmurts, Maris, Mordovians, Komis, and Russians inhabiting the Republic of Bashkortostan). Population-specific patterns of the main polymorphism indices distribution were established. Specific trends in the changes of genotype and allele frequency of the 5HT2A gene depending on the ethnicity of the population were revealed.  相似文献   

12.
Evidence is provided for genetic and biological variation among Leishmania major strains that correlates with their geographical origin. The host-parasite relationship also appears to be specific. Great gerbils, Rhombomys opimus, and fat sand rats, Psammomys obesus, are the main reservoir hosts in Central Asia and the Middle East, respectively. However, the Central Asian parasite failed to infect the Middle Eastern rodent host in the laboratory, and vice versa. A permissively primed intergenic polymorphic (PPIP)-PCR and a single-stranded conformation polymorphism (SSCP)-PCR exposed genetic polymorphism among 30 strains of L. major from different geographical regions. This was verified by subsequent sequencing of DNA from the same strains using four genomic targets: (a) the NADH-dehydrogenase (NADH-DH) gene, (b) the 6-phosphogluconate dehydrogenase (6PGD) gene, (c) the ribosomal internal transcribed spacers, and (d) an anonymous DNA sequence originally amplified with random primers. All the genetic markers indicated that the nine Central Asian strains were a separate homogenous genetic group. The Middle Eastern strains formed another geographical group that displayed heterogeneity corresponding with their different Middle Eastern locations. Molecular markers and host-parasite relationships confirmed that Central Asian and Middle Eastern strains are genetically and biologically distinct sub-populations of L. major. Three African strains of L. major were genetically closer to the Middle Eastern strains, and a representative one did infect fat sand rats, but they had distinct permissively primed inter-genic polymorphic PCR patterns and internal transcribed spacer 2 types.  相似文献   

13.
This study investigates the role of climate in determining phytogeographic regions, focusing particularly on the Irano-Turanian floristic region in SW and Central Asia. A set of simple climatic variables and bioclimatic indices were used to prepare climate-space scatter plots and climate diagrams. The climate data were also subjected to multivariate analyses (PCA and Regression tree) in order to develop a bioclimatic characterization of the Irano-Turanian region in comparison with the adjacent Mediterranean, Saharo-Sindian, Euro-Siberian, and Central-Asiatic regions. Phytogeographic regions of SW and Central Asia display distinct bioclimatic spaces with small overlaps. The Irano-Turanian region is differentiated from surrounding regions by continentality, winter temperature, and precipitation seasonality. Continentality is the most important bioclimatic factor in differentiating it from the Mediterranean and Saharo-Sindian regions and is responsible for floristic differences among sub-regions of the Irano-Turanian region. In our case study, the Irano-Turanian region is a nearly independent bioclimatic unit, distinct from its surrounding regions. Hence, it is suggested that the term “Irano-Turanian bioclimate” be used to describe the climate of most of the continental Middle East and Central Asia. Among different sub-regions, the west-central part of this floristic region (“IT2 sub-region”) is a major center of speciation and endemism. Our case study demonstrates that climate is a primary determinant of phytogeographic regionalization. Although modern climate and topography are strong control parameters on the floristic composition and geographical delimitation of the Irano-Turanian region, the complex paleogeographic and paleoclimatic history of SW Asia has also influenced the Tertiary and Quaternary evolution of the Irano-Turanian flora, with additional impacts by the long-lasting historic and present land-use in this region. Many Irano-Turanian montane species are threatened by global warming, and particular conservation measures are needed to protect the Irano-Turanian flora in all sub-regions.  相似文献   

14.
The insertion-deletion polymorphism of the serotonin transporter gene (SLC6A4) was studied using the polymerase chain reaction (PCR) in eight populations from the Volga-Ural region (the Bashkir, Chuvash, Tatar, Udmurt, Mari, Mordovian, and Komi populations and the population of Russians living in the Arkhangel's skii raion of Bashkortostan). For this polymorphic system, the pattern of distribution of main population parameters was established in the region studied. Depending on population ethnicity, specific trends were revealed in the pattern of frequencies of alleles and genotypes of gene SLC6A4.  相似文献   

15.
African forests within the Congo Basin are generally mapped at a regional scale as broad-leaved evergreen forests, with the main distinction being between terra-firme and swamp forest types. At the same time, commercial forest inventories, as well as national maps, have highlighted a strong spatial heterogeneity of forest types. A detailed vegetation map generated using consistent methods is needed to inform decision makers about spatial forest organization and their relationships with environmental drivers in the context of global change. We propose a multi-temporal remotely sensed data approach to characterize vegetation types using vegetation index annual profiles. The classifications identified 22 vegetation types (six savannas, two swamp forests, 14 forest types) improving existing vegetation maps. Among forest types, we showed strong variations in stand structure and deciduousness, identifying (i) two blocks of dense evergreen forests located in the western part of the study area and in the central part on sandy soils; (ii) semi-deciduous forests are located in the Sangha River interval which has experienced past fragmentation and human activities. For all vegetation types enhanced vegetation index profiles were highly seasonal and strongly correlated to rainfall and to a lesser extent, to light regimes. These results are of importance to predict spatial variations of carbon stocks and fluxes, because evergreen/deciduous forests (i) have contrasted annual dynamics of photosynthetic activity and foliar water content and (ii) differ in community dynamics and ecosystem processes.  相似文献   

16.
Japanese goshawk was classified as a vulnerable species in the Red Data Book. There have been possibilities of a decrease of genetic diversity accompanied by habitat loss and genetic pollution due to hybridization with escaping imported goshawks. In this paper, genetic diversity, gene flow and conservation of Northern Goshawk (Accipiter gentilis) in Japan are discussed and compared with that in Central Asia. We used 11 newly developed microsatellite markers and also adopted six previously published markers. Genetic diversity was shown to be maintained with 0.58 as mean heterozygosity and 3.95 as mean allelic richness. The degree of genetic differentiation across all populations was low (Nei’s genetic differentiation index = 0.036, Wright’s genetic differentiation index = 0.039), possibly due to gene flow via adjacent regions (average number of migrants = 4.26; 0.68–20.30). However, it is possible that slight differentiation resulted from the short divergence time and/or inflow of escaping imported individuals. We recommend that goshawks in eastern Japan should be managed as a single unit. They do not appear to be under threat genetically at present, but there is the potential for rapid loss of genetic diversity. For future conservation, investigations of dispersal routes and actual conditions of gene flow are also recommended. To prevent further inflow of escaping goshawks into natural populations, it is desirable to reduce importation of goshawks and to enact a regulation obliging purchasers to register imported goshawks. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Three diallelic polymorphisms of human Y chromosome, DYS287 (Y Alu polymorphism, YAP), T/C transition at the RBF5 locus (Tat), and G/A transition at the LLY22 locus, were studied in eight ethnic populations of the Volga-Ural region, representing Turkic (Bashkirs, Tatars, and Chuvashes) and Finno-Ugric (Maris, Mordovians, Udmurts, Komi-Zyryans, and Komi-Permyaks) branches of the Uralic linguistic family, and in the group of Slavic migrants, belonging to the Indo-European linguistic family (Russians). Ethnic populations of the Volga-Ural region were characterized by a low frequency of the Y chromosome Alu insertion. Examination of an association between the Alu polymorphism and Tat mutation revealed absolute C/YAP linkage. Analysis of the haplotype frequency distribution patterns constructed from the data on the DYS287 and RBF5 polymorphisms revealed substantial differences between Udmurts and the other ethnic populations. The differences were also observed between Komi-Zyryans and the populations of Bashkirs, Mordovians, Komi-Permyaks, and Russians. Analysis of the degree of genetic differentiation pointed to high level of genetic differentiation of the male lineages of the Finno-Ugric ethnic groups. The data on the linkage between mutations of the RBF5 and the LLY22 loci indicated the common origin of the Tat mutation in Bashkirs, Mordovians, Udmurts, and Komi-Zyryans, and of a number of ancestral C allele-bearing chromosomes in Tatars, Maris, and Chuvashes.  相似文献   

18.
According to written sources, Roma (Romanies, Gypsies) arrived in the Balkans around 1,000 years ago from India and have subsequently spread through several parts of Europe. Genetic data, particularly from the Y chromosome, have supported this model, and can potentially refine it. We now provide an analysis of Y-chromosomal markers from five Roma and two non-Roma populations (N = 787) in order to investigate the genetic relatedness of the Roma population groups to one another, and to gain further understanding of their likely Indian origins, the genetic contribution of non-Roma males to the Roma populations, and the early history of their splits and migrations in Europe. The two main sources of the Roma paternal gene pool were identified as South Asian and European. The reduced diversity and expansion of H1a-M82 lineages in all Roma groups imply shared descent from a single paternal ancestor in the Indian subcontinent. The Roma paternal gene pool also contains a specific subset of E1b1b1a-M78 and J2a2-M67 lineages, implying admixture during early settlement in the Balkans and the subsequent influx into the Carpathian Basin. Additional admixture, evident in the low and moderate frequencies of typical European haplogroups I1-M253, I2a-P37.2, I2b-M223, R1b1-P25, and R1a1-M198, has occurred in a more population-specific manner.  相似文献   

19.
Journal of Mammalian Evolution - Asiapator onchin gen. et sp. nov. is based on a dentary fragment from the middle Eocene (Irdinmanhan) Khaychin Formation at Khaychin Ula 3 locality, Mongolia. The...  相似文献   

20.
Polymorphism of the serotonin transporter gene (hSERT) was studied in eight human populations of the Volga-Ural region by means of polymerase chain reaction (PCR). The populations studied belonged to Turkic (Bashkirs, Tatars, and Chuvashes), Finno-Ugric (Maris, Komis, Mordovians, and Udmurts), and Eastern Slavic (Russians) ethnic groups. Comparison of the hSERT polymorphisms in these populations established the population-specific distribution patterns of the main component of this polymorphic system in the region studied and revealed the interethnic differences in hSERT allelic and genotypic frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号