首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
用复合破壁方法从酵母提取蔗糖酶,用海藻酸钙凝胶包埋、戊二醛交联方法制备固定化蔗糖酶,并在40℃下进行脱水处理。对自然酶和固定化酶的酶学性质进行了系统研究。自然酶和固定化酶的最适底物浓度为10%,最适反应时间是120分钟,最适pH是4.0,最适反应温度自然酶是50℃,固定化酶60℃。果糖对自然酶和固定化酶有很强的抑制作用,在果糖和葡萄糖并存情况下抑制作用降低。用固定化蔗糖酶反复水解蜂蜜蔗糖40批,蜂蜜中蔗糖含量由10%下降为5%以下,固定化蔗糖酶仍保持75%水解酶活力。  相似文献   

2.
陈爽  宋娜  廖学品  石碧 《生物工程学报》2011,27(7):1076-1081
将胶原纤维用三价铁改性后作为载体,通过戊二醛的交联作用将过氧化氢酶固定在该载体上。制备的固定化过氧化氢酶蛋白固载量为16.7 mg/g,酶活收率为35%。研究了固定化酶与自由酶的最适pH、最适温度、热稳定性、贮存稳定性及操作稳定性。结果表明:过氧化氢酶经此法固定化后,最适pH及最适温度与自由酶相同,分别为pH 7.0和25 ℃;但固定化酶的热稳定性显著提高,在75 ℃保存5 h后,仍能保留30%的活力,而自由酶则完全失活;固定化酶在室温下保存12 d后,酶活力仍保持在88%以上,而自由酶在此条件下则完全失  相似文献   

3.
固定化青霉素V酰化酶的制备及性质   总被引:2,自引:0,他引:2  
尖镰孢(Fusarium oxysporum)FP941青霉素V酰化酶经γ氧化铝吸附洗脱、硫酸铵沉淀和脱盐处理后,固定在环氧丙烯聚合物载体上,湿固定化酶表现活力为217 IU/g,固定化产率为53%。固定化酶作用最适温度为55℃,最适pH为80;在pH50~110及50℃以下稳定;37℃使用25次后,酶活力保留90%。  相似文献   

4.
 以自制的脱乙酰壳多糖作载体,戊二醛为交联剂,对胰蛋白酶的固定化条件及其固定化酶的性质进行了研究。考查了交联剂的用量、pH值、以及载体与酶的比例等因素对胰蛋白酶固定化的影响。在所选择的固定化条件下,固定化酶的活性回收可达50%以上。同时研究了固定化胰蛋白酶的一些性质;最适温度60℃,最适PH8.0,Km值比可溶性酶升高,热稳定性、pH贮存稳定性以及在乙醇水溶液中的稳定性明显高于可溶性胰蛋白酶。在柱式反应器内,以2%酪蛋白为底物对,操作半衰期为40天。  相似文献   

5.
将胶原纤维用三价铁改性后作为载体,通过戊二醛的交联作用将过氧化氢酶固定在该载体上.制备的固定化过氧化氢酶蛋白固载量为16.7 mg/g,酶活收率为35%.研究了固定化酶与自由酶的最适pH、最适温度、热稳定性、贮存稳定性及操作稳定性.结果表明:过氧化氢酶经此法固定化后,最适pH及最适温度与自由酶相同,分别为pH 7.0和25℃;但固定化酶的热稳定性显著提高,在75℃保存5 h后,仍能保留30%的活力,而自由酶则完全失活;固定化酶在室温下保存12 d后,酶活力仍保持在88%以上,而自由酶在此条件下则完全失活;此外,固定化过氧化氢酶还表现出了良好的操作稳定性,在室温下连续反应26次后,相对活力为57%.该研究表明胶原纤维可作为固定化过氧化  相似文献   

6.
谷胱甘肽硫转移酶(GST)的固定化及酶学特性研究   总被引:1,自引:0,他引:1  
蔡俊  邱雁临 《生物技术》2003,13(5):11-12
对谷胱甘肽硫转移酶的固定化、游离酶和固定化酶的酶学特性进行了研究,通过试验,确定谷胱甘肽硫转移酶的最佳固定化条件为先用2%壳聚糖吸附酶,然后再加戊二醛交联,交联用戊二醛浓度为1.2%,交联时间6h;游离酶的最适温度为45—55℃,最适pH值为6.5-7.0:固定化酶的最适温度为45-50℃,最适pH值为7.0;游离酶和固定化酶的最适酶促反应时间为30min。  相似文献   

7.
合成优良的漆酶固定化载体有利于其进一步应用。通过将磁性纳米颗粒包埋在苯胺的聚合物中形成磁性Fe_3O_4/聚苯胺纳米纤维,作为漆酶固定化载体。透射电镜和红外图谱分别显示了载体的形态结构特征。不同比例的Fe_3O_4与苯胺对载体结构没有明显影响,但会影响酶的负载量。合成载体最大酶负载量为210 mg/g,固定漆酶后的载体导电性能发生变化。固定化漆酶最适pH从4偏移到3.5,在酸性pH范围保持较高的酶活性,最适温度为60℃;在50℃下孵育240 min,能保持约50%的酶活性,于4℃下保存30 d能保持约60%的酶活性;重复使用8次后还能保留70%的酶活性;结果证实了磁性Fe_3O_4/聚苯胺纳米纤维成功合成,对酶有较高的负载量。随着Fe_3O_4的比例增加,载体对漆酶的负载量却减少;漆酶与载体间存在有一定电子交流。固定化漆酶的最适pH向酸性偏移可能和聚苯胺的导电性有关,合成载体显示出良好的热稳定性、储存稳定性和重复使用稳定性,表明磁性Fe_3O_4/聚苯胺纳米纤维是一种优良的酶固定化载体,可以实现酶的高效固定化。  相似文献   

8.
在浸润条件下,以0.5%(v/v)戊二醛交联的高分子膜尼龙载体固定化木瓜蛋白酶。对固定化条件进行了优化,比较了固定化酶与游离酶的酶学参数。结果表明,4℃、pH6.0条件下,将膜载体浸润于2mg/mL酶液中5h,固定化酶活为303.4U/g。固定化酶最适反应pH为6.0~7.0,最适反应温度为65℃。其pH稳定性、热稳定性均比游离酶高。  相似文献   

9.
无花果蛋白酶通过8%戊二醛活化载体,共价结合到聚苯乙烯阴离子交换树脂GM201上,固定化作用在pH7.7,酶浓度0.8mg/g树脂,4℃下进行6h。得到的固定化酶表观K_m值(酪蛋白,1.11×10~(-4)mol/L)小于溶液酶K_m值(1.96×10~(-4)mol/L);固定化酶活性在pH6~8保持稳定,溶液酶最适pH为7.2;固定化酶最适温度由溶液酶的50~60℃移至37℃;固定化酶25℃保持7d,重复水解酪蛋白7次后,保留83.3%活性。固定化酶对酪蛋白水解度达47.5%,对大豆球蛋白达11.6%。  相似文献   

10.
对β-硫酸酯乙飘基苯胺(SESA)与环氧氯丙烷交联琼脂糖反应,制得对氨基苯砜乙基(ABSE)交联琼脂糖,经重氯化后与β-淀粉酶偶联制成固定化酶。研究了载体的苯胺基含量、PH)、巯基乙醇等因素对酶偶联反应的影响。尤其是巯基乙醇的存在,可使固定化酶活力明显提高。固定化酶活力可达120u/ml,活力回收为38%,相对活力为45%。固定化β-淀粉酶的最适pH和最遗温度与自然酶相似,以可溶性淀粉为底物时,固定化酶的米氏常数是自然酶(Km=0.0057(%))的8倍。将固定化酶装柱,连续水解可溶性淀粉,在45℃下连续操作;50天后,酶活力未见下降,在50℃下28天后,还保留活力50%左右。  相似文献   

11.
嗜热真菌ThermomyceslanuginosusA_236在液体培养基中50℃下静止培养14天,粗提酶液经硫酸铵分级沉淀、DEAE-Toyopearl离子交换层析、Butyl-Toyopearl疏水层析、SephacrylS100凝胶过滤和FPLCMonoQ离子交换层析,得到了凝胶电泳均质的葡萄糖淀粉酶。酶促反应产物经TLC分析为葡萄糖,证明纯化的酶为葡萄糖淀粉酶(EC3.2.1.3)。SDS-PAGE测定其分子量为72,000,不具亚基,PI为4.0,富含Val和Leu。酶反应最适温度和pH分别为70℃和5.0。在pH5.0条件下,酶在60℃保温1h,仍具有原酶活性。酶活性在70℃和80℃的半衰期分别为20min和6min。Ca2+对酶有激活作用,Fe3+、Al3+、Hg2+等金属离子对酶活力有一定的抑制作用。纯酶碳水化合物含量为12.4%。纯酶可水解可溶性淀粉、直链淀粉、支链淀粉、糊精、糖原、麦芽三糖和麦芽糖,其中可溶性淀粉为最适底物。  相似文献   

12.
The formation of reactive groups on polyamide nets (nylon 6) and the subsequent immobilization of glucoamylase were investigated. Different mesh sizes of the nets and two chemical methods of enzyme coupling - i( partial hydrolysis of the polyamide with subsequent glutaraldehyde binding and ii) O-alkylation of the carrier using a treatment with a benzene-methyl sulphate mixture – were used. The reactivity of immobilized glucoamylase (GA) was tested by hydrolysis reactions using 1% starch solutions. The highest reactivity (140 μg glc/)min × cm2 was obtained for methylated nylon samples attached to a glass rod and by coupling glucoamylase on the nylon surface which had been treated with lysine and glutaraldehyde. This method resulted in a more reactive and more stable preparation of immobilized glucoamylase as compared to a simpler method of coupling glutaraldehyde to partially hydrolyzed nylon.  相似文献   

13.
The glucoamylase of Coniophora cerebella   总被引:5,自引:0,他引:5  
1. The major amylolytic enzyme in culture filtrates of Coniophora cerebella grown in starch-containing media has been purified and characterized as a glucoamylase (EC 3.2.1.3). 2. The activity/unit wt. of protein was increased 11-fold and the enzyme showed one major component on polyacrylamide-gel electrophoresis. 3. The glucoamylase had optimum pH4.0-4.5. 4. Hg(2+) completely inhibited the enzyme, but other ions tested had little effect on the activity at the concentration of ions used (5mm). 5. The action of the enzyme on amylopectin, amylose and maltose was studied. Hydrolysis proceeded by the stepwise removal of glucose units from the non-reducing ends of the polymer chains, and the enzyme was able to bypass or to hydrolyse the alpha-(1-->6)-glucosidic linkages at branch points in the amylopectin molecule. Glucose was the only product found in digests of these substrates. 6. At the same substrate concentration (0.1%, w/v) and enzyme concentration, the initial rates of glucose production from amylopectin, amylose and maltose were in the proportions 40:10:1. 7. K(m) values at 40 degrees and pH4.0 were calculated for the enzyme acting on amylopectin, amylose and maltose.  相似文献   

14.
Byssochlamys fulva was found to produce a glucoamylase (EC 3.2.1.3) that exhibited its maximal activity at 50°C and had a broad optimum pH range of 4.0–5.2. The Km and Vmax values of the crude enzyme for amylopectin were 0.15% and 17.9 mg glucose l-1 min--1, respectively. The molecular weight of the enzyme as estimated by the gel-filtration method was 34 kDa.  相似文献   

15.
The titanous and titanic complexes of the water-insoluble poly(N-acryloyl-4- and -5-aminosalicylic acids) have been prepared by several methods, and alpha-amylase, glucoamylase, and polygalacturonase (pectinase) have been coupled to the various preparations. The products from alpha-amylase and glucoamylase were enzymically active, but the alpha-amylase was washed off after only one use. With glucoamylase, the derivative withstood extensive washing and could be used continuously in a column. Particular advantages of the glucoamylase preparation were that maximal coupling of the enzyme was achieved in one hour and that a very high specific activity towards a macromolecular substrate was achieved. The polygalacturonase derivative was inactive, possibly because the polysalicylic acid acts as an inhibitor of the enzyme.  相似文献   

16.
A strain of endophytic fungus EF6 isolated from Thai medicinal plants was found to produce higher levels of extracellular glucoamylase. This strain produced glucoamylase of culture filtrate when grown on 1% soluble starch. The enzyme was purified and characterized. Purification steps involved (NH4)2SO4 precipitation, anion exchange, and gel filtration chromatography. Final purification fold was 14.49 and the yield obtained was 9.15%. The enzyme is monomeric with a molecular mass of 62.2 kDa as estimated by SDS-PAGE, and with a molecular mass of 62.031 kDa estimated by MALDI-TOF spectrometry. The temperature for maximum activity was 60°C. After 30 min for incubation, glucoamylase was found to be stable lower than 50°C. The activity decrease rapidly when residual activity was retained about 45% at 55°C. The pH optimum of the enzyme activity was 6.0, and it was stable over a pH range of 4.0–7.0 at 50°C. The activity of glucoamylase was stimulated by Ca2+, Co2+, Mg2+, Mn2+, glycerol, DMSO, DTT and EDTA, and strongly inhibited by Hg2+. Various types of starch were test, soluble starch proved to be the best substrate for digestion process. The enzyme catalyzes the hydrolysis of soluble starch and maltose as the substrate, the enzyme had K m values of 2.63, and 1.88 mg/ml and V max, values of 1.25, and 2.54 U/min/mg protein, and V max/K m values of 0.48 and 1.35, respectively. The internal amino acid sequences of endophytic fungus EF6 glucoamylase; RALAN HKQVV DSFRS have similarity to the sequence of the glucoamylase purified form Thermomyces lanuginosus. From all results indicated that this enzyme is a glucoamylase (1,4-α-D-glucan glucanohydrolase).  相似文献   

17.
The heat-resistant mold, Talaromyces flavus , was found to produce a thermophilic glucoamylase that exhibited the highest activity at 50°C and in the pH range of 4.0–4.8. The K m and V max values of the crude enzyme for amylopectin were 0.21% and 16.7 mg glucose 1-1, min-1, respectively. The molecular weight of the enzyme as estimated by the gel filtration method was 42 kDa.  相似文献   

18.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

19.
The extracellular amylolytic enzymes of Schwanniomyces alluvius were studied to determine future optimization of this yeast for the production of industrial ethanol from starch. Both alpha-amylase and glucoamylase were isolated and purified. alpha-Amylase had an optimum pH of 6.3 and was stable from pH 4.5 to 7.5. The optimum temperature for the enzyme was 40 degrees C, but it was quickly inactivated at temperatures above 40 degrees C. The Km for soluble starch was 0.364 mg/ml. The molecular weight was calculated to be 61,900 +/- 700. alpha-Amylase was capable of releasing glucose from starch, but not from pullulan. Glucoamylase had an optimum pH of 5.0 and was stable from pH 4.0 to greater than 8.0. The optimum temperature for the enzyme was 50 degrees C, and although less heat sensitive than alpha-amylase, it was quickly inactivated at 60 degrees C. Km values were 12.67 mg/ml for soluble starch and 0.72 mM for maltose. The molecular weight was calculated to be 155,000 +/- 3,000. Glucoamylase released only glucose from both soluble starch and pullulan. S. alluvius is one of the very few yeasts to possess both alpha-amylase and glucoamylase as well as some fermentative capacity to produce ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号