首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of gas and of methylated sulfur compounds was observed in anaerobic enrichment cultures with methoxylated aromatic compounds as substrates. Via direct dilution of mud samples in defined reduced media supplemented with trimethoxybenzoate or syringate two new strains of anaerobic homoacetogenic bacteria (strain TMBS4 and strain SA2) were obtained in pure culture. Both strains produced dimethylsulfide and methanethiol during growth on methoxylated aromatic compounds. Growth tests and determination of stoichiometries demonstrated that the volatile sulfur compounds were formed from the methyl group at the aromatic ring and the sulfide added as reducing agent to the medium (R = aromatic residue): 2 R - O - CH3 + H2 S 2 R - OH + (CH3)2SDimethylsulfide was the major organic sulfur compound formed, whereas methanethiol appeared only as intermediate in small quantities. The isolates grew also with trihydroxybenzenes such as gallate, phloroglucinol, or pyrogallol without formation of methylated sulfur compounds. The aromatic compounds were degraded to acetate. The freshwater strain TMBS4 also fermented pyruvate. Other aliphatic or aromatic compounds were not utilized. External electron acceptors (sulfate, nitrate, fumarate) were not reduced. Both strains were mesophilic and formed rod-shaped, non-motile, Gram-negative cells. Spore formation was not observed. Tentatively, both isolates can be affiliated to the genus Pelobacter.Abbreviations TMB 3,4,5-trimethoxybenzoate - MT methanethiol - DMS dimethylsulfide  相似文献   

2.
Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide.  相似文献   

3.
Methanethiol (MT) and dimethyl sulfide (DMS) have been shown to be the dominant volatile organic sulfur compounds in freshwater sediments. Previous research demonstrated that in these habitats MT and DMS are derived mainly from the methylation of sulfide. In order to identify the microorganisms that are responsible for this type of MT and DMS formation, several sulfide-rich freshwater sediments were amended with two potential methyl group-donating compounds, syringate and 3,4,5-trimethoxybenzoate (0.5 mM). The addition of these methoxylated aromatic compounds resulted in excess accumulation of MT and DMS in all sediment slurries even though methanogenic consumption of MT and DMS occurred. From one of the sediment slurries tested, a novel anaerobic bacterium was isolated with syringate as the sole carbon source. The strain, designated Parasporobacterium paucivorans, produced MT and DMS from the methoxy groups of syringate. The hydroxylated aromatic residue (gallate) was converted to acetate and butyrate. Like Sporobacterium olearium, another methoxylated aromatic compound-degrading bacterium, the isolate is a member of the XIVa cluster of the low-GC-content Clostridiales group. However, the new isolate differs from all other known methoxylated aromatic compound-degrading bacteria because it was able to degrade syringate in significant amounts only in the presence of sulfide.  相似文献   

4.
Most probable number (MPN) estimates indicated that a mean of 4.3×107 and 5×106 bacteria per ml of rumen fluid from a predominantly alfalfa hay-fed steer demethoxylated ferulate and syringate, respectively. After further enrichment from an MPN tube of the highest dilution showing demethoxylation of syringate, strain S195 was isolated using roll tubes with syringate as an added energy source. S195 was an anaerobic, Gram-negative, nonmotile coccus, 1 to 1.3 m in diameter, and was unique in using various carbohydrates as electron donor with acetate as the sole organic product. One of the following electron acceptor systems allowed growth (organic products in parentheses): Methanobrevibacter simithii (CH4), formate (acetate), 3,4,5-trimethoxybenzoate and syringate (acetate and gallate), vanillate (acetate and protocatechuate), vanillin (acetate, protocatechuic aldehyde and protocatechuate), ferulate (acetate, caffeate and hydrocaffeate), caffeate (hydrocaffeate). Strain S195 required 30% (v/v) rumen fluid in the medium for good growth. S195 was placed in a new genus and species, Syntrophococcus sucromutans, of the family Veillonellaceae.Abbreviations G+C Guanine plus cytosine - MPN most probable number - OD optical density  相似文献   

5.
Abstract Anaerobic formation of dimethylsulfide (DMS) and methylmercaptan (MSH) in anoxic sulfide-containing slurries from marine and fresh water sediments was stimulated by addition of syringate (4-hydroxy,3,5,-dimethoxybenzoate) and 3,4,5,-trimethoxybenzoate. The release of DMS and MSH occurred during the consumption of the aromatic monomers and ceased after their depletion. DMS was the dominant methylated sulfur compound in fresh water sediments, in contrast to marine sediments where MSH was predominant. No production of volatile organic sulfur compounds was observed in slurries containing gallate (3,4,5,-trihydroxybenzoate) or in autoclaved controled. About 50–65% of the methoxy carbon could be accounted for by peak accumulation of DMS and MSH. In the saline sediments, large amounts of CH4 were formed during the period when DMS and MSH disappeared. About 65–70% of the methylcarbon of the volatile methylated sulfur compounds (VMSC) could be accounted for in the produced CH4. This study demonstrates a previously unknown microbial process by which DMS and MSH are formed during anaerobic decomposition of methoxylated aromatic compounds in marine and freshwater sediments.  相似文献   

6.
The phototrophic purple non-sulfur bacterium Rhodomicrobium vannielii grew phototrophically (illuminated anaerobic conditions) on a variety of aromatic compounds (in the presence of CO2). Benzoate was universally photocatabolized by all five strains of R. vannielii examined, and benzyl alcohol was photocatabolized by four of the five strains. Catabolism of benzyl alcohol by phototrophic bacteria has not been previously reported. Other aromatic substrates supporting reasonably good growth of R. vannielii strains were the methoxylated benzoate derivatives vanillate (4-hydroxy-3-methoxybenzoate) and syringate (4-hydroxy-3,5-dimethoxybenzoate). However, catabolism of vanillate and syringate led to significant inhibition of bacteriochlorophyll synthesis in R. vannielii cells, eventually causing cultures to cease growing. No such effect on photopigment synthesis in cells grown on benzoate or benzyl alcohol was observed. Along with a handful of other species of anoxygenic phototrophic bacteria, the ability of the species R. vannielii to photocatabolize aromatic compounds indicates that this organism may also be ecologically significant as a consumer of aromatic derivatives in illuminated anaerobic habitats in nature.  相似文献   

7.
The exploitation of methoxylated aromatic monomers by Eubacterium limosum was restricted to the cleavage and consumption of the methoxyl substituents: the phenolic residues were not further attacked. Growth characteristics were similar to those previously described for this organism on methanol. Degradation of aromatics containing more than one methoxyl group occurred in a sequential manner and transient accumulation of intermediates (particularly methyl-gallate) took place, though the enzymic mechanism for this phenomenon remains obscure. Degradation of 3,4,5-trimethoxybenzoate necessitated the initial attack of the para-methoxyl group before those groups in meta positions could be metabolised.  相似文献   

8.
Production of methanol from aromatic acids by Pseudomonas putida.   总被引:6,自引:4,他引:2       下载免费PDF全文
When grown at the expense of 3,4,5-trimethoxybenzoic acid, a strain of Pseudomonas putida oxidized this compound and also 3,5-dimethoxy-4-hydroxybenzoic (syringic) and 3,4-dihydroxy-5-methoxybenzoic (3-O-methylgallic) acids; but other hydroxy- or methoxy-benzoic acids were oxidized slowly or not at all. Radioactivity appeared exclusively in carbon dioxide when cells were incubated with [4-methoxyl-14C]trimethoxybenzoic acid, but was found mainly in methanol when[methoxyl-14C]3-O-methylgallic acid was metabolized. The identity of methanol was proved by analyzing the product from [methoxyl-13C]3-O-methylgallic acid by nuclear magnetic resonance spectroscopy and by isolating the labeled 3,5-dinitrobenzoic acid methyl ester, which was examined by mass spectrometry. These results, together with measurements of oxygen consumed in demethylations catalyzed by cell extracts, showed that two methoxyl groups of 3,4,5-trimethoxybenzoate and one of syringate were oxidized to give carbon dioxide and 3-O-methylgallate. This was then metabolized to pyruvate; the other product was presumed to be the 4-methyl ester of oxalacetic acid, for which cell extracts contained an inducible, specific esterase. P. putida did not metabolize the methanol released from this compound by hydrolysis. Support for the proposed reaction sequence was obtained by isolating mutants which, although able to convert 3,4,5-trimethoxybenzoic acid into 3-O-methylgallic acid, were unable to use either compound for growth.  相似文献   

9.
Desulfitobacterium hafniense and Desulfitobacterium sp. strain PCE-S grew under anoxic conditions with a variety of phenyl methyl ethers as electron donors in combination with fumarate as electron acceptor. The phenyl methyl ethers were O-demethylated to the corresponding phenol compounds. O-demethylation was strictly dependent on the presence of fumarate; no O-demethylation occurred with CO2 as electron acceptor. One mol phenyl methyl ether R-O-CH3 was O-demethylated to R-OH per 3 mol fumarate reduced to succinate. The growth yields with vanillate or syringate plus fumarate were approximately 15 g cells (dry weight) per mol methyl moiety converted. D. hafniense utilized vanillate or syringate as an electron donor for reductive dehalogenation of 3-Cl-4-hydroxyphenylacetate, whereas strain PCE-S was not able to dechlorinate tetrachloroethene with phenyl methyl ethers. Crude extracts of both organisms showed O-demethylase activity in the O-demethylase assay with vanillate or syringate as substrates when the organism was grown on syringate plus fumarate. Besides the homoacetogenic bacteria, only growing cells of Desulfitobacterium frappieri PCP-1 have thus far been reported to be capable of phenyl methyl ether O-demethylation. This present study is the first report of Desulfitobacteria utilizing phenyl methyl ethers as electron donors for fumarate reduction and for growth.Abbreviations PCE Tetrachloroethene - TCE Trichloroethene - DCE cis-1,2-Dichloroethene - ClOHPA 3-Cl-4-Hydroxyphenylacetate - OHPA 4-Hydroxyphenylacetate - FH4 Tetrahydrofolate  相似文献   

10.
J.E. TURNER AND N. ALLISON. 1995. A newly-isolated strain of Pseudomonas putida (HVA-1) utilized homovanillic acid as sole carbon and energy source. Homovanillate-grown bacteria oxidized homovanillate and homoprotocatechuate but monohydroxylated and other methoxylated phenylacetic acids were oxidized poorly; methoxy-substituted benzoates were not oxidized. Extracts of homovanillate-grown cells contained homoprotocatechuate 2,3-dioxygenase but the primary homovanillate-degrading enzyme could not be detected. No other methoxylated phenylacetic acid supported growth of the organism but vanillate was utilized as a carbon and energy source. When homovanillate-grown cells were used to inoculate media containing vanillate a 26 h lag period occurred before growth commenced. Vanillate-grown bacteria oxidized vanillate and protocatechuate but no significant oxygen uptake was obtained with homovanillate and other phenylacetic acid derivatives. Analysis of pathway intermediates revealed that homovanillate-grown bacteria produced homoprotocatechuate, formaldehyde and the ring-cleavage product 5-carboxymethyl 2-hydroxymuconic semialdehyde (CHMS) when incubated with homovanillate but monohydroxylated or monomethoxylated phenylacetic acids were not detected. These results suggest that homovanillate is degraded directly to the ring-cleavage substrate homoprotocatechuate by an unstable but highly specific demethylase and then undergoes extradiol cleavage to CHMS. It would also appear that the uptake/degradatory pathways for homovanillate and vanillate in this organism are entirely separate and independently controlled. If stabilization of the homovanillate demethylase can be achieved, there is potential for exploiting the substrate specificity of this enzyme in both medical diagnosis and in the paper industry.  相似文献   

11.
Biochemical studies on anaerobic phenylme-thylether cleavage by homoacetogenic bacteria have been hampered so far by the complexity of the reaction chain involving methyl transfer to acetyl-CoA synthase and subsequent methyl group carbonylation to acetyl-CoA. Strain TMBS 4 differs from other demethylating homoacetogenic bacteria in using sulfide as a methyl acceptor, thereby forming methanethiol and dimethylsulfide. Growing and resting cells of strain TMBS 4 used alternatitively CO2 as a precursor of the methyl acceptor CO for homoacetogenic acetate formation. Demethylation was inhibited by propyl iodide and reactivated by light, indicating involvement of a corrinoid-dependent methyltransferase. Strain TMBS 4 contained ca. 750 nmol g dry mass-1 of a corrinoid tentatively identified as 5-hydroxybenzimidazolyl cobamide. A photometric assay for measuring the demethylation activity in cell extracts was developed based on the formation of a yellow complex of Ti3+ with 5-hydroxyvanillate produced from syringate by demethylation. In cell extracts, the methyltransfer reaction from methoxylated aromatic compounds to sulfide or methanethiol depended on reductive activation by Ti3+. ATP and Mg2+ together greatly stimulated this reductive activation without being necessary for the demethylation reaction itself. The specific activity of the transmethylating enzyme system increased proportionally with protein concentration up to 3 mg ml-1 reaching a constant level of 20 nmol min-1 mg-1 at protein concentrations 10 mg ml-1. The specific rate of activation increased in a non-linear manner with protein concentration. Strain TMBS 4 degraded gallate, the product of sequential demethylations, to 3 acetate through the phloroglucinol pathway as found earlier with Pelobacter acidigallici.Abbreviations BV benzyl viologen - CTAB cetyltrimethylammonium bromide - H4folate tetrahydrofolate - MOPS 3-[N-morpholino]propanesulfonic acid - MV methyl viologen - NTA nitrilotriacetate - td doubling time - TMB 3,4,5-trimethoxybenzoate  相似文献   

12.
A vanillate (4-hydroxy-3-methoxybenzoate)-utilizing bacterium that is unable to utilize p-cresol (4-methylphenol) or 2,4-xylenol (2,4-dimethylphenol) as sole source of carbon and energy was isolated and identified as Pseudomonas fluorescens. The organism employs an inducible hydroxylase (decarboxylating), a fungal mode of attack, rather than a demethylase or methylhydroxylase as the initial step in vanillate metabolism. The product of the initial hydroxylation reaction, methoxyhydroquinone, a derivative that could only be generated with the appropriate groups, hydroxyl and carboxyl, parato each other on the benzene ring, was identified using HPLC analysis. This organism may prove useful in the commercial production of methoxyquinone and methoxyhydroquinone derivatives from renewable resources.  相似文献   

13.
Aromatic carboxylic acids substituted with methoxylated groupsare among the most abundant products in alpechin, the wastes resulting from pressing olives to obtain olive oil. Degradation of o-methoxybenzoate by an stable consortium made of a grampositive bacterium, Arthrobacter oxydans, and gram negative one,Pantotea agglomerans, was shown to mineralize this compound efficiently. he concerted action of both microorganisms was needed for the two first steps n the process, namely, the conversion of o-methoxybenzoate into salycilate,and the hydroxylation of the latter to gentisate. Gentisate was further degraded by the Arthrobacter strain.  相似文献   

14.
Anaerobic enrichments with methoxylated aromatic compounds as substrates (vanillate, syringate, trimethoxycinnamate) were inoculated from freshwater mud and sewage sludge samples. In 12 out of 16 cultures the same type of rod-shaped, motile bacteria was selectively enriched. Two strains, NZva16 and NZva24, were isolated in pure culture and recognized as Acetobacterium woodii by comparison with the type strain (DSM 1030).All three Acetobacterium strains were able to grow with all 10 of the tested aromatic compounds containing methoxyl groups. In the presence of bicarbonate, these substrates were used as sole organic electron donors and carbon sources. UV-absorption spectra revealed that the aromatic rings were not degraded, and that the corresponding hydroxy derivatives of the methoxylated compounds were formed. The only further fermentation product formed was acetate. When equimolar concentrations of the methoxylated benzoic acid derivatives were applied, the growth yields were proportional to the number of methoxyl groups per molecule. Methoxyl groups or methanol were metabolized by homoacetate fermentation: in the presence of bicarbonate 4 mol of acetate. In case of the methoxylated cinnamic acid derivatives less acetate was formed and the corresponding hydroxy derivatives of phenylpropionic acid appeared as a result of the double bond reduction in the acrylate side chain. In comparison to the benzoate derivatives with the same number of methoxyl groups, higher growth yields were obtained with the cinnamate derivatives.  相似文献   

15.
Phosphoinositides are involved in endocytosis in both mammalian cells and the amoeba Dictyostelium discoideum. Dd5P4 is the Dictyostelium homolog of human OCRL (oculocerebrorenal syndrome of Lowe); both have a RhoGAP domain and a 5-phosphatase domain that acts on phosphatidylinositol 4,5-bisphosphate/phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). Inactivation of Dd5P4 inhibits growth on liquid medium and on bacteria. Dd5p4-null cells are impaired in phagocytosis of yeast cells. In wild-type cells, PI(3,4,5)P3 is formed and converted to PI(3,4)P2 just before closure of the phagocytic cup. In dd5p4-null cells, a phagocytic cup is formed upon contact with the yeast cell, and PI(3,4,5)P3 is still produced, but the phagocytic cup does not close. We suggest that Dd5P4 regulates the conversion of PI(3,4,5)P3 to PI(3,4)P2 and that this conversion is essential for closure of the phagocytic cup. Phylogenetic analysis of OCRL-like 5-phosphatases with RhoGAP domains reveal that D. discoideum Dd5P4 is a surprisingly close homolog of human OCRL, the protein responsible for Lowe syndrome. We expressed human OCRL in dd5p4-null cells. Growth on bacteria and axenic medium is largely restored, whereas the rate of phagocytosis of yeast cells is partly restored, indicating that human OCRL can functionally replace Dictyostelium Dd5P4.  相似文献   

16.
Z R Wu  S L Daniel    H L Drake 《Journal of bacteriology》1988,170(12):5747-5750
An inducible O-demethylating enzyme system was characterized from Clostridium thermoaceticum cultivated at the expense of syringate. Glucose and methanol, but not CO, partially repressed its expression. Induced whole cells catalyzed the carbon monoxide (CO)-dependent O demethylation of methoxylated aromatic compounds with the concomitant formation of acetate. Pyruvate and, to a lesser extent, H2-CO2 could replace CO in these reactions. KCN inhibited pyruvate-dependent activity but not the CO-dependent activity. The ATPase inhibitor N,N'-dicyclohexylcarbodiimide, the protonophore carbonyl cyanide m-chlorophenylhydrazone, and methyl viologen did not appreciably inhibit O demethylation by induced cells, whereas Triton X-100 was inhibitory. The enzyme system appeared to convert syringate sequentially to 5-hydroxyvanillate and gallate. The proposed overall reaction stoichiometry was as follows: syringate + 2CO + 2H2O----gallate + 2 acetates. Growth-supportive methoxylated aromatic compounds were O demethylated by syringate-cultivated cells and inhibitory to syringate O demethylation.  相似文献   

17.
The ability of microorganisms in sediments from the Atlantic Coastal Plain to biodegrade methoxylated aromatic compounds was examined. O-demethylation activity was detected in deep (121- and 406-m) sediments, as well as in the surface soil. A syringate-demethylating consortium, containing at least three types of bacteria, was enriched from a deep-sediment sample in a medium containing syringate as the sole organic carbon source and with a N(2)-CO(2) atmosphere. An isolate which demethylated syringate was obtained from the enrichment on an agar medium incubated under a H(2)-CO(2) but not a N(2)-CO(2) or N(2) atmosphere. O demethylation of syringate of this isolate was dependent on the presence of both H(2) and CO(2) in the gas phase. The metabolism of syringate occurred in a sequential manner: methylgallate accumulated transiently before it was converted to gallate. Mass balance analysis suggests that the stoichiometry of the reaction in this isolate proceeds in accordance with the following generalized equation: C(7)H(3)O(3)(OCH(3))(n) + nHCO(3) + nH(2) --> C(7)H(3)O(3)(OH)(n) + nCH(3)COO + nH(2)O.  相似文献   

18.
Summary Caulonema tip cells ofFunaria deposit new oblique cross walls of specific morphology and placement by a highly defined reorientation mechanism. In the presence of the purported intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), these cross walls form in the proper place but exhibit a distorted morphology. Video microscopy indicates that the deformation takes place during the reorientation of the cell plate from a perpendicular to an oblique configuration. Electron micrographs of TMB-8 treated cells indicate a stabilization of phragmoplast microtubules and a greater amount of vesicles and membrane in the developing cell plate. TMB-8 treated cells also show intense chlortetracycline fluorescence from mitochondria, vesicles and endoplasmic reticulum as compared to untreated cells indicating that TMB-8 is blocking release of Ca2+ from intracellular stores. It is concluded that this may cause distortation of cross walls as they form by delaying vesicle fusion, stabilizing microtubules, and increasing the amount of new wall material in the developing cell plate.Abbreviations CTC chlortetracycline - OsFeCN osmium ferricyanide method - TMB-8 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate  相似文献   

19.
Pseudomonas putida strain CLB 250 (DSM 5232) utilized 2-bromo-, 2-chloro- and 2-fluorobenzoate as sole source of carbon and energy. Degradation is suggested to be initiated by a dioxygenase liberating halide in the first catabolic step. After decarboxylation and rearomatization catechol is produced as a central metabolite which is degraded via the ortho-pathway. After inhibition of ring cleavage activities with 3-chlorocatechol, 2-chlorobenzoate was transformed to catechol in nearly stoichiometric amounts. Other ortho-substituted benzoates like anthranilate and 2-methoxybenzoate seem to be metabolized via the same route.  相似文献   

20.
Vanillic acid (4-hydroxy-3-methoxybenzoic acid) supported the anaerobic (nitrate respiration) but not the aerobic growth of Pseudomonas sp. strain PN-1. Cells grown anaerobically on vanillate oxidized vanillate, p-hydroxybenzoate, and protocatechuic acid (3,4-dihydroxybenzoic acid) with O2 or nitrate. Veratric acid (3,4-dimethoxybenzoic acid) but not isovanillic acid (3-hydroxy-4-methoxybenzoic acid) induced cells for the oxic and anoxic utilization of vanillate, and protocatechuate was detected as an intermediate of vanillate breakdown under either condition. Aerobic catabolism of protocatechuate proceeded via 4,5-meta cleavage, whereas anaerobically it was probably dehydroxylated to benzoic acid. Formaldehyde was identified as a product of aerobic demethylation, indicating a monooxygenase mechanism, but was not detected during anaerobic demethylation. The aerobic and anaerobic systems had similar but not identical substrate specificities. Both utilized m-anisic acid (3-methoxybenzoic acid) and veratrate but not o- or p-anisate and isovanillate. Syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid), 3-O-methylgallic acid (3-methoxy-4,5-dihydroxybenzoic acid), and 3,5-dimethoxybenzoic acid were attacked under either condition, and formaldehyde was liberated from these substrates in the presence of O2. The anaerobic demethylating system but not the aerobic enzyme was also active upon guaiacol (2-methoxyphenol), ferulic acid (3-[4-hydroxy-3-methoxyphenyl]-2-propenoic acid), 3,4,5-trimethoxycinnamic acid (3-[3,4,5-trimethoxyphenyl]-2-propenoic acid), and 3,4,5-trimethoxybenzoic acid. The broad specificity of the anaerobic demethylation system suggests that it probably is significant in the degradation of lignoaromatic molecules in anaerobic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号