首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid centrifugation procedure following cell lysis with either digitonin or short hypotonic shock in EDTA containing solutions was evaluated, applicable for investigations of enzyme and metabolite compartmentations in intact rabbit reticulocytes. The application of the digitonin disruption seems to be restricted to cell suspensions containing up to 40% reticulocytes only, whereas the hypotonic lysis can be used with practically pure reticulocytes, too. The distribution of markers revealed that an almost complete cell disruption, sufficient separation into pellet and supernatant fraction and satisfactory preservation of mitochondrial intactness could be achieved under appropriate conditions. The suitability of the proposed method in studies on reticulocyte energy metabolism is further supported by the almost insignificant ATP splitting during the entire procedure.  相似文献   

2.
The present investigation has attempted to define in rat liver mitochondria the distribution of outer membrane proteins in relation to the inner membrane by fractionation with digitonin and phospholipase A2. Porin, the channel-forming protein in the outer membrane, was measured quantitatively by immunological methods. Neither monoamine oxidase nor porin could be released by phospholipase A2 treatment, but both were released by digitonin, at the same detergent concentration. Thus, the release of monoamine oxidase and porin requires the disruption of the cholesterol but not the phospholipid domains of the membrane and the two polypeptides exist in the same, or similar, membrane environment with regard to cholesterol. Changes in the energy state, or binding of brain hexokinase to rat liver mitochondria prior to fractionation with digitonin, did not alter the release patterns of porin and monoamine oxidase. The uptake of Ca2+, however, resulted in the concomitant release of the outer membrane markers together with the matrix marker, malate dehydrogenase. The present findings with liver differ from those obtained recently with brain mitochondria (L. Dorbani et al. (1987) Arch. Biochem. Biophys. 252, 188-196) in which two populations of porin were located in two different cholesterol domains. The significance of these differences in the location of porin in liver and brain mitochondria is discussed.  相似文献   

3.
Phosphate-dependent glutaminase is associated with the inner membrane of rat renal mitochondria. The orientation of this enzyme was characterized by comparing its sensitivity in isolated mitochondria and in mitoplasts to two membrane impermeable inhibitors. Mitoplasts were prepared by repeated swelling of mitochondria in a hypotonic phosphate solution. This procedure released greater than 70% of the adenylate kinase from the intermembrane space, but less than 10 and 25% of the marker activities characteristic of the inner membrane and matrix compartments, respectively. The addition of 20 microM p-chloromercuriphenylsulfonate (pCMPS) caused a rapid inactivation of the purified glutaminase. In contrast, the glutaminase contained in isolated mitochondria and mitoplasts was only slightly affected by the addition of up to 2 mM pCMPS. Similarly, the activity in mitochondria and mitoplasts was not inhibited by the addition of an excess of inactivating Fab antibodies. However, a similar extent of inactivation occurred when either membrane fraction was incubated with concentrations of octylglucoside greater than 0.35%. Mitochondria were also treated with increasing concentrations of digitonin. At 0.4 mg digitonin/mg protein, all of the adenylate kinase was released but the glutaminase activity was either slightly inhibited or unaffected by the addition of pCMPS or the Fab antibodies, respectively. These studies establish that the glutaminase is localized on the inner surface of the inner membrane. Therefore, mitochondrial catabolism of glutamine must occur only within the matrix compartment.  相似文献   

4.
1. In the present work the initially lowered oxidase activity of liver mitochondria of hibernating gophers is shown to increase upon Ca(2+)-loading, after freezing-thawing repeated three times and after swelling in a medium containing potassium acetate as well as in a hypotonic sucrose medium. 2. In all cases the inhibition of phospholipase A2 hindered the increase of the oxidase activity of mitochondria. 3. Mitochondria of hibernating gophers have a lowered delta psi in comparison with active animals, which is restored in the hypotonic medium.  相似文献   

5.
The mitochondrial location of protoporphyrinogen oxidase   总被引:4,自引:0,他引:4  
Using the digitonin method and subsequent fractionation of rat liver mitochondria, protoporphyrinogen oxidase (penultimate enzyme in the heme biosynthesis pathway) was found to be closely associated with the mitochondrial inner membrane fraction. Chemical treatment with non-specific probes (trypsin and diazobenzene sulfonate) of either intact or inverted mitoplasts, indicated that protoporphyrinogen oxidase was anchored within the lipid bilayer of the inner membrane. Protoporphyrinogen had an equal access to the active site of the enzyme from both sides of the inner membrane and its transformation to protoporphyrin did not appear to be energy-dependent. Studies of protoporphyrinogen synthesis from exogenously added coproporphyrinogen in either intact or hypoosmotically treated mitochondria underlined the importance of the peculiar submitochondrial location of coproporphyrinogen oxidase and protoporphyrinogen oxidase for the transfer of substrates to the inner membrane.  相似文献   

6.
The pharmacologic agents verapamil, nifedipine, diltiazem, prenylamine, N-oleoylethanolamine, R 24571, trifluoperazine, dibucaine, and quinacrine are examined as potential inhibitors of rat liver mitochondrial phospholipase A2 acting on endogenous phospholipid. Their potency as inhibitors of the enzyme is compared to their activities as inhibitors of phospholipase A2-dependent swelling and ruthenium red-induced Ca2+ release in intact mitochondria. For verapamil, diltiazem, trifluoperazine, dibucaine, and quinacrine, there is complete agreement between the relative potencies as inhibitors of phospholipase A2 and the two other processes. Nifedipine and prenylamine, which are weak inhibitors of phospholipase A2, produce a permeable inner membrane, provided that the mitochondrial have accumulated Ca2+. R 24571, which strongly inhibits the enzyme, disrupts mitochondria by a Ca2+-independent mechanism. N-Oleoylethanolamine, which is an effective inhibitor of swelling, does not inhibit phospholipase A2 or ruthenium red-induced Ca2+ release. The results support a proposed scheme wherein ruthenium red-induced Ca2+ release is viewed as reverse activity of the Ca2+-uptake uniporter occurring subsequent to decline in the proton motive force. The latter effect is proposed to arise from a specific phospholipase A2-dependent increase in inner-membrane H+ conductance of mitochondrial subpopulations. It is further shown that mitochondrial membranes display cyclic oscillations in free fatty acid content which are not dependent on the presence of Ca2+ or on the capacity to generate acylcoenzyme A.  相似文献   

7.
The respiratory rate of rat liver mitochondria in the presence of NADH as exogenous substrate is enhanced by the addition of CaCl2 (> 50 μM) when inorganic phosphate is present in the medium. The Ca-induced oxidation of NADH is inhibited by rotenone but is not affected by uncoupling agents. EDTA, which does not reverse the swelling of mitochondria which occurs in the presence of Ca2+ and phosphate, is able to inhibit reversibly the Ca-stimulated NADH oxidation. A stimulation of the rate of oxidation of NADH by Ca2+ is also observed in mitochondria partially swollen in a hypotonic medium.  相似文献   

8.
Subcellular fractionation studies of rat liver localized the activity of palmitoyl-L-carnitine hydrolase to the microsomal fraction whereas palmitoyl-CoA hydrolase activity was found both in the microsomal fraction and in mitochrondria. An unusual biphasic sataration curve for palmitoyl-CoA was observed when intact mitochondrial hydrolase activity. Disruption of the mitochondrial structure doubled the palmitoyl-CoA hydrolysis. Discontinuous sucrose gradient centrifugation and digitonin fractionation of rat liver mitochondria demonstrated that a palmitoyl-CoA hydrolase was associated with the matrix fraction. Pure matrix and microsomal fractions showed that the two hydrolase activities were differently affected by the presence of divalent cations. Both the specific activity and the saturation concentration of palmitoyl-CoA were higher for the microsomal enzyme than for the matrix-associated enzyme.  相似文献   

9.
Compared with traditional techniques of tissue homogenization, digitonin fractionation of isolated hepatocytes provides a much more rapid and, in some instances, more accurate determination of enzyme compartmentation. Results with ATP citrate lyase (EC 4.1.3.8) illustrate the information that uniquely can be obtained. Although the enzyme was previously thought to be entirely cytosolic, digitonin fractionation has shown that a portion of total cellular ATP citrate lyase is bound to mitochondria or some other structure, and the amount bound varies with the animal's nutritional state. In hepatocytes from rats that were starved for 2 days, fed NIH stock diet ab libitum, or starved for 2 days and then refed a fat-free diet for 2 days, the noncytosolic activity was, respectively, 52, 21, or 24% of total cellular lyase. However, because starvation/refeeding greatly induces lipogenic enzymes, the amount of bound lyase activity in this dietary state was 10-12 times greater than that in rats that were starved or fed ad libitum. The association of citrate lyase with a subcellular organelle is also influenced by CoA. Addition of 20 microM CoA to the digitonin fractionation medium caused all of the lyase to be released from cells like a cytosolic enzyme. Conversely, when cellular free CoA was decreased by incubating hepatocytes with the hypolipidemic agent 5-(tetradecyloxy)-2-furoic acid, the amount of bound lyase was increased. These results suggest the possibility that the noncytosolic ATP citrate lyase may have a special role in lipogenesis.  相似文献   

10.
The chelating agents (EGTA and EDTA) and inorganic phosphate (Pi) are the most variable components of experiments involving isolated liver mitochondria. In the absence of EGTA or EDTA, swelling induced by Pi leads to rapid loss of endogenous adenine nucleotides to adenosine. Chelating agents prevent swelling and loss of adenine nucleotides. Concentrations below about 0.1 mM are ineffective. The protective effects depend on the continuous presence of the chelating agent; they are lost on washing EGTA-containing suspensions with chelating-agent-free medium. We question the accepted view that chelating agents stabilize mitochondria by binding Ca2+ to prevent activation of phospholipase.  相似文献   

11.
1. When rat spleen mitochondria are incubated with oxidizable substrates, added MgCl2 (greater than 150 muM free concentration) markedly stimulates state-4 respiration and lowers both the respiratory control and ADP/O ratios; this effect is reversible on addition of excess of EDTA. 2. With [gamma-32P]ATP as substrate, an Mg2+-stimulated ATPase (adenosine triphosphate) was identified in the atractyloside-insensitive and EDTA-accessible space of intact rat spleen mitochondria. 3. Oligomycin has no effect on the activity of the Mg2+-stimulated ATPase at a concentration (2.0mug/mg of protein) that completely inhibits the atractyloside-sensitive reaction. Of the two ATPase activities, only the atracytoloside sensitive reaction is stimulated (approx. 40%) by dinitrophenol. 4. On digitonin fractionation the atractyloside-insensitive Mg2+-stimulated ATPase co-purifies with the outer membrane-fraction of rat spleen mitochondria, whereas (as expected) the atractylosidesensitive activity co-purifies with the inner-membrane plus matrix fraction. 5. Stoicheiometric amounts of ADP and Pi are produced as the end products of ATP hydrolysis by purified outer-membrane fragments; no significant AMP production is detected during the time-course of the reaction. 6. The outer-membrane ATPase is present in rat kidney cortex and heart mitochondria as well as in spleen, but is absent from rat liver, thymus, brain, lung, diaphragm and skeletal muscle.  相似文献   

12.
The inactivation of 2-oxoglutarate dehydrogenase complex by freeze-thawing was examined along with alterations of membrane phospholipids, in order to elucidate the mechanism of freezing injury in mitochondria.The dehydrogenase complex activity in slowly frozen and thawed mitochondria decreased to 70% as compared to intact mitochondria and further decreased during incubation. This inactivation during incubation was temperature dependent, i.e., at temperatures up to 25°C there was a slight decrease, while at higher temperatures there was a marked decrease in the dehydrogenase complex activity. Simultaneously, there was a significant accumulation of free fatty acids, generated from mitochondrial phospholipids, which inhibited 2-oxoglutarate dehydrogenase and subsequently enzyme complex activity. Oxoglutarate dehydrogenase activity in mitochondria was markedly inhibited by exogenous phospholipase A, and this inhibition was partially prevented with bovine serum albumin. Furthermore, when intrinsic phospholipase A was either inhibited or stimulated, there was a respective decrease or increase in the enzyme complex inactivation.The activity of the purified enzyme complex decreased slightly after slow freezing, but remained constant even when incubated at temperatures up to 32°C. However, the activity of this enzyme complex was markedly reduced when incubated either in the presence of venom phospholipase A or with exogenous fatty acid.The relationship between inactivation of the 2-oxoglutarate dehydrogenase complex, phospholipase A activation and production of free fatty acids in frozen and thawed mitochondria is discussed.  相似文献   

13.
We demonstrate that two isoforms of the cytosolic phospholipase A2, cPLA2alpha and cPLA2gamma, are present in Ehrlich ascites tumor cells. Both enzymes are almost uniformly distributed throughout the cells under control conditions, as visualized by laser-scanning confocal microscopy. Stimulation by either hypotonic cell swelling or addition of the Ca2+ ionophore A23187 results in translocation of cPLA2alpha, but not cPLA2gamma, to the nucleus, where it forms hot-spot-like clusters. Our group previously showed that release of radioactively labeled arachidonic acid, incorporated into the phospholipids of Ehrlich cells, was immediately and transiently increased on hypotonic cell swelling [Thoroed, S.M., Lauritzen, L., Lambert, I.H., Hansen, H.S. & Hoffmann, E.K. (1997) J. Membr. Biol. 160, 47-58]. We now demonstrate that arachidonic acid is released from the nuclear fraction following hypotonic exposure. Stimulation of Ehrlich cells with A23187 also leads to an increase in arachidonic acid release from the nucleus. However, as hypotonic cell swelling is not accompanied by any detectable increase in intracellular concentration of free cytosolic Ca2+ ([Ca2+]i), stimulus-induced translocation of cPLA2alpha can also occur without elevation of [Ca2+]i. The stimulus-induced translocation of cPLA2alpha appears not to be prevented by inhibition of mitogen-activated protein (MAP) kinase activation, p38 MAP kinase, tyrosine kinases and protein kinase C, hence, phosphorylation is not crucial for the stimulus-induced translocation of cPLA2alpha. Disruption of F-actin did not affect the translocation process, thus, an intact F-actin cytoskeleton does not seem to be required for translocation of cPLA2alpha.  相似文献   

14.
A comparative analysis of delta psi of liver mitochondria of active and hibernating gophers was carried out, and the effect of the decrease of the medium tonicity on the oxidase activity and delta psi of liver mitochondria of both animal groups was studied. The delta psi of hibernating gopher liver mitochondria was shown to be lower than that of active animals mitochondria and displayed a higher sensitivity to the uncoupler and some different restoration dynamics after the decline following the ADP addition. Swelling of liver mitochondria of hibernating gophers in hypotonic media or in media containing potassium acetate and a 3-fold freeze-thawing procedure resulted in the enhancement of the oxidase activities accompanied (in case of hypotonicity) by an delta psi increase and a decrease of its sensitivity to the uncoupler, 2.4-dinitrophenol. Inhibition of phospholipase A2 prevented the enhancement of the oxidase activity in all cases and the delta psi increase in hypotonic media.  相似文献   

15.
Assays of mitochondrial phospholipase A activity and mitochondrial swelling demonstrated that the phospholipase A activity is related to the swelling under the experimental conditions used. Both were stimulated by added free fatty acid and CaCl(2), not affected greatly by the addition of monoacyl phosphoglycerides, and inhibited by EDTA. The amount of fatty acid hydrolyzed from endogenous phosphatidyl ethanolamine and phosphatidyl choline during swelling was calculated to be 20-30 times less than the amount of added free fatty acid that gave comparable swelling. Under the experimental conditions about 4% of the phospholipid was hydrolyzed. Mitochondrial swelling was studied by electron microscopy and turbidity measurements. The results found were in agreement, whether oleic acid was present or not, except for those values obtained after very brief incubation (1 min) and after incubation for longer than 35 min. The lack of direct proportion between swelling and the concentration of lysosomes present indicated that the swelling is related mainly to mitochondrial phospholipase A, although swelling due to contaminating lysosomes cannot be excluded entirely. The temperature dependence of spontaneous, fatty acid-induced, or CaCl(2)-induced swelling suggested that enzymatic activities are responsible for swelling.  相似文献   

16.
Phaseolus vulgaris mitochondria incubated in sucrose swell rapidly upon the addition of phospholipase A. Bovine serum albumin inhibits the swelling. The release of free fatty acids as a result of phospholipase A action on the mitochondria is detected only in the presence of bovine serum albumin, which promotes the hydrolysis of both mitochondrial phospholipids and purified lecithin. Either free fatty acid or lysolecithin is able to initiate an extensive mitochondrial swelling in sucrose. It is suggested that phospholipase A-induced swelling results from the release of lysophosphatides plus free fatty acids and their subsequent detergent action on the membranes rather than phospholipid loss per se.  相似文献   

17.
Malonyl-CoA and 2-tetradecylglycidyl-CoA (TG-CoA) are potent inhibitors of mitochondrial carnitine palmitoyltransferase I (EC 2.3.1.21). To gain insight into their mode of action, the effects of both agents on mitochondria from rat liver and skeletal muscle were examined before and after membrane disruption with octylglucoside or digitonin. Pretreatment of intact mitochondria with TG-CoA caused almost total suppression of carnitine palmitoyltransferase I, with concomitant loss in malonyl-CoA binding capacity. However, subsequent membrane solubilization with octylglucoside resulted in high and equal carnitine palmitoyltransferase activity from control and TG-CoA pretreated mitochondria; neither solubilized preparation showed sensitivity to malonyl-CoA or TG-CoA. Upon removal of the detergent by dialysis the bulk of carnitine palmitoyltransferase was reincorporated into membrane vesicles, but the reinserted enzyme remained insensitive to both inhibitors. Carnitine palmitoyltransferase containing vesicles failed to bind malonyl-CoA. With increasing concentrations of digitonin, release of carnitine palmitoyltransferase paralleled disruption of the inner mitochondrial membrane, as reflected by the appearance of matrix enzymes in the soluble fraction. The profile of enzyme release was identical in control and TG-CoA pretreated mitochondria even though carnitine palmitoyltransferase I had been initially suppressed in the latter. Similar results were obtained when animals were treated with 2-tetradecylglycidate prior to the preparation of liver mitochondria. We conclude that malonyl-CoA and TG-CoA interact reversibly and irreversibly, respectively, with a common site on the mitochondrial (inner) membrane and that occupancy of this site causes inhibition of carnitine palmitoyltransferase I, but not of carnitine palmitoyltransferase II. Assuming that octylglucoside and digitonin do not selectively inactivate carnitine palmitoyltransferase I, the data suggest that both malonyl-CoA and TG-CoA interact with a regulatory locus that is closely juxtaposed to but distinct from the active site of the membrane-bound enzyme.  相似文献   

18.
K+/H+ antiport in heart mitochondria   总被引:2,自引:0,他引:2  
Heart mitochondria depleted of endogenous divalent cations by treatment with A23187 and EDTA swell in (a) K+ acetate or (b) K+ nitrate when an uncoupler is present. These mitochondria also exchange matrix 42K+ with external K+, Na+, or Li+ in a reaction that does not require respiration and is insensitive to uncouplers. Untreated control mitochondria do not swell in either medium nor do they show the passive cation exchange. Both the swelling and the exchange reactions are inhibited by Mg2+ and by quinine and other lipophilic amines. Swelling and exchange are both strongly activated at alkaline pH, and the exchange reaction is also increased markedly by hypotonic conditions. All of these properties correspond to those reported for a respiration-dependent extrusion of K+ from Mg2+-depleted mitochondria, a reaction attributed to a latent Mg2+- and H+-sensitive K+/H+ antiport. The swelling reactions are strongly inhibited by dicyclohexylcarbodiimide reacted under hypotonic conditions, but the exchange reaction is not sensitive to this reagent. Heart mitochondria depleted of Mg2+ show marked increases in their permeability to H+, to anions, and possibly to cations, and the permeability to each of these components is further increased at alkaline pH. This generalized increase in membrane permeability makes it likely that K+/H+ antiport is not the only pathway available for K+ movement in these mitochondria. It is concluded that the swelling, 42K+ exchange, and K+ extrusion data are all consistent with the presence of the putative K+/H+ antiport but that definitive evidence for the participation of such a component in these reactions is still lacking.  相似文献   

19.
Exposure of brown fat cells to phenylephrine, an agonist of alpha-1 adrenergic receptors, activates a phospholipase A2 which releases arachidonic acid. Since receptor activation of phospholipase A2 requires calcium, experiments were undertaken to define more precisely the role played by calcium in the regulation of enzyme activity. In this study, adipocytes were loaded with the fluorescent calcium chelator quin2 in order to buffer intracellular calcium and block receptor stimulated changes in its concentration. When quin2 loaded adipocytes were incubated in buffer containing 0.10 mM calcium, the ability of phenylephrine to stimulate release of arachidonic acid was severely reduced. At an intracellular quin2 concentration of 6.6 mM stimulated arachidonic acid release was inhibited by more than 50% and at 13 mM it was completely blocked. In contrast, phenylephrine stimulation of inositol phosphate accumulation was unaffected by quin2. Quin2 also did not affect the liberation of arachidonic acid in response to exogenous phospholipase C, A23187 or forskolin. The intracellular calcium antagonist TMB-8 also inhibited phenylephrine-stimulation of arachidonic acid release and this effect was reversed by ionomycin. Basal phospholipase A2 activity was increased by introduction of high calcium concentrations into cells rendered permeable with digitonin, but phenylephrine still caused a further increase in enzyme activity. These findings show a selective inhibition of phenylephrine activation of phospholipase A2 by either the chelation of intracellular calcium with quin2 or by the calcium antagonist TMB-8 and suggest an essential role for intracellular calcium in alpha adrenergic stimulation of enzyme activity. However, because phenylephrine still stimulates enzyme activity in cells rendered permeable with digitonin, we suggest that the action of phenylephrine cannot be attributed solely to changes in intracellular calcium.  相似文献   

20.
The inactivation of 2-oxoglutarate dehydrogenase complex by freeze-thawing was examined along with alterations of membrane phospholipids, in order to elucidate the mechanism of freezing injury in mitochondria. The dehydrogenase complex activity in slowly frozen and thawed mitochondria decreased to 70% as compared to intact mitochondria and further decreased during incubation. This inactivation during incubation was temperature dependent, i.e., at temperatures up to 25 degrees C there was a slight decrease, while at higher temperatures there was a marked decrease in the dehydrogenase complex activity. Simultaneously, there was a significant accumulation of free fatty acids, generated from mitochondrial phospholipids, which inhibited 2-oxoglutarate dehydrogenase and subsequently enzyme complex activity. Oxoglutarate dehydrogenase activity in mitochondria was markedly inhibited by exogenous phospholipase A, and this inhibition was partially prevented with bovine serum albumin. Furthermore, when intrinsic phospholipase A was either inhibited or stimulated, there was a respective decrease or increase in the enzyme complex inactivation. The activity of the purified enzyme complex decreased slightly after slow freezing, but remained constant even when incubated at temperatures up to 32 degrees C. However, the activity of this enzyme complex was markedly reduced when incubated either in the presence of venom phospholipase A or with exogenous fatty acid. The relationship between inactivation of the 2-oxoglutarate dehydrogenase complex, phospholipase A activation and production of free fatty acids in frozen and thawed mitochondria is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号