首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu PP  Chen YC  Li C  Hsieh YH  Chen SW  Chen SH  Jeng WY  Chuang WJ 《Proteins》2002,49(4):543-553
Interleukin enhancer binding factor (ILF) binds to the interleukin-2 (IL-2) promoter and regulates IL-2 gene expression. In this study, the 3D structure of the DNA-binding domain of ILF was determined by multidimensional NMR spectroscopy. NMR structure analysis revealed that the DNA-binding domain of ILF is a new member of the winged helix/forkhead family, and that its wing 2 contains an extra alpha-helix. This is the first study to report the presence of a C-terminal alpha-helix in place of a typical wing 2 in a member of this family. This structural difference may be responsible for the different DNA-binding specificity of ILF compared to other winged helix/forkhead proteins. Our deletion studies of the fragments of ILF also suggest that the C-terminal region plays a regulatory role in DNA binding.  相似文献   

2.
3.
In eukaryotic replication licensing, Cdt1 plays a key role by recruiting the MCM2‐7 complex onto the origin of chromosome. The C‐terminal domain of mouse Cdt1 (mCdt1C), the most conserved region in Cdt1, is essential for licensing and directly interacts with the MCM2‐7 complex. We have determined the structures of mCdt1CS (mCdt1C_small; residues 452 to 557) and mCdt1CL (mCdt1C_large; residues 420 to 557) using X‐ray crystallography and solution NMR spectroscopy, respectively. While the N‐terminal 31 residues of mCdt1CL form a flexible loop with a short helix near the middle, the rest of mCdt1C folds into a winged helix structure. Together with the middle domain of mouse Cdt1 (mCdt1M, residues 172–368), this study reveals that Cdt1 is formed with a tandem repeat of the winged helix domain. The winged helix fold is also conserved in other licensing factors including archaeal ORC and Cdc6, which supports an idea that these replication initiators may have evolved from a common ancestor. Based on the structure of mCdt1C, in conjunction with the biochemical analysis, we propose a binding site for the MCM complex within the mCdt1C.  相似文献   

4.
5.
6.
7.
8.
叉头框(Fox)转录因子家族的结构与功能   总被引:10,自引:0,他引:10  
曹冬梅  卢建 《生命科学》2006,18(5):491-496
叉头框(forkheadbox,Fox)蛋白家族是一类DNA结合区具有翼状螺旋结构的转录因子,目前已有17个亚族。Fox蛋白不仅能作为典型的转录因子通过招募共激活因子等调节基因转录,有些还能直接同凝聚染色质结合参与其重构,协同其他转录因子参与转录调节。PI3K-Akt/PKB、TGFβ-Smad和MAPKinase等多条信号通路都可以影响Fox蛋白的磷酸化水平,从而调节其活性。Fox蛋白在胚胎发育、细胞周期调控、糖类和脂类代谢、生物老化和免疫调节等多种生物学过程中发挥作用。  相似文献   

9.
目的:检测小鼠黑色素瘤细胞中核转录因子Foxp3的表达。方法:用TRIzol试剂提取小鼠黑色素瘤细胞RNA,通过实时荧光定量PCR检测小鼠黑色素瘤细胞中Foxp3 mRNA的表达,通过Western印迹和流式细胞术检测小鼠黑色素瘤细胞中Foxp3蛋白的表达,通过免疫荧光检测小鼠黑色素瘤细胞中Foxp3分子的表达。结果:在小鼠黑色素瘤细胞中存在Foxp3的mRNA转录和分子表达,免疫荧光显示Foxp3定位于黑色素瘤细胞的胞核及核周部位。结论:证实了小鼠黑色素瘤细胞表达Foxp3,将为临床黑色素瘤的免疫治疗提供新的靶标和治疗策略。  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
Our previous studies showed that EDRF1 influenced expression of α-globin mRNA and synthesis of hemoglobin in K562 cells and modulated self-renewal of K562 cells. To illuminate the function of EDRF1 in K562 cells, sense and antisense EDRF1 constructs were prepared and transfected into K562 cells. By using microarray and dot blot assay, 60 cytokine receptors and some oncogenes sharing important functions in cell proliferation and differentiation were investigated. The results of this study demonstrated that IL-6 receptor, GM-CSF receptor, c-Jun/c-Fos, c-Myc and c-kit genes were regulated by antisense EDRF1 expression. The regulation was confirmed by RNA blot assay. GATA-1 mRNA expression was modulated by EDRF1 gene transfection. Electrophoretic mobility shift assay suggested that the DNA-binding activity of GATA-1 was remarkably inhibited in K562 cells expressing EDRF1 antisense gene. DNA binding activity of NF-E2 was at the same level as control experiment. Therefore EDRF1 may play a role in erythroid proliferation and differentiation by affecting the interaction between GATA-1 and its cis-elements.  相似文献   

18.
Brain-derived neurotrophic factor (BDNF) is a neuroprotective polypeptide that is thought to be responsible for neuron proliferation, differentiation, and survival. An agent that enhances production of BDNF is expected to be useful for the treatment of neurodegenerative diseases. Here we report that galectin-1, a member of the family of beta-galactoside binding proteins, induces astrocyte differentiation and strongly inhibits astrocyte proliferation, and then the differentiated astrocytes greatly enhance their production of BDNF. Induction of astrocyte differentiation and BDNF production by an endogenous mammalian lectin may be a new mechanism for preventing neuronal loss after injury.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号