首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The epithelially-derived ameloblasts secrete two main categories of extracellular matrix proteins, amelogenins (AMEL) and nonamelogenins. These proteins assume differential distributions in the forming enamel layer and thereby regulate deposition and structuring of the mineral phase. The objective of this study was to elucidate whether their distribution results from distinctive physicochemical behaviors or differences in intracellular routing. Dual-immunogold labeling was used to visualize the presence of AMEL and ameloblastin (AMBN), the major nonamelogenin, and quantify the proportion of secretory granules containing one or both of these proteins in ameloblasts during the phase of appositional growth of the enamel layer in continuously-erupting rat incisors. Some rats were treated with brefeldin A (BFA) to generate a synchronized cohort of newly-formed secretory granules. The results show that nearly 70% of granules contain both AMEL and AMBN, 13% label only for AMBN and 1% only for AMEL. These proportions reach 98% (AMEL+AMBN) and 2% (AMBN only) following BFA treatment. The observation that AMEL is almost always packaged with AMBN suggests a functional association between these two proteins. The subpopulation of granules containing only AMBN could be responsible for augmenting its local concentration along secretory surfaces against which hydroxyapatite crystals actively elongate.  相似文献   

2.
Biochemical and histochemical studies have shown the presence of various carbohydrates in enamel. Using lectin-gold cytochemistry, we have examined the distribution of glycoconjugates containing N-acetyl-D-galactosamine (GalNAc) and/or N-acetyl-glucosamine (GlcNAc)/N-acetyl-neuraminic acid (NeuNAc) residues in rat incisor ameloblasts and in forming and maturing enamel embedded in Lowicryl K4M, LR Gold, and LR White resins. The enamel proteins that contain these carbohydrate moieties were further characterized by lectin blotting. All three resins allowed, albeit to a variable degree, detection of the binding sites for Helix pomatia agglutinin (HPA) and wheat germ agglutinin (WGA) GalNAc, and GlcNAc/NeuNAc, respectively. In general, Lowicryl K4M permitted more intense reactions with both lectins. Lectin binding was observed over the rough endoplasmic reticulum (weak labeling with WGA), the Golgi apparatus, lysosomes, secretory granules, and the enamel matrix. These compartments were shown by double labeling with WGA and anti-amelogenin antibody, and by previous immunocytochemical studies, to contain enamel proteins. Furthermore, WGA binding was more concentrated at the growth sites of enamel. Lectin blotting showed that several proteins in the amelogenin group were glycosylated and contained the sugars GalNAc and GlcNAc/NeuNAc. Fewer proteins were stained by HPA than by WGA, and the staining pattern suggested that the extracellular proteins recognized by these two lectins are processed differently. The HPA-reactive proteins were lost by or during the early maturation stage, whereas many of the WGA-reactive proteins persisted into the mid maturation stage. The heterogeneous staining of certain protein bands observed with WGA suggests that they contain more than one component. Two distinct glycoproteins containing GlcNAc/NeuNAc also appeared during the maturation stage. These results are consistent with the notion that ameloblasts produce an extracellular matrix composed mainly of glycosylated amelogenins which are differently processed throughout amelogenesis.  相似文献   

3.
Calcium distribution in secretory ameloblasts was studied in rat incisor enamel in which mineralization was temporarily disturbed by injection of either fluoride or cobalt. Pyroantimonate precipitates of calcium were analysed morphometrically in regions of the cell membranes, mitochondria and secretory granules. The disturbances in mineralization were characterized by accumulations of unmineralized enamel matrix at the secretory regions of Tomes' process within 1 h after injection. Fluoride-induced disturbances in mineralization were not accompanied by marked changes in calcium concentration and distribution. It may be that fluoride causes alterations in the synthesis and secretion of the organic matrix which affects its ability to mineralize. Secretory ameloblasts treated with cobalt showed a broad basis for interference with calcium, in particular that which is associated with cell membranes and secretory granules. Secretory ameloblasts may be actively controlling the availability of calcium to enamel by mechanisms involving the cell membrane as well as the secretory granules.  相似文献   

4.
The elaboration of enamel matrix glycoprotein was investigated in secretory ameloblasts of incisor teeth in 30–40-g rats. To this end, the distribution of glycoprotein was examined histochemically by the use of phosphotungstic acid at low pH, while the formation of glycoprotein was traced radioautographically in animals sacrificed 2.5–30 min after galactose-3H injection. Histochemically, the presence of glycoprotein is observed in ameloblasts as well as in the enamel matrix; in ameloblasts glycoprotein occurs within the Golgi apparatus in amounts increasing from the outer to the inner face of the stacks of saccules, and is concentrated in condensing vacuoles and secretory granules; in the enamel matrix, glycoprotein is observed within linear subunits. Radioautographs at 2.5 min after injection demonstrate the uptake of galactose-3H label by Golgi saccules, indicating that galactose-3H is incorporated into glycoprotein within this organelle. After 5–10 min, the label collects in the condensing vacuoles and secretory granules of the Golgi region. By 20–30 min, the label appears in the secretory granules of the apical (Tomes') processes, as well as in the enamel matrix (next to the distal end of the apical processes, and at the tips of matrix prongs). In conclusion, galactose contributes to the formation of glycoprotein within the Golgi apparatus. The innermost saccules then distribute the completed glycoprotein to condensing vacuoles, which later evolve into secretory granules. These granules rapidly migrate to the apical processes, where they discharge their glycoprotein content to the developing enamel.  相似文献   

5.
Amelogenins represent the major component of the organic matrix of enamel, and consist of several intact and degraded forms. A precise knowledge of their respective distributions throughout the enamel layer could provide some insight into their functions. To date, no antibody exists that can selectively detect the secretory forms of amelogenin. In this study we used the chicken egg yolk system to generate an antibody to recombinant mouse amelogenin. Immunoblots of whole homogenates from rat incisor enamel organs and enamel showed that the resulting antibody (M179y) recognized proteins corresponding to the five known secretory forms of rat amelogenin. Immunogold cytochemistry demonstrated that reactivity was restricted to ameloblasts and enamel. Secretory forms of amelogenin persisted in significant amounts throughout the enamel layer. The density of labeling was highest over the surface portion of the enamel layer, but enamel growth sites in this region showed a localized paucity of gold particles. Immunoreactivity was lowest over the mid-portion of the layer and increased moderately near the dentino-enamel junction. These results indicate that intact forms of amelogenin probably have a more complex distribution in the enamel layer than was heretofore suspected.  相似文献   

6.
Tooth enamel is formed by epithelially-derived cells called ameloblasts, while the pulp dentin complex is formed by the dental mesenchyme. These tissues differentiate with reciprocal signaling interactions to form a mature tooth. In this study we have characterized ameloblast differentiation in human developing incisors, and have further investigated the role of extracellular matrix proteins on ameloblast differentiation. Histological and immunohistochemical analyses showed that in the human tooth, the basement membrane separating the early developing dental epithelium and mesenchyme was lost shortly before dentin deposition was initiated, prior to enamel matrix secretion. Presecretary ameloblasts elongated as they came into contact with the dentin matrix, and then shortened to become secretory ameloblasts. In situ hybridization showed that the presecretory stage of odontoblasts started to express type I collagen mRNA, and also briefly expressed amelogenin mRNA. This was followed by upregulation of amelogenin mRNA expression in secretory ameloblasts. In vitro, amelogenin expression was upregulated in ameloblast lineage cells cultured in Matrigel, and was further up-regulated when these cells/Matrigel were co-cultured with dental pulp cells. Co-culture also up-regulated type I collagen expression by the dental pulp cells. Type I collagen coated culture dishes promoted a more elongated ameloblast lineage cell morphology and enhanced cell adhesion via integrin α2β1. Taken together, these results suggest that the basement membrane proteins and signals from underlying mesenchymal cells coordinate to initiate differentiation of preameloblasts and regulate type I collagen expression by odontoblasts. Type I collagen in the dentin matrix then anchors the presecretary ameloblasts as they further differentiate to secretory cells. These studies show the critical roles of the extracellular matrix proteins in ameloblast differentiation.  相似文献   

7.
Summary The immunohistochemical localization of large hyaluronate-binding proteoglycans has been studied in human tooth germs at the bell stage using a monoclonal antibody, 5D5, which is derived from bovine sclera and specifically recognizes the core protein of large proteoglycans, such as versican, neurocan and brevican, but not that of aggrecan. In the early bell stage before predentine secretion, when the enamel organs consisted of the inner and outer enamel epithelia, stratum intermedium and stellate reticulum, the enamel organs were not stained by 5D5, but the dental papillae and follicles stained strongly. Concomitant with the secretion of predentine, dentine and subsequent enamel matrix, strong 5D5 immunostaining distributed over the entire cell surfaces of secretory ameloblasts was observed. The forming enamel matrix showed strong staining. While most of the inner and outer enamel epithelia and stratum intermedium lacked staining, the cervical loop region and stellate reticulum showed weak staining. Although the forming dentine and odontoblasts appeared to lack 5D5 affinity, the predentine, dental papilla and dental follicle demonstrated moderate to strong reactivity. At the ultrastructural level, specific immunoreaction by immunogold particle deposition was clearly detected over the basal lamina of presecretory ameloblasts, secretion granules of secretory ameloblasts and the forming enamel matrix. These results indicate that a marked increase in the large proteoglycan associated with secretory ameloblasts may correlate with cell differentiation and enamel matrix biosynthesis. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

8.
Ten pancreatic secretory proteins have been demonstrated in differentiated pancreatic acinar carcinoma cells by the protein A-gold immunocytochemical approach. The high resolution of the technique has allowed for the localization of the different proteins in the cellular compartments involved in protein secretion: RER, Golgi and secretory granules. The quantitative evaluation of the labeling for amylase has demonstrated the presence of an increasing gradient in the intensity from the RER to the Golgi and to the secretory granules which may reflect the process of protein concentration along the secretory pathway. These results, together with those obtained using the pulse-labeling autoradiographic approach, demonstrate that differentiated acinar carcinoma cells are capable of processing secretory proteins. When intensities of labeling obtained for different proteins on acinar carcinoma cells were compared to those obtained on normal pancreatic acinar cells, major differences were observed for some proteins. In addition, studies performed on the pancreatic tissue of the tumor-bearing animals have shown the presence of morphological alterations in the acinar cells.  相似文献   

9.
Trimetaphosphatase (TMPase) and cytidine-5'-monophosphatase (CMPase) were used as lysosomal markers in the transitional ameloblasts (TA) to investigate the distribution of lysosomal structures and to correlate the cytochemical findings with the ultrastructural features of these cells. Of particular interest were the cytochemical and morphological changes which occur as the ameloblasts approach the maturation stage of enamel formation. The sequence of changes observed provides a basis for designation of three regions of the transitional zone (early and late TA and modulating ameloblasts). In the early TA region, the cells decreased in height and contained phagic vacuoles as well as numerous TMPase and CMPase reactive structures. Late transitional ameloblasts had invaginations at their distal ends as well as membrane-bound structures, both filled with fine granular material. Dense bodies, phagic vacuoles, and other elements of the lysosomal system were enzyme reactive. Modulating ameloblasts lacked the phagic vacuoles but exhibited large numbers of multivesicular bodies, vesicles, and secretory granules. Their distal ends were morphologically altered indicating a change towards ruffle- or smooth-ended varieties of maturation ameloblast. In the former, increased granular material was observed within cell membrane invaginations and associated membrane-bound structures. In the latter, intercellular spaces widened and were filled with granular material. The present cytochemical findings of an extensive lyosomal system in transitional ameloblasts confirm the function of those cells in reducing the secretory ameloblast population and in the selective elimination of their protein-synthesizing organelles. Furthermore, this extensive lysosmal system and the present morphological findings are consistent with a potential role for transitional ameloblasts in contributing to the marked loss of enamel protein known to occur during maturation.  相似文献   

10.
Dendritic cells in the enamel organ of rat incisors were examined with immunocytochemistry using an anti-cystatin C antibody for immature dendritic cells and macrophages, OX6 for MHC Class II, ED1 for macrophages and dendritic cells, and ED2 for macrophages. Single cells positive for anti-cystatin C appeared in the enamel organ in zones at which ameloblasts secrete enamel matrix proteins. They were also present in transition and enamel maturation zones. In addition, ameloblasts, osteocytes, and osteoclasts were labeled by anti-cystatin C. ED1 and ED2 immunocytochemistry revealed that there was no macrophage population in the enamel organ of secretion, transition, or enamel maturation zone. A double labeling study showed that most anti-cystatin C-positive cells in the enamel maturation zone were also positive for OX6, whereas anti-cystatin C-positive and OX6-negative cells were prevalent in the secretion zone. The results suggest that immature dendritic cells penetrate the enamel organ of the secretion zone and begin to mature in the zones of transition and enamel maturation. (J Histochem Cytochem 48:1243-1255, 2000)  相似文献   

11.
During the maturation stage of amelogenesis, the loss of matrix proteins combined with an accentuated but regulated influx of calcium and phosphate ions into the enamel layer results in the "hardest" tissue of the body. The aim of the present investigation was to examine the effects of chronic hypocalcemia on the maturation of enamel. Twenty-one-day old male Wistar rats were given a calcium-free diet and deionized water for 28 days, while control animals received a normal chow. The rats were perfused with aldehyde and the mandibular incisors were processed for histochemical and ultrastructural analyses and for postembedding colloidal gold immunolabeling with antibodies to amelogenin, ameloblastin, and albumin. The maturation stage enamel organ in hypocalcemic rats exhibited areas with an apparent increase in cell number and the presence of cyst-like structures. In both cases the cells expressed signals for ameloblastin and amelogenin. The content of the cysts was periodic acid-Schiff- and periodic acid-silver nitrate-methanamine-positive and immunolabeled for amelogenin, ameloblastin, and albumin. Masses of a similar material were also found at the enamel surface in depressions of the ameloblast layer. In addition, there were accumulations of glycoproteinaceous matrix at the interface between ameloblasts and enamel. In decalcified specimens, the superficial portion of the enamel matrix sometimes exhibited the presence of tubular crystal "ghosts." The basal lamina, normally separating ameloblasts and enamel during the maturation stage, was missing in some areas. Enamel crystals extended within membrane invaginations at the apical surface of ameloblasts in these areas. Immunolabeling for amelogenin, ameloblastin, and albumin over enamel was variable and showed a heterogeneous distribution. In contrast, enamel in control rats exhibited a homogeneous labeling for amelogenin, a concentration of ameloblastin at the surface, and weak reactivity for albumin. These results suggest that diet-induced chronic hypocalcemia interferes with both cellular and extracellular events during enamel maturation.  相似文献   

12.
Amelogenesis in the tooth germs of the frog Rana pipiens was examined by electron microscopy at different stages of tooth development. Cellular changes in secretory ameloblasts during this process showed many basic similarities to those in mammalian amelogenesis. Amelogenesis can be divided into three stages based on histological criteria such as thickness of enamel and the relative position of the tooth germ within the continuous succession of teeth. These stages are early, transitional and late. The fine structure of the enamel-secreting cells reflects the functional role of these ameloblasts as primarily secretory in the early stage, possibly transporting in the late stage and reorganizing between the two functions in the transitional stage. In early amelogenesis the cell exhibits well-developed granular endoplasmic reticulum, Golgi complex, microtubules, dense granules, smooth and coated vesicles, lysosome-like bodies in supranuclear and distal portions of the cell and mitochondria initially concentrated in the basal part of the cell. Numerous autophagic vacuoles are observed concomitant with the loss of some cell organelles at the transitional stage. During late amelogenesis the ameloblasts exhibit numerous vesicles, granules, convoluted cell membranes, junctional complexes and widely distributed mitochondria. Toward the end of amelogenesis, cells become oriented parallel to the enamel surface and the number of organelles is reduced. Amelogenesis in the frog is an extracellular process and mineralization seems to occur simultaneously with matrix formation.  相似文献   

13.
Exocrine and endocrine types of secretion were investigated in various cells by applying the protein A-gold immunocytochemical approach. Several proteins secreted by rat pancreatic and parotid acinar cells, mouse ameloblasts, rat pancreatic B cells and lymph-node plasma cells, and frog hepatocytes were studied using specific antibodies. While light microscope immunohistochemistry has allowed for good topographical identification of positive cells in tissues, the protein A-gold approach used at the electron microscope level has demonstrated the presence of specific antigenic sites in particular cellular compartments. All secretory proteins studied were detected in the rough endoplasmic reticulum, the Golgi apparatus, and the secretory granules of the corresponding secreting cells. In addition, some of the proteins were also found in lysosome-like structures. When good ultrastructural preservation of the cellular organelles was achieved, the labeling was revealed with very high resolution and precise localization. In such cases, we found labeling over transitional elements of the endoplasmic reticulum and in smooth vesicles in the Golgi area. The Golgi apparatus was subdivided into three compartments according to differences in labeling: the cisternae on the cisside, those of the trans-side and the trans-most rigid one. Quantitative evaluations of the intensities of labeling have allowed for 1) demonstration of the high specificity of the different labelings; 2) revelation of the existence of a gradient of increasing intensity that follows precisely the progress of the proteins along their secretory pathway; and 3) identification of intracellular sites where increments of protein antigenicity occur. Furthermore, they have revealed the existence of alterations in protein processing that occurred under experimental and pathological conditions. Double-labeling approaches were performed to demonstrate two different antigenic sites on the same tissue section by applying protein A-gold complexes formed by gold particles of different sizes. Protein A-gold immunocytochemistry has also been combined with cytochemical and radioautographic techniques. This review thus demonstrates that high-resolution quantitative immunocytochemistry can contribute significantly to the investigation of the intracellular processing of secretory proteins. It also illustrates the potential and versatility of the protein A-gold technique, which in combination with other procedures constitutes a powerful method in cell biology.  相似文献   

14.
This is the first detailed report about the collar enamel of the teeth of Polypterus senegalus. We have examined the fine structure of the collar enamel and enamel organ of Polypterus during amelogenesis by light and transmission electron microscopy. An immunohistochemical analysis with an antibody against bovine amelogenin, an antiserum against porcine amelogenin and region-specific antibodies or antiserum against the C-terminus, middle region and N-terminus of porcine amelogenin has also been performed to examine the collar enamel matrix present in these teeth. Their ameloblasts contain fully developed Golgi apparatus, rough endoplasmic reticulum and secretory granules. During collar enamel formation, an amorphous fine enamel matrix containing no collagen fibrils is found between the dentin and ameloblast layers. In non-demineralized sections, the collar enamel (500 nm to 1 μm thick) is distinguishable from dentin, because of its higher density and differences in the arrangement of its crystals. The fine structural features of collar enamel in Polypterus are similar to those of tooth enamel in Lepisosteus (gars), coelacanths, lungfish and amphibians. The enamel matrix shows intense immunoreactivity to the antibody and antiserum against mammalian amelogenins and to the middle-region- and C-terminal-specific anti-amelogenin antibodies. These findings suggest that the proteins in the enamel of Polypterus contain domains that closely resemble those of bovine and porcine amelogenins. The enamel matrix, which exhibits positive immunoreactivity to mammalian amelogenins, extends to the cap enameloid surface, implying that amelogenin-like proteins are secreted by ameloblasts as a thin matrix layer that covers the cap enameloid after enameloid maturation.  相似文献   

15.
Ameloblasts from different regions of upper incisors of rats were examined with the electron microscope. During matrix formation, the cells resemble secretory cells. They are extremely long, tightly packed, and show considerable polarity. Nuclei are at the basal end of the cell. Mitochondria are proximal and the Golgi apparatus distal to the nucleus. Ergastoplasm is found in all levels but mainly in the distal end. A terminal bar apparatus separates the distal end of the cell from Tomes's process. Next to this is soft enamel. The next incisal region is a transitional zone in which the ameloblasts separate easily from the enamel. Endoplasmic reticulum is dilated and very obviously in communication with the perinuclear space. Mitochondria are present not only proximal, but also distal, to the nucleus. The next incisal zone consists of cells related to the maturation of enamel. They no longer resemble secretory cells, but now have more characteristics of transporting cells. Processes from the distal end of the cell are present with mitochondria closely applied to the base of the processes. A considerable amount of intercellular space exists with microvilli projecting into the space. Iron granules appear in these cells, and the ergastoplasmic cisternae are dilated. In the incisal end of this zone, the iron granules form aggregates. The iron finally leaves the cells to enter the enamel. Free RNP particles and fibrils become more evident after the iron leaves the cells. In the most incisal region, the ameloblasts are further reduced in height. Distal processes are no longer present and fibrils are more conspicuous.  相似文献   

16.
We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.  相似文献   

17.
Fluoride in high concentrations is known to have an adverse effect on the formation of enamel. The effect of a single injection of two concentrations of sodium fluoride on inner enamel secretory ameloblasts was investigated morphologically by electron microscopy and functionally by assessing the location and relative amount of available calcium, using the potassium pyroantimonate method. The results showed that acute doses of fluoride interfere with the normal function of secretory ameloblasts. The increase in the population of lysosome-like structures observed after fluoride administration is suggestive of defects in the synthetic pathway. Concomitant with the effect of fluoride on secretory ameloblasts is an inhibition of enamel formation, resulting in incomplete enamel rods and leaving large remnants of Tomes' processes buried in the enamel. The distribution of the calcium pyroantimonate deposits found tends to support the concept of calcium traveling between the cells to the enamel. Acute doses of fluoride also reduce the amount of calcium available for complexing with pyroantimonate in the intercellular region.  相似文献   

18.
 Amelogenins are the most abundant constituent in the enamel matrix of developing teeth. Recent investigations of rodent incisors and molar tooth germs revealed that amelogenins are expressed not only in secretory ameloblasts but also in maturation ameloblasts, although in relatively low levels. In this study, we investigated expression of amelogenin in the maturation stage of porcine tooth germs by in situ hybridization and immunocytochemistry. Amelogenin mRNA was intensely expressed in ameloblasts from the differentiation to the transition stages, but was not detected in maturation stage ameloblasts. C-terminal specific anti-amelogenin antiserum, which only reacts with nascent amelogenin molecules, stained ameloblasts from the differentiation to the transition stages. This antiserum also stained the surface layer of immature enamel at the same stages. At the maturation stage, no immunoreactivity was found within the ameloblasts or the immature enamel. These results indicate that, in porcine tooth germs, maturation ameloblasts do not express amelogenins, suggesting that newly secreted enamel matrix proteins from the maturation ameloblast are not essential to enamel maturation occurring at the maturation stage. Accepted: 14 January 1999  相似文献   

19.
20.
Summary The nature and distribution of cell contacts have been examined in the human enamel organ in bell stage. The lateral cell surfaces of secretory ameloblasts are linked at their distal (apical) and proximal (basal) parts by junctional complexes consisting of tight junctions, large intermediate junctions (zonulae adherentes), occasional gap junctions and one or more series of desmosomes. Scattered desmosomes and large gap junctions link epithelial cells of the external enamel epithelium, stellate reticulum, stratum intermedium and internal enamel epithelium including secretory ameloblasts. Furthermore the above-mentioned layers are also linked together by desmosomes and gap junctions.With increasing maturation of the enamel organ an increase in size and number of gap junctions is observed. Some possible implications of the role of the different junctions are considered. The gap junctions probably participate in cell differentiation in the normal morphogenesis of the teeth as well as in metabolic and ionic coupling of the cells of the enamel organ. By means of tight junctions, adjacent secretory ameloblasts cooperate to form a physical barrier which might prevent the diffusion of some types of molecules or substances (e.g. secretory material distally and acid mucopolysaccharides proximally) through the interspaces between the cells. Adhering junctions might assist in regulation of the mechanical properties of the enamel organ as a whole.This work was supported by grants from Statens almindelige Videnskabsfond, Copenhagen, and the Association for the Aid of the Crippled Children, New York.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号