首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Oral squamous cell carcinoma (OSCC) is the sixth most common cancer globally. Tobacco consumption and HPV infection, both are the major risk factor for the development of oral cancer and causes mitochondrial dysfunction. Genetic polymorphisms in xenobiotic-metabolizing enzymes modify the effect of environmental exposures, thereby playing a significant role in gene–environment interactions and hence contributing to the individual susceptibility to cancer. Here, we have investigated the association of tobacco - betel quid chewing, HPV infection, GSTM1-GSTT1 null genotypes, and tumour stages with mitochondrial DNA (mtDNA) content variation in oral cancer patients.

Methodology/Principal Findings

The study comprised of 124 cases of OSCC and 140 control subjects to PCR based detection was done for high-risk HPV using a consensus primer and multiplex PCR was done for detection of GSTM1-GSTT1 polymorphism. A comparative ΔCt method was used for determination of mtDNA content. The risk of OSCC increased with the ceased mtDNA copy number (Ptrend = 0.003). The association between mtDNA copy number and OSCC risk was evident among tobacco – betel quid chewers rather than tobacco – betel quid non chewers; the interaction between mtDNA copy number and tobacco – betel quid was significant (P = 0.0005). Significant difference was observed between GSTM1 - GSTT1 null genotypes (P = 0.04, P = 0.001 respectively) and HPV infection (P<0.001) with mtDNA content variation in cases and controls. Positive correlation was found with decrease in mtDNA content with the increase in tumour stages (P<0.001). We are reporting for the first time the association of HPV infection and GSTM1-GSTT1 null genotypes with mtDNA content in OSCC.

Conclusion

Our results indicate that the mtDNA content in tumour tissues changes with tumour stage and tobacco-betel quid chewing habits while low levels of mtDNA content suggests invasive thereby serving as a biomarker in detection of OSCC.  相似文献   

2.
V W Liu  C Zhang    P Nagley 《Nucleic acids research》1998,26(5):1268-1275
In 60 human tissue samples (encompassing skeletal muscle, heart and kidney) obtained from subjects aged from under 1 to 90 years, we used quantitative PCR procedures to quantify mitochondrial DNA (mtDNA) molecules carrying the 4977 bp deletion (mtDNA4977) and 3243 A-->G base substitution. In addition, the prevalence of multiple mtDNA deletions was assessed in a semi-quantitative manner. For all three tissues, the correlations between the accumulation of the particular mtDNA mutations and age of the subject are highly significant. However, differential extents of accumulation of the two specific mutations in the various tissues were observed. Thus, the mean abundance (percentage of mutant mtDNA out of total mtDNA) of mtDNA4977in a subset of age-matched adults is substantially higher in skeletal muscle than in heart and kidney. However, the mean abundance of the 3243 A-->G mutation in skeletal muscle was found to be lower than that in heart and kidney. Visualisation of arrays of PCR products arising from multiple mtDNA deletions in DNA extracted from adult skeletal muscle, was readily made after 30 cycles of PCR. By contrast, in DNA extracted from adult heart or kidney, amplification for 35 cycles of PCR was required to detect multiple mtDNA deletions. Although such multiple deletions are less abundant in heart and kidney than in skeletal muscle, in all tissue extracts there are unique patterns of bands, even from different tissues of the same subject. The differential accumulation of mtDNA4977, other mtDNA deletions and the 3243 A-->G mutation in the three tissues analysed presumably reflects different metabolic and senescence characteristics of these various tissues.  相似文献   

3.
Levels of mtDNA(4977) deletions (DeltamtDNA(4977)) have been found to be lower in tumors than in adjacent non-tumoral tissues. In 87 cancer patients, DeltamtDNA(4977) was detected by multiplex polymerase chain reaction (PCR) amplification in 43 (49%) of the tumors and in 74 (85%) of the samples of non-tumoral tissues that were adjacent to the tumors. DeltamtDNA(4977) deletions were detected in 24% of the breast tumors, 52% of the colorectal tumors, 79% of the gastric tumors, and 40% of the head and neck tumors as compared with 77, 83, 100, and 90% of the adjacent respective non-tumoral tissues at the same DNA template dilution. Based on limiting dilution PCR of 16 tumors and their adjacent non-tumoral tissues, it was found that the amount of DeltamtDNA(4977) was 10- to 100-fold lower in the tumor than in the respective control non-tumoral tissues. Real-time PCR experiments were performed to quantify the number of DeltamtDNA(4977) deletions per cell, by determining the mitochondrial-to-nuclear DNA ratio. In all of the cases of breast, colorectal, gastric, and head and neck cancer the proportion of DeltamtDNA(4977) in tumors was lower than that of the respective non-tumoral tissue. Traces of DeltamtDNA(4977) in tumors were apparently due to contamination of tumor tissue with surrounding non-tumoral tissue, as evidenced by tumor microdissection and in situ PCR techniques, suggesting that tumors are essentially free of this mutation. Although the metabolic effect of DeltamtDNA(4977) may be minimal in normal (non-tumor) tissue, in tissue under stress, such as in tumors, even low levels of DeltamtDNA(4977) deletions may be intolerable.  相似文献   

4.
End-stage renal disease (ESRD) is associated with enhanced oxidative stress. This disease state provides a unique system for investigating the deleterious effect of exogenous sources of free radicals and reactive oxygen species (ROS) on mitochondrial DNA (mtDNA). To test the hypothesis that uremic milieu might cause more severe damage to mtDNA, we investigated the prevalence and abundance of mtDNA deletions in the skeletal muscles of ESRD patients. The results showed that the frequencies of occurrence of the 4977 bp and 7436 bp deletions of mtDNA in the muscle tissues of the older ESRD patients were higher than those of the younger patients. The frequency of occurrence of the 4977 bp-deleted mtDNA in the muscle was 33.3% for the patients in the age group of < 40 years, 66.6% in the 41-60-year-old group, 100% in the 61-80-year-old group, and 100% in patients >80 years of age, respectively. Only 22% of the normal aged controls carried the 4977 bp mtDNA deletion, whereas 77% (17/22) of the ESRD patients exhibited the mtDNA deletion. Using a semiquantitative PCR method, we determined the proportion of the 4977 bp-deleted mtDNA from the muscles that had been confirmed to harbor the deletion. We found that the proportions of the 4977 bp-deleted mtDNA in the muscle were significantly higher than those of the aged matched controls. Using long-range PCR techniques, a distinctive array of mtDNA deletions was demonstrated in the muscle of uremic patients. In summary, we found diverse and multiple mtDNA deletions in the skeletal muscles of ESRD patients. These deletions are more prevalent and abundant in ESRD patients than those found in normal populations. Accumulation of uremic toxins and impaired free radical scavenging systems may be responsible for the increased oxidative stress in ESRD patients. Such stress may result in oxidative damage and aging-associated mutation of the mitochondrial genome.  相似文献   

5.
To understand the role of mitochondria in carcinogenesis, we compared the amount of deleted mtDNAs between human hepatic tumors and surrounding cirrhotic portion of the liver of ten patients by using polymerase chain reaction (PCR). Multiple mtDNA deletions were detected in cirrhotic portion, but no deletions were detected in the tumor portion. Direct sequencing of the fragments revealed a 7,079-bp deletion (nucleotide position 8,992-16,072) involving no direct repeated sequences and a 7,436-bp deletion (position 8,649-16,084) involving a 12-bp directly repeated sequence of 5'-CATCAACAACCG-3' exists in both the ATP6 gene and the D-loop region. These mtDNA mutations could be one of the endogenous factors that induce somatic mutations in nuclear genome and etiologically contribute to human carcinogenesis.  相似文献   

6.
BackgroundAreca (betel) nut is considered a Group 1 human carcinogen shown to be associated with other chronic diseases in addition to cancer. This paper describes the areca (betel) nut chewing trend in Guam, and health behaviors of chewers in Guam and Saipan.MethodsThe areca (betel) nut module in the Guam Behavioral Risk Factor Surveillance Survey was used to calculate the 5-year (2011–2015) chewing trend. To assess the association between areca (betel) nut chewing and health risks in the Mariana Islands, a cross-section of 300 chewers, ≥18 years old, were recruited from households in Guam and Saipan. Self-reported socio-demographics, oral health behaviors, chronic disease status, diet, and physical activity were collected. Anthropometry was measured. Only areca (betel) nut-specific and demographic information were collected from youth chewers in the household.ResultsThe 5-year areca (betel) nut chewing prevalence in Guam was 11% and increased among Non-Chamorros, primarily other Micronesians, from 2011 (7%) to 2015 (13%). In the household survey, most adult chewers (46%) preferred areca nut with betel leaf, slaked lime, and tobacco. Most youth chewers (48%) preferred areca nut only. Common adult chronic conditions included diabetes (14%), hypertension (26%), and obesity (58%).ConclusionThe 5-year areca (betel) nut chewing prevalence in Guam is comparable to the world estimate (10–20%), though rising among Non-Chamorros. Adult and youth chewers may be at an increased risk for oral cancer. Adult chewers have an increased risk of other chronic health conditions. Cancer prevention and intervention strategies should incorporate all aspects of health.  相似文献   

7.
Qualitative and quantitative alterations of mitochondrial DNA (mtDNA) in the skeletal muscle from two patients with cirrhosis and severe asthenia have been studied. The 4977 bp (mtDNA(4977)) and the 7436 bp (mtDNA(7436)) mtDNA deletions, as well as other mtDNA deletions, revealed by long extension PCR (LX-PCR), were found in the two patients, whereas the 10,422 bp (mtDNA(10,422)) mtDNA deletion was absent. Altogether, the qualitative alterations of mtDNA in cirrhotic patients with severe asthenia were comparable to those of age-matched healthy individuals. The mtDNA content, on the contrary, was substantially decreased in both patients with respect to control. Such mtDNA depletion might be explained by an increased, disease-related, oxidative damage to mtDNA, which probably affects the replication of the mitochondrial genome as already suggested in other oxidative stress-associated diseases.  相似文献   

8.
Zhong Y  Hu YJ  Yang Y  Peng W  Sun Y  Chen B  Huang X  Kong WJ 《Mutation research》2011,712(1-2):11-19
Mitochondrial DNA (mtDNA) mutations, especially deletions, have been suggested to play an important role in aging and degenerative diseases. In particular, the common deletion in humans and rats (4977bp and 4834bp deletion, respectively) has been shown to accumulate with age in post-mitotic tissues with high energetic demands. Among numerous deletions, the common deletion has been proposed to serve as a molecular marker for aging and play a critical role in presbyacusis. However, so far no previous publication has quantified the contribution of common deletion to the total burden of mtDNA deletions in tissues during aging process. In the present study, we established a rat model with various degrees of aging in inner ear induced by three different doses of d-galactose (d-gal) administration. Firstly, multiple mtDNA deletions in inner ear were detected by nested PCR and long range PCR. In addition to the common deletion, three novel mtDNA deletions were identified. All four deletions, located in the major arc of mtDNA, are flanked by direct repeats and involve the cytochrome c oxidase (COX) subunit III gene, encoded by mtDNA. Additionally, absolute quantitative real-time PCR assay was used to detect the level of common deletion and total deletion burden of mtDNA. The quantitative data show that the common deletion is the most frequent type of mtDNA deletions, exceeding 67.86% of the total deletion burden. Finally, increased mtDNA copy number, reduced COX activity and mosaic ultrastructural impairments in inner ear were identified in d-gal-induced aging rats. The increase of mtDNA replication may contribute to the accelerated accumulation of mtDNA deletions, which may result in impairment of mitochondrial function in inner ear. Taken together, these findings suggest that the common deletion may serve as an ideal molecular marker to assess the mtDNA damage in inner ear during aging.  相似文献   

9.
Recent evidence suggests that somatic mutations in nuclear and mitochondrial DNA accumulated during aging, may significantly contribute to the pathogenesis of chronic-degenerative illness such as coronary artery disease (CAD). Mitochondrial DNA with 4977 bp deletion mutation (mtDNA4977) is a common type of mtDNA alteration in humans. However, little attempt has been made to detect the presence of mtDNA4977 deletion in cells and tissues of cardiovascular patients. This study investigated the presence of mtDNA4977 in blood samples of 65 cardiovascular patients and 23 atherosclerotic plaques of human coronaries with severe atherosclerosis. Moreover, the presence of the deletion has been investigated in blood cells from 22 healthy age-matched subjects. The detection of mtDNA4977 has been performed by using a nested polymerase chain reaction (PCR) protocol and normalized to wild-type mtDNA. A significant higher incidence of mtDNA4977 was observed in CAD patients with respect to healthy subjects (26.2% versus 4.5%; P=0.03). Furthermore, the relative amount of the deletion was significantly higher in the patients compared to the control group (P=0.02). The mtDNA4977 was detected in 17 of the 65 patients blood samples (26.2%) and deletion levels ranged from 0.18 to 0.46% of the total mtDNA (mean: 0.34+/-0.02%). For what concerns atherosclerotic lesions, 5 patients (21.7%) showed the deletion ranging from 0.13 to 0.45% of the total mtDNA (mean: 0.35+/-0.06%). In both samples from patients, the incidence and the relative amount of mtDNA4977 was not significantly influenced by atherogenic risk factors and clinical parameters. The obtained results may suggest that the increase of oxidative stress in cardiovascular disease may be responsible for the accumulation of mtDNA damage in coronary artery disease patients.  相似文献   

10.
It has previously been demonstrated that mitochondrial DNA (mtDNA) mutations accumulate in the lung and increase in frequency with age. It has also been shown that the level of mtDNA mutations including deletions and base substitutions are elevated in lung tissue of smokers relative to non-smokers. We have previously shown that the 'common' 4977 bp mtDNA deletion is present in the parotid (salivary) gland of smokers and non-smokers and that there is a significant increase in the level of this deletion in Warthins tumour, an oncocytoma of the parotid gland. In this study we used semi-quantitative PCR to confirm the presence of 4977 bp mtDNA deletion in the parotid gland of non-smokers and smokers. Importantly, we show that the deletion accumulates with age regardless of smoking status and that there was no significant difference in the level of the 4977 bp deletion in parotid tissue of smokers and non-smokers. Using strand conformational polymorphism (SSCP) and direct sequencing we also found 5/23 smokers had parotid tissue specific base substitutions: either an A/T to G/C transition at A4767 or a G/C to A/T transition at G4853. These results are evidence of age related increase in the 4977 bp deletion and a higher level of mutations, probably due to oxidative damage, in the parotid gland of smokers.  相似文献   

11.
Mitochondrial DNA alterations as ageing-associated molecular events.   总被引:7,自引:0,他引:7  
Y H Wei 《Mutation research》1992,275(3-6):145-155
Mitochondrial DNA (mtDNA) is a naked double-stranded circular extrachromosomal genetic element continuously exposed to the matrix that contains great amounts of reactive oxygen species and free radicals. The age-dependent decline in the capability and capacity of mitochondria to dispose these oxy-radicals will render mtDNA more vulnerable to mutations during the ageing process. During the past 3 years, more than 10 different types of deletions have been identified in the mtDNA of various tissues of old humans. Some of them were found only in a certain tissue but some others appeared in more than one organ or tissue. The 4977-bp deletion is the most prevalent and abundant one among these deletions. Skeletal muscle is the target tissue of most ageing-associated mtDNA deletions and has often been found to carry multiple deletions. The onset age of the various deletions in mtDNA varies greatly with individual and type of the deletion. The 4977-bp deletion has been independently demonstrated to occur in the mtDNA of various tissues of the human in the early third decade of life. However, the 7436-bp deletion was only detected in the heart mtDNA of human subjects in their late thirties. The others appeared only in older humans over 40 years old. No apparent sex difference was found in the onset age of these ageing-associated mtDNA deletions. The various ageing-associated deletions could be classified into two groups. Most of the deletions belong to the first group, in which the 5'- and 3'-end breakpoints of the deletion are flanked by 4-bp or longer direct repeats. The deletion in the second group occurs less frequently and shows no distinct repeat sequences flanking the deletion sites. These two groups of mtDNA deletions may occur by different mechanisms. The first group is most probably caused by internal recombination or slippage mispairing during replication of mtDNA by the D-loop mechanism. The deleted mtDNA and the deleted DNA fragment may be further degraded or escape from the mitochondria and get translocated into the nucleus. The latter route has been substantiated by many observations of inserted mtDNA sequences in the nuclear DNA. Thus, the fragments of migrating mtDNA may change the information content and expression level of certain nuclear genes and thereby promote the ageing process or cause cancer. Similar ageing-associated alterations of mtDNA have also been observed in aged animals and plants. I suggest that mtDNA deletions and other mutations to be discovered are molecular events generally associated with the ageing process.  相似文献   

12.
Autosomal dominant and/or recessive progressive external ophthalmoplegia (ad/arPEO) is associated with mtDNA mutagenesis. It can be caused by mutations in three nuclear genes, encoding the adenine nucleotide translocator 1, the mitochondrial helicase Twinkle or DNA polymerase γ (POLG). How mutations in these genes result in progressive accumulation of multiple mtDNA deletions in post- mitotic tissues is still unclear. A recent hypothesis suggested that mtDNA replication infidelity could promote slipped mispairing, thereby stimulating deletion formation. This hypothesis predicts that mtDNA of ad/arPEO patients will contain frequent mutations throughout; in fact, our analysis of muscle from ad/arPEO patients revealed an age-dependent, enhanced accumulation of point mutations in addition to deletions, but specifically in the mtDNA control region. Both deleted and non-deleted mtDNA molecules showed increased point mutation levels, as did mtDNAs of patients with a single mtDNA deletion, suggesting that point mutations do not cause multiple deletions. Deletion breakpoint analysis showed frequent breakpoints around homopolymeric runs, which could be a signature of replication stalling. Therefore, we propose replication stalling as the principal cause of deletion formation.  相似文献   

13.
The frequency of micronucleated cells (MNC) derived from exfoliated human oral mucosal cells has been measured to assess genotoxic damage in chewers of betel quid with tobacco (BQT) and tobacco with lime (T). Significantly elevated frequencies of MNC were observed in the exposed groups (BQT = 4.83 +/- 0.70; T = 5.20 +/- 0.66 per 1000 cells) compared to the control group (C = 2.59 +/- 0.37) although the levels observed were lower than those reported in the literature. No correlation was seen between age, duration and frequency of habits and the frequency of MNC in the 2 habit groups. Clastogenic agents in betel quid possibly involved in micronucleus formation are discussed.  相似文献   

14.
The 4977bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or -- specifically in skin -- external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.  相似文献   

15.
Several types of deletions in mitochondrial DNA (mtDNA) have been recetly identified in various tissues of old humans. In order to determine whether there are differences in the incidence and proportion of deleted mtDNAs in different tissues during human ageing, we examined tha 4,977 bp deletion in mtDNA of various tissues from subjects of different ages. Total DNA was extracted from each of the biopsied tissues and was serially diluted by two-fold with distilled water. A 533 bp DNA fragment was amplified by PCR from total mtDNA using a pair of primers L3304-3323 and H3817-3836, and another 524 bp PCR product was amplified from 4,977 bp deleted mtDNA by identical conditions using another pair of primers L8150-8166 and H13631-13650. The maximum dilution fold of each sample that still allowed the ethidium bromide-stained PCR product (533 bp or 524 bp) in the agarose gel to be visible under UV light illumination was taken as the relative abundance of the mtDNA (wild-type or mutant) in the original sample. By this method, we were able to determine the proportion of deleted mtDNA in human tissues. We found that the 4,977 bp deletion started to appear in the second and third decades of life in human muscle and liver tissues. But the deletion was not detectable in the testis until the age of 60 years. Moreover, the proportion of deleted mtDNA varied greatly in different tissues. Among the tissues examined, muscle was found to harbor higher proportin of deleted mtDNA than the other tissues. The average proportion of the 4,977 bp depleted mtDNA of the muscle from subjects over 70 years old was approximately 0.06%, and that of the liver and the testis was 0.0076% and 0.05%, respectively. These findings suggest that the frequency and proportion of the deleted mtDNA in human tissues increase with age and that the mtDNA deletions occur more frequently and abundantly in high energy-demanding tissues during the ageing process of the human.  相似文献   

16.
Deleterious mitochondrial DNA mutations accumulate in aging human tissues.   总被引:9,自引:0,他引:9  
This paper reviews the current state of knowledge of the contribution of mitochondrial DNA (mtDNA) mutations to the phenotype of aging. Its major focus is on the discovery of deletions of mtDNA which previously were thought to occur only in individuals with neuromuscular disease. One particular deletion (mtDNA4977) accumulates with age primarily in non-dividing cells such as muscle and brain of normal individuals. The level of the deletion rises with age by more than 1000 fold in heart and brain and to a lesser extent in other tissues. In the brain, different regions have substantially different levels of the deletion. High levels of accumulation of the deletion in tissues are correlated with high oxygen consumption. We speculate that oxidative damage to mtDNA may be 'catastrophic'; mutations affecting mitochondrially encoded polypeptides involved in electron transport could increase free radical generation leading to more mtDNA damage.  相似文献   

17.
18.
The role of somatic mitochondrial DNA (mtDNA) damage in human aging and progressive diseases of oxidative phosphorylation (OXPHOS) was examined by quantitating the accumulation of mtDNA deletions in normal hearts and hearts with coronary atherosclerotic disease. In normal hearts, mtDNA deletions appeared after 40 and subsequently accumulated with age. The common 4977 nucleotide pair (np) deletion (mtDNA4977) reached a maximum of 0.007%, with the mtDNA7436 and mtDNA10,422 deletions appearing at the same time. In hearts deprived of mitochondrial substrates due to coronary artery disease, the level of the mtDNA4977 deletion was elevated 7-220-fold over age-matched controls, with the mtDNA7436 and mtDNA10,422 deletions increasing in parallel. This cumulative mtDNA damage was associated with a compensatory 3.5-fold induction of nuclear OXPHOS gene mRNA and regions of ischemic hearts subjected to the greatest work load (left ventricle) showed the greatest accumulation of mtDNA damage and OXPHOS gene induction. These observations support the hypothesis that mtDNA damage does accumulate with age and indicates that respiratory stress greatly elevates mitochondrial damage.  相似文献   

19.
Wu PA  Loh CH  Hsieh LL  Liu TY  Chen CJ  Liou SH 《Mutation research》2004,562(1-2):27-38
The objective of this study was to use the micronuclei from exfoliated buccal mucosal cells to investigate the clastogenic effects of areca quid chewing and cigarette smoking, as well as the interaction between the two. The study population was selected from residents of seven villages recruited for a community-cohort study. A total of 141 subjects were recruited based on the regular consumption of cigarettes and betel quid. Salient personal characteristics were collected from interview using a specially designed questionnaire. Micronuclei were scored on Feulgen/fast green-stained smear preparations of exfoliated cells obtained by scraping the surface of the buccal mucosa. There was no significant interaction between the chewing of betel nut and cigarette smoking. Heavy smoking was positively associated with MN frequency, with areca quid chewing negatively associated. A significant positive trend was demonstrated for the relationship between MN frequency and either daily cigarette consumption or cumulative smoking pack-years. By contrast, negative trends were demonstrated for the analogous relationships with areca quid chewing. These results indicate that heavy smoking, but not areca quid chewing, increases MN formation. These findings suggest that the carcinogenesis of the oral cancers induced by areca quid chewing in Taiwan may be through a pathway other than genotoxicity.  相似文献   

20.
Deletions in mitochondrial DNA are a common cause of mitochondrial disorders. The molecular diagnosis of mtDNA deletions for years was based on Southern hybridization later replaced by PCR methods such as PCR with primers specific for a particular deletion (mainly the so-called common deletion of 4977bp) and long PCR. In order to evaluate the usefulness of MLPA (Multiplex Ligation-dependent Probe Amplification) in molecular diagnosis of large scale mtDNA deletions we compare four diagnostic methods: Southern hybridization, PCR, long-PCR and MLPA in a group of 16 patients with suspected deletions. Analysis was performed on blood, muscle and in one case hepatic tissue DNA. The MLPA was not able to confirm all the deletions detected by PCR methods, but due to its relative ease of processing, minimal equipment, low costs and the additional possibility to detect frequent point mtDNA mutations in one assay it is worth considering as a screening method. We recommend to always confirm MLPA results by PCR methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号