共查询到20条相似文献,搜索用时 15 毫秒
1.
An NAD-linked aldehyde dehydrogenase which in addition to aliphatic and aromatic aldehydes, metabolizes aminoaldehydes and betaine aldehyde, has been purified to homogeneity from male Sprague–Dawley rat liver mitochondria. The properties of the rat mitochondrial enzyme are similar to those of a rat liver cytoplasmic betaine aldehyde dehydrognase and the human cytoplasmic E3 isozyme. The primary structure. of four tryptic peptides were also similar; only one difference in primary structure was observed. The close similarity of properties of the cytoplasmic with the mitochondrial form suggest that the cytoplasmic and mitochondrial betaine aldehyde dehydrogenase may be coded for by the same nuclear gene. Investigation of the mitochondrial form by isoelectric focusing resulted in visualization of multiple forms, different from those seen in the cytoplasm suggesting that the enzyme may be processed in the mitochondria. 相似文献
2.
Betaine aldehyde dehydrogenase in plants 总被引:2,自引:0,他引:2
T. L. Fitzgerald D. L. E. Waters & R. J. Henry 《Plant biology (Stuttgart, Germany)》2009,11(2):119-130
Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo , and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties. 相似文献
3.
Aldehyde dehydrogenase activities in liver mitochondria isolated from rats given ethanol at hourly intervals by gastric intubation showed a brief lag period followed by a rapid increase in specific activities until a maximum was attained at about 3h. 相似文献
4.
J Farrés K L Guan H Weiner 《Biochemical and biophysical research communications》1988,150(3):1083-1087
The cDNA coding for the signal peptide of rat liver mitochondrial aldehyde dehydrogenase was sequenced. The deduced amino acid sequence of the signal peptide was MLRAALSTARRGPRLSRLL. From this sequence an amphiphilic helix which had a high hydrophobic moment could be constructed. A comparison to the published cDNA sequence of human mitochondrial aldehyde dehydrogenase revealed great sequence identity and allowed us to make some predictions regarding the primary structure of the human signal peptide. 相似文献
5.
The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa. 相似文献
6.
The effects of long-term and short-term exposure of rats to ethanol on aldehyde dehydrogenase (ALDH) activity in the liver mitochondria were investigated. The specific activities of mitochondrial high Km ALDH and low Km ALDH after the prolonged administration of ethanol were both increased to levels about 2.5 times that of the control group. In contrast, high Km and low Km ALDH showed maximum activity 12 h after administration of a single large dose of ethanol, increasing 21 and 4.4 times, respectively, over the level in the control group. When ethanol was administered for a long time, the two ALDH isoenzyme levels showed approximately the same increase, while the high Km ALDH level was more significantly increased than the low Km ALDH level after a single large dose. These results suggest that the high Km ALDH level of the outer membrane was increased as a result of a transient increase in the level of acetaldehyde around the liver mitochondria after a single large dose of ethanol, and that high Km ALDH plays an important role in acetaldehyde metabolism. However, when ethanol was administered for a long time, the mitochondria were exposed to low concentrations of acetaldehyde over a long time, leading to an increase in levels of low and high Km ALDH in the matrix. 相似文献
7.
Aldehyde dehydrogenase possessing an esterolytic activity has been purified to homogeneity from rat liver mitochondria. Steady-state kinetic studies suggest that the esterolytic reaction follows an ordered uni-bi mechanism. The formation of an acyl enzyme intermediate via nucleophilic catalysis during the esterase reaction is established kinetically using a series of substrates with varying acyl carbon chains and substituted phenyl octanoates with varying electronic effects. The enzyme was reconstituted into phospholipid vesicles. A significant increase in binding capacity is observed when the enzyme is encapsulated into liposomes containing 4% diphosphatidylglycerol. 相似文献
8.
Studies of pH-dependent kinetics implicate two ionizable groups in the dehydrogenase and esterase reactions catalysed by high-Km aldehyde dehydrogenase from rat liver mitochondria. Sensitized photooxidation completely arrests the bifunctional activities of the dehydrogenase. Carboxamidomethylation abolishes the dehydrogenase activity, whereas acetimidination eliminates the esterase activity. These results suggest that histidine (pKa near 6) and cysteine (pKa near 10) are likely the catalytic residues for the dehydrogenase activity, while the esterase activity is functionally related to histidine (pKa near 7) and a residue with the pKa value of 10-11. The two residues, a carboxyl group and an arginine, that discriminate between NAD+ and NADP+ are present at the coenzyme binding site of the mitochondrial high-Km aldehyde dehydrogenase from rat liver. 相似文献
9.
Purification and characterization of aldehyde dehydrogenase from rat liver mitochondria 总被引:1,自引:0,他引:1
Nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent dehydrogenase activities from rat liver mitochondria have been copurified to homogeneity using combined DEAE, Sepharose, and affinity chromatographic procedures. The enzyme has a native molecular weight of 240,000 and subunit molecular weight of 60,000. The enzyme is tetrameric consisting of four identical subunits as revealed by electrophoresis and terminal analyses. A partial summary of physical properties is provided. The amino acid composition by acid hydrolysis is reported. Specific activities for various NAD(P)+ analogs and alkanal substrates were compared. The action of the effectors chloral hydrate, disulfiram, diethylstilbestrol, and Mg2+ and K+ ions were also investigated. 相似文献
10.
Betaine aldehyde dehydrogenase: assay and partial purification 总被引:1,自引:0,他引:1
11.
Various kinetic approaches were carried out to investigate kinetic attributes for the dual coenzyme activities of mitochondrial aldehyde dehydrogenase from rat liver. The enzyme catalyses NAD(+)- and NADP(+)-dependent oxidations of ethanal by an ordered bi-bi mechanism with NAD(P)+ as the first reactant bound and NAD(P)H as the last product released. The two coenzymes presumably interact with the kinetically identical site. NAD+ forms the dynamic binary complex with the enzyme, while the enzyme-NAD(P)H complex formation is associated with conformation change(s). A stopped-flow burst of NAD(P)H formation, followed by a slower steady-state turnover, suggests that either the deacylation or the release of NAD(P)H is rate limiting. Although NADP+ is reduced by a faster burst rate, NAD+ is slightly favored as the coenzyme by virtue of its marginally faster turnover rate. 相似文献
12.
Leo Marjanen 《The Biochemical journal》1972,127(4):633-639
1. Distribution of aldehyde dehydrogenase activity in rat liver was studied by measuring the rate of disappearance of acetaldehyde in the presence of each of the subcellular fractions. These were obtained by rough separation of particulate fractions from the soluble portion of the cell, by differential centrifugation, and by isopycnic gradient centrifugation. 2. The maximal rate of acetaldehyde oxidation was 3.7 mumol/min per g, with an apparent K(m) value below 10(-5)m. The highest rate of activity was observed in phosphate buffers of high P(i) concentration (above 60mm). 3. The activity measured was completely dependent on NAD(+). 4. The microsomal fraction and the nuclei were inactive in the assay. Of the total activity 80% was found in the mitochondrial fraction and the remaining 20% in the cytoplasm. 5. The distribution pattern is important from the point of view of acetaldehyde oxidation during ethanol metabolism. The apparent discrepancy of the results obtained by different workers and the localization of acetaldehyde oxidation in vivo is discussed. 相似文献
13.
D L Cinti S R Keyes M A Lemelin H Denk J B Schenkman 《The Journal of biological chemistry》1976,251(6):1571-1577
The oxidation of formaldehyde by rat liver mitochondria in the presence of 50 mM phosphate was enhanced 2-fold by exogenous NAD+. Absolute requirement of NAD+ for formaldehyde oxidation was demonstrated by depleting the mitochondria of their NAD+ content (4.6 nmol/mg of protein), followed by reincorporation of the NAD+ into the depleted mitochondria. Aldehyde (formaldehyde) dehydrogenase activity was completely abolished in the depleted mitochondria, but the enzyme activity was restored to control levels following reincorporation of the pyridine nucleotide. Phosphate stimulation of formaldehyde oxidation could not be explained fully by the phosphate-induced swelling which enhances membrane permeability to NAD+, since stimulation of the enzyme activity by increased phosphate concentrations was still observed in the absence of exogenous NAD+. The Km for formaldehyde oxidation by the mitochondria was found to be 0.38 nM, a value similar to that obtained with varying concentrations of NAD+; both Vmax values were very similar, giving a value of 70 to 80 nmol/min/mg of protein. The pH optimum for the mitochondrial enzyme was 8.0. Inhibition of the enzyme activity by anaerobiosis was apparently due to the inability of the respiratory chain to oxidize the generated NADH. The inhibition of mitochondrial formaldehyde oxidation by succinate was found to be due to a lowering of the NAD+ level in the mitochondria. Succinate also inhibited acetaldehyde oxidation by the mitochondria. Malonate, a competitive inhibitor of succinic dehydrogenase, blocked the inhibitory effect of succinate. The respiratory chain inhibitors, rotenone, and antimycin A plus succinate, strongly inhibited formaldehyde oxidation by apparently the same mechanism, although the crude enzyme preparation (freed from the membrane) was slightly sensitive to rotenone. The mitochondria were subfractionated, and 85% of the enzyme activity was found in the inner membrane fraction (mitoplast). Furthermore, separation into inner membrane and matrix components indicated a distribution of aldehyde dehydrogenase activity similar to malic dehydrogenase. 相似文献
14.
The removal of cytosolic-type aldehyde dehydrogenase from preparations of sheep liver mitochondrial aldehyde dehydrogenase and the unusual properties of the purified mitochondrial enzyme in assays. 总被引:3,自引:3,他引:3
下载免费PDF全文

The pI approximately 5.2 isoenzymes of mitochondrial aldehyde dehydrogenase were separated from the other isoenzymes by pH-gradient chromatography on DEAE-Sephacel. The pI approximately 5.2 material is immunologically identical with cytosolic aldehyde dehydrogenase. It also shows sensitivity to 20 microM-disulfiram and insensitivity to 4M-urea in assays. These and other criteria seem to establish that the material is identical with the cytosolic enzyme. Mitochondrial enzyme that had been purified to remove pI approximately 5.2 isoenzymes shows concentration-dependent lag phases in assays. These effects are possibly due to the slow establishment of equilibrium between tetramer and either dimers or monomers, with the dissociated species being intrinsically more active than the tetramer. 相似文献
15.
16.
Aging is accompanied by gradual cellular dysfunction associated with an accumulation of damaged proteins, particularly via oxidative processes. This cellular dysfunction has been attributed, at least in part, to impairment of mitochondrial function as this organelle is both a major source of oxidants and a target for their damaging effects, which can result in a reduction of energy production, thereby compromising cell function. In the present study, we observed a significant decrease in the respiratory activity of rat liver mitochondria with aging, and an increase in the advanced glycation endproduct-modified protein level in the mitochondrial matrix. Western blot analysis of the glycated protein pattern after 2D electrophoresis revealed that only a restricted set of proteins was modified. Within this set, we identified, by mass spectrometry, proteins connected with the urea cycle, and especially glutamate dehydrogenase, which is markedly modified in older animals. Moreover, mitochondrial matrix extracts exhibited a significant decrease in glutamate dehydrogenase activity and altered allosteric regulation with age. Therefore, the effect of the glycating agent methylglyoxal on glutamate dehydrogenase activity and its allosteric regulation was analyzed. The treated enzyme showed inactivation with time by altering both catalytic properties and allosteric regulation. Altogether, these results showed that advanced glycation endproduct modifications selectively affect mitochondrial matrix proteins, particularly glutamate dehydrogenase, a crucial enzyme at the interface between tricarboxylic acid and urea cycles. Thus, it is proposed that glycated glutamate dehydrogenase could be used as a biomarker of cellular aging. Furthermore, these results suggest a role for such intracellular glycation in age-related dysfunction of mitochondria. 相似文献
17.
Purification of aldehyde dehydrogenase from rat liver mitochondria by alpha-cyanocinnamate affinity chromatography. 总被引:1,自引:0,他引:1
下载免费PDF全文

1. alpha-Cyano-4-hydroxycinnamate was coupled to Sepharose CL-4B activated with 1,2:3,4-bisepoxybutane. 2. The low-Km rat liver mitochondrial aldehyde dehydrogenase was specifically bound to this affinity medium, and could subsequently be eluted with alpha-cyano-4-hydroxycinnamate. 3. The enzyme purified in this manner had a subunit molecular mass of 55 kDa and a pI of approx. 6.5. A minor component of approx. 57 kDa was also present and had a significantly higher pI value; this may be the precursor for aldehyde dehydrogenase. 4. alpha-Cyanocinnamate and some related compounds were found to be uncompetitive inhibitors of the enzyme. 5. No cytosolic aldehyde dehydrogenase was bound to the affinity column, but a protein from a rat liver post-mitochondrial supernatant with a molecular mass of approx. 25 kDa was bound, and could be eluted subsequently with alpha-cyano-4-hydroxycinnamate. 相似文献
18.
Aldehyde dehydrogenase from bovine liver mitochondria has been crystallized using the sitting drop method of vapor diffusion at 22 degrees C. The crystals formed from solutions containing, 40 mM-sodium citrate, 1 mM-NAD+ and 21% to 24% polyethylene glycol 3400 (pH 5.3 to 5.5). X-ray diffraction data collected from these crystals indicate that the crystals belong to the orthorhombic space group P2(1)2(1)2(1) with cell dimensions of a = 153.7 A, b = 159.37 A and c = 101.45 A. The crystals diffract to at least 2.9 A and a tetramer may comprise the asymmetric unit. 相似文献
19.
The cDNA coding for the precursor (p-ALDH) or mature (m-ALDH) rat liver mitochondrial aldehyde dehydrogenase was cloned in an expression vector pT7-7 and expressed in Escherichia coli strain BL21 (DE3)/plysS. The p-ALDH expressed in E. coli was a soluble tetrameric protein. It exhibited virtually the same specific activity and KmS for substrates as m-ALDH. N-terminal sequencing of isolated p-ALDH provided the evidence that the catalytic activity was not derived from a partially processed mature-like enzyme. The assembly states of both p-ALDH and m-ALDH synthesized in a rabbit reticulocyte lysate were also determined. Both of them were monomers and could not bind to a 5'-AMP-Sepharose column, showing that the monomeric form of the enzyme is inactive. The stabilities in vivo and in vitro were compared between p-ALDH and m-ALDH expressed in E. coli. p-ALDH was less stable than was m-ALDH both in vivo and in vitro. Thus, although the conformations of p-ALDH and m-ALDH are similar, the presence of signal peptide is a destabilizing factor to the p-ALDH. p-ALDH expressed in E. coli could bind to and be translocated into rat liver mitochondria, however, with lower efficiency when compared to the import of p-ALDH synthesized in reticulocyte lysate. 相似文献
20.
Richard A. Deitrich Pequita A. Troxell V.Gene Erwin 《Archives of biochemistry and biophysics》1975,166(2):543-548
The activity of rat liver supernatant aldehyde dehydrogenase is increased by phenobarbital treatment in one selected strain (RR) but not in another strain (rr) of animals derived from randomally bred populations (Deitrich, Collins, and Erwin (1972) J. Biol. Chem., 247, 7232). Before 14 days of age, increased enzyme activity after phenobarbital treatment is minimal but between 30 and 60 days of age there is a maximal increase in activity after phenobarbital treatment. Using animals of this age, it was shown that both cycloheximide and actinomycin D block this response to phenobarbital. Phenobarbital treatment decreases heat stability of crude preparations of the enzyme from RR rats, but increases heat stability of the enzyme from rr animals. 相似文献