首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The cellular origin and the physicochemical characteristics of MOPC-300 RNA that has been found to induce changes in lymphocyte surface immunoglobulins (cell conversion) in normal mice were investigated. The RNA active in cell conversion was found associated with a particulate cytoplasmic fraction of the tumor that could be collected by centrifugation at 100,000g for 30 min. A particulate fraction with cell-converting activity was isolated also from the plasma of tumor-bearing animals. The plasma fraction had a buoyant density intermediate between 1.08 and 1.18 g/ml. Both active fractions migrate in the same electrophoretical region. RNA extracted from both the subcellular and plasma fraction, when analyzed on a sucrose gradient, yielded two populations of RNA molecules with cell-converting activity (14–18S and 40–50 S, respectively). The 40–50 S RNA was shown to be thermolabile. The RNA with cell-converting activity contained poly A stretches. The possible function of this RNA during the growth of the plasmacytoma is discussed.  相似文献   

2.
When actinomycin D-treated chick fibroblasts were labeled with (3)H-uridine for varying periods during the log phase of Semliki Forest virus infection, radioactivity was found associated with different cytoplasmic fractions. After a 1-min period of labeling, it appeared in a large cytoplasmic structure which was seen in electron micrographs of infected cells. Sediments of sucrose density gradients of cytoplasmic extracts of these cells also contained these structures. Three forms of viral ribonucleic acid (RNA) were associated with this cytoplasmic structure: a ribonuclease-sensitive 42S form identical to the RNA of the mature virus, a ribonuclease-sensitive 26S form, and a ribonuclease-resistant 20S form. After a 5- to 10-min labeling period, radioactivity was associated with a ribonuclease-sensitive 65S cytoplasmic fraction which contained only the 26S RNA form. Finally, after a 1-hr labeling period, a 140S ribonuclease-resistant particle was the most prominent radioactive structure in the cytoplasm. This particle contained only 42S viral RNA. Negative-contrast electron micrographs of the 140S particle and the virion demonstrated structural differences between them. The base compositions of the 42S and 26S viral RNA forms were not significantly different. The base composition of the 20S form differed significantly from that of the other two viral RNA forms, but the values obtained for the mole fractions of the bases present in the 20S form differed, and depended on the period during the virus growth cycle in which (32)P was present. These results suggested that viral RNA originated in the large cytoplasmic body. The 20S RNA appeared to be a structure engaged in viral RNA replication and the 140S particle appeared to be a virus precursor.  相似文献   

3.
Infection of baby hamster kidney cells (BHK-21/13) with Saint Louis encephalitis (SLE) virus depressed the rate of protein and ribonucleic acid (RNA) synthesis until viral RNA synthesis began 6 hr postinfection (PI). Virus-directed RNA synthesis was subsequently inhibited until 12 hr PI when virion maturation began. The rate of protein synthesis reached a peak 6 hr PI and was subsequently depressed until just before the onset of virion maturation. Density gradient analysis of phenol-extracted RNA from actinomycin-treated infected cells indicated that, at 6 to 8 hr and again at 12 to 20 hr PI, three species of viral-specific RNA were synthesized. The most rapid sedimenting form (43S) was ribonuclease-sensitive and had a base composition similar to the RNA isolated from mature virions. The 20S RNA species was ribonuclease-resistant and had a sedimentation coefficient and base composition similar to the replicative form associated with other arbovirus infections. The 26S RNA was ribonuclease-resistant (0.2 mug/ml, 0.1 m NaCl, 25 C, 30 min) and had a nucleotide base composition closer to the 20S form than to the values for 43S RNA. Five-minute pulse labeling of infected cultures during the period viral RNA synthesis was maximal resulted in labeling of only the 20S to 22S RNA fractions. With pulse-labeling periods of 10 min, both the 20S and 26S RNA species were radioactive. Periods of radioactive labeling of as long as 15 min were required before the 43S form was radioactively labeled. These results suggest that the 20S and 26S RNA may be intermediate forms in the synthesis of 43S viral RNA.  相似文献   

4.
The synthesis of various classes of RNA in mouse oocytes at different stages of growth has been examined after incubating follicles in medium containing radiolabeled uridine. After fractionation on poly(U)-Sepharose of radiolabeled oocyte RNA, of which about 83% is associated with the nucleus after a 5-hr labeling period, revealed that about 40–50% of the radiolabeled RNA behaved as poly(A)-containing RNA. This value remained fairly constant during the period of oocyte growth in which oocyte diameter increased from about 35 to about 55 μm. After a 5-hr labeling, the percentage of radiolabeled poly(A)-containing RNA in either the fully grown dictyate oocyte, metaphase II oocyte, or one-cell embryo was about 20%. After a 5-hr labeling, agarose gel electrophoretic analysis of the radiolabeled species of oocyte RNA obtained after fractionation on poly(U)-Sepharose revealed the presence of a putative ribosomal RNA precursor, ribosomal (28 and 18 S) RNA, transfer plus 5 S RNA and heterodisperse poly(A)-containing RNA. A significant fraction of the radiolabeled RNA species was quite large (>40 S). The ratios of the relative proportions of the radiolabeled ribosomal RNAs and transfer plus 5 S RNA remained essentially constant during oocyte growth. The stability of various classes of RNA was examined by incubating follicles with radiolabeled uridine, washing the follicles free of radioactivity and culturing the follicles under conditions which support oocyte growth in vitro (Eppig, 1977). Under these conditions, total oocyte radiolabeled RNA was quite stable as determined by retention of acid-insoluble radioactive material (t12 = 28 days). However, under conditions in which oocytes are viable but do not grow, the half-life of total RNA was about 4.5 days. Poly(A)-containing RNA was also very stable; after 8 days in culture, about 50% of the radiolabeled poly(A)-containing RNA present after 5 hr of labeling was still present. Agarose gel electrophoretic analysis of radiolabeled RNA in oocytes after 4 days of culture and after fractionation on poly(U)-Sepharose revealed the presence of ribosomal (28 and 18 S) RNA, transfer plus 5 S RNA, and heterodisperse poly(A)-containing RNA. At this time, these RNAs are located in the oocyte cytoplasm. In addition, the molecular weight distribution of poly(A)-containing RNA was significantly lower than that after 5 hr of labeling. The ratios of the relative proportions of radiolabeled ribosomal RNAs and transfer plus 5 S RNA were quite similar to those after 5 hr of labeling.  相似文献   

5.
SYNOPSIS. Using uridine-5-H3, “long-term” labeling experiments over a 72 hr growth cycle were done with E. histolytica strain K9 grown in CLG medium with penicillin-inhibited Bacteroides. Autoradiographic analysis revealed that tritium occurs primarily in cytoplasm and rarely the nucleus of amebae. The most extensive cytoplasmic activity was observed during the initial 0–24 hr growth period of amebae as compared to later labeling periods. RNase or RNase followed by DNase extracted a large amount but not all label from amebae. These nucleases were least effective during the initial 24 hr period of growth. Thus it appears that tritium from uridine-5-H3 is not highly specific for RNA in amebae. However, the possibility that such label is associated with RNase-resistant RNA cannot be ruled out. More recent cytochemical studies do indicate the presence of RNase-resistant RNA in the cytoplasm of amebae. The activity found in penicillin-inhibited Bacteroides after uridine-5-H3 labeling and their reaction to the various digestive procedures was similar to amebae at corresponding labeling periods. Therefore at least some of the RNase-resistant material present in the cytoplasm of amebae may be derived from the ingested bacteria; this has been further found by appropriate experiments in which amebae were fed prelabeled bacteria. Nuclear activity when observed (always after 24 hrs growth) was associated either with the periphery of the nucleus and/or the endosome. It was not seen in the nuclear stroma. Some of this activity is RNase-resistant, perhaps representing double or multi-stranded RNA. It therefore appears that RNA is not distributed in the nuclear stroma in “long-term” labeling experiments.  相似文献   

6.
Although unmodified poly C and unmodified ribosomal RNA showed little ( < 20%) or no inhibition of 6–7S cytoplasmic, 3–4S cytoplasmic and 3–4S chromatin-associated DNA-directed DNA polymerases and of RNase sensitive endogenous DNA polymerase and DNA-directed DNA polymerase activity associated with a particulate material (p = 1.16 ? 1.18 g/ml) from Burkitt cells the thiolated poly C and thiolated RNA were strongly inhibitory (70–97%). Moreover, the thiolated nucleic acids were more inhibitory to 6–7S enzyme than to 3–4S enzyme. Thiolation of nucleic acids thus appears to be a potentially important procedure for the development of agents which may be selective against certain polymerases.  相似文献   

7.
Ribonucleic acids having template activities were obtained from particulate components prepared from the postribosomal supernatant of soybean seeds. These RNA were 9 S and 18 S in size, and these corresponded to the components (9 S, 18 S) of high molecular weight RNA (H–RNA) prepared from the supernatant of 100,000×g centrifugation. The sizes of the particulate components were 37 S and 59 S, respectively. Larger particles contained 18 S and 9S RNA, and smaller particles contained 9S RNA, but not 18 S RNA. Those particulate components differed in absorption pattern and in the behaviour on sucrose gradient centrifugation depending on the concentration of Mg27+ from the subunits of ribosomes.  相似文献   

8.
B J Benecke  S Penman 《Cell》1977,12(4):939-946
A new class of previously undetected small RNA molecules with a range of discrete sizes between 6S and 10S has been identified in HeLa cell nuclei. They differ in size and location from the previously described small nuclear RNA species (snRNA). These RNA molecules were initially found by selective RNA labeling in vitro in isolated nuclei. The in vitro products migrate in gel electrophoresis in the region from 6–10S with predominant components between 8S and 10S. They are labeled in the presence of very high concentrations of α-amanitin (150–400 μg/ml), suggesting they are synthesized by a type I polymerase. Unlike the major polymerase I product, ribosomal precursor RNA, however, these molecules are found in the nucleoplasm and their labeling is not affected by pretreatment of cells with low concentrations of actinomycin D (0.04 μg/ml). Their formation by a presumptive polymerase I type of enzyme is the basis of their tentative designation as small nuclear polymerase I (snPI) RNAs.The snPI RNA molecules appear to be associated with chromatin and the nuclear matrix. They can be selectively eluted from nuclei leaving most of hnRNA behind. This association is used as the basis of fractionation procedures which separate these molecules from hnRNA and permit the demonstration of the synthesis of at least the most predominant of these RNA molecules in vivo. w  相似文献   

9.
Properties of feline leukemia virus. III. Analysis of the RNA.   总被引:5,自引:5,他引:0       下载免费PDF全文
The kinetics of virus labeling was used to study the maturation of viral RNA in the Rickard strain of feline leukemia virus. Viral RNA labeled over differing intervals was characterized by gel electrophoresis and velocity sedimentation in sucrose gradients made up in aqueous buffer and 99% dimethyl sulfoxide. Labeled virus was found within 30 min after adding radioactive uridine to the cells and production of labeled virus reached a maximum at 4 to 5 h after pulse labeling. Native RNA from feline leukemia virus resolved into three size classes when analyzed by electrophoresis on 2.0% polyacrylamide-0.5% agarose gels: a 6.2 x 10(6) to 7.1 x 10(6) mol wt (50 to 60S) class, an 8.7 x 10(4) mol wt (approximately 8S) class, and a 2.5 x 10(4) mol wt (4 to 5S) class. From two experiments during which RNA degradation appeared minimal, these made up to 57 to 76%, 2 to 5%, and 6 to 12%, respectively, of the total RNA. The 8S RNA in feline leukemia virus has not previously been reported. The 50 to 60S RNA from virus harvested after 4 h of labeling electrophoretically migrated faster and sedimented more slowly in sucrose gradients than did the same RNA species harvested after 20 h of labeling. This argues for an intravirion modification of the high-molecular-weight RNA. The large subunits of denatured viral RNA from both 4- and 20-h labeled-viral RNA electrophoretically migrated with an estimated molecular weight of 3.2 x 10(6) but sedimented with 28S ribosomal RNA (1.8 X 10(6) mol wt) when analyzed by velocity sedimentation through 99% dimethyl sulfoxide.  相似文献   

10.
By pretreating simian virus 40-infected BSC-1 cells with glucosamine, [(3)H]uridine labeling of both cellular and viral RNA can be halted instantaneously by addition of cold uridine. We have studied the fate of pulse-labeled viral RNA from cells at 45 h postinfection under these conditions. During a 5-min period of labeling, both the messenger and nonmessenger regions of the late strand were transcribed. After various chase periods, nuclear viral species which sediment at 19, 17.5, and 16S were observed. Nuclear viral RNA decays in a multiphasic manner. Of the material present at the beginning of the chase period, 50% was degraded rapidly with a half-life of 8 min (initial processing). This rapidly degraded material was that fraction of the late strand which did not give rise to stable late mRNA species. Forty percent was transported to the cytoplasm, and 10% remained in the nucleus as material which sedimented in the 2 to 4S region. These 2 to 4S viral RNAs had a half-life of 3 h, and hybridization studies suggest that they are in part coded for by the late-strand nonmessenger region and are derived from the initial nuclear processing step. Another part is coded for by the late-strand messenger region and may be generated by some subsequent nuclear cleavages of 19S RNA into 17.5 and 16S RNAs. Transport of nuclear viral RNA into the cytoplasm was detected after a 5-min pulse and a 7-min chase. The maximum amount of labeled viral RNA was accumulated in the cytoplasm after a 30-min to 1-h chase. At least two viral cytoplasmic species were observed. Kinetic data suggest that 19S RNA is transported directly from the nucleus. Whether cytoplasmic 16S is formed by cleavage of 19S RNA in the cytoplasm is not clear. The half-lives of cytoplasmic 19 and 16S RNAs can be approximated as 2 and 5 h, respectively.  相似文献   

11.
The distribution of labeled ribonucleic acid (RNA) associated with polysomes from Escherichia coli infected with the bacteriophage R17 was investigated. Pulse-labeling of RNA for 15 sec with (3)H-uridine resulted in increased labeling of the RNA associated with larger polysomes from infected cells as compared to control cells. Analysis of the RNA indicated that the increased labeling of large polysomes resulted from the presence of labeled double-stranded viral RNA. Other species of 15-sec pulse-labeled RNA entered into polysome formation in both infected and control cells. On the other hand, pulse-labeling of cultures for 15 sec with (3)H-uridine followed by a 5-min chase with unlabeled uridine resulted in a greater decrease in the amount of labeled RNA associated with large polysomes from infected cells as compared to control cells. This decreased labeling of large polysomes from infected cells was accompanied by an increased amount of label associated with the monomer to trimer regions. Analysis of RNA labeled under pulse-chase conditions indicated that virus infection resulted in an increased amount of heterogeneous 5 to 15S RNA in both the monomer to trimer and ribosomal subunit-soluble regions of the polysome profile. Labeled 5 to 15S RNA extracted directly from infected cells under pulse-chase conditions, without prior polysome fractionation, was characterized by a shift toward a distribution of smaller polynucleotides.  相似文献   

12.
The effect of α-amanitin on nucleoside labeling of RNA in nucleoli, chromosomes, nuclear sap, and cytoplasm from Chironomus tentans salivary gland cells was investigated by radioautography and gel electrophoresis. Preribosomal RNA formation and processing in the nucleolus was not measurably influenced by the drug, and both 28 S and 18 S ribosomal RNA were transferred to the cytoplasm. In the chromosomes the heterogeneous RNA labeling was completely inhibited for the large size range (above 45–50 S) and partially for the low range. The labeling of 4–5 S chromosomal RNA was only moderately reduced. Most of the chromosomes showed radioautographically a disappearance of the normal band pattern, but some retained a pattern of weakly labeled bands. The electrophoretic results for the nuclear sap paralleled those for the chromosomes. The effect of α-amanitin on RNA labeling in these cells is similar but not identical to that of the substituted benzimidazole 5,6-dichloro-1(β-D-ribofuranosyl) benzimidazole (DRB).  相似文献   

13.
Isolation of ribosomal RNA precursors from Physarum polycephalum   总被引:2,自引:0,他引:2  
Ribosomal RNA synthesis in Physarum polycephalum was studied by labeling intact microplasmodia with [3H]uridine. Labeled, high-molecular-weight RNA species were found in a 30,000 S structure released by phenol extraction at room temperature. RNA was released from the structure by further phenol extraction at 65–70 °C. If the labeling period was 15 min or longer, the labeled RNA was seen by polyacrylamide gel electrophoresis to be of two major types, a heterodisperse collection of 45-35 S molecules and a 26 S species. If the labeling was carried out for 30 min in the presence of cycloheximide, the major labeled species had an electrophoretic mobility corresponding to 40 S. Studies of the labeling kinetics, methylation, and base composition of these RNA molecules indicate that they are precursors to ribosomal RNA. The molecular weights of the homogeneous 40 and 26 S precursors are 3.0 × 106 and 1.45 × 106 daltons, respectively, in comparison with molecular weights of 1.29 × 106 and 0.68 × 106 daltons for the completed ribosomal RNA's.  相似文献   

14.
Mitochondria prepared from normal or regenerating rat liver appeared homogeneous on examination by electron microscopy. Ribonucleic acid (RNA) isolated from such mitochondria by phenol extraction or by deproteinization without phenol was resolved on sucrose density gradients into 18S, 12S and 4S optical density peaks. Administration of 5-[3H]-uridine to normal or partially hepatectomixed animals for 16 hours resulted in the labeling of A IS, 36S, 28–29S, 14S, 9–10S and 4S RNA species. Labeling of 18S RNA from regenerating liver but not from normal liver was also observed.  相似文献   

15.
Changing rates of DNA and RNA synthesis in Drosophila embryos   总被引:6,自引:0,他引:6  
Rates of DNA and RNA synthesis during Drosophila embryogenesis were measured by labeling octane-treated embryos with [14C]thymidine and [3H]uridine. Radioactivity incorporated per hour was converted to rates of synthesis using measurements of the pool-specific activity during the labeling periods. The rate of DNA synthesis during early embryogenesis increases to a maximum at 6 hr after oviposition and then decreases sharply. Measured rates of DNA synthesis were used to calculate that the total amount of DNA per embryo doubles every 18 min at blastoderm, every 70–80 min during gastrulation, and less than once every 7 hr at later stages. The rate of RNA accumulation per embryo increases continuously during the first 14 hr of embryogenesis. The rate of nuclear RNA synthesis per diploid amount of DNA, however, decreases fivefold between blastoderm and primary organogenesis. The cytoplasmic poly(A)+ RNA synthesized by blastoderm embryos associates rapidly with polysomes. The relatively high rate of synthesis of polysomal poly(A)+ RNA per nucleus at blastoderm allows the small number of nuclei present at blastoderm to make a significant quantitative contribution to the informational RNA active in the early embryo. At the end of blastoderm, approximately 14% of the mRNA being translated in the embryo has been synthesized after fertilization.  相似文献   

16.
Polyacrylamide gel electrophoresis of RNA from Paracentrotus lividus embryos has shown this material to contain five RNA components of small molecular weight. The components are synthesized early in sea urchin development, simultaneously with tRNA and heterodisperse RNA. After the blastula stage, when synthesis of ribosomal RNA is activated, the labeling incorporated into small molecular weight RNA components constitutes a relatively decreasing proportion of the total labeling in RNA. When labeling is performed prior to the blastula stage, three of the small molecular weight RNA components are labeled to a similar or greater extent than “5” S RNA and the 26-ass RNA. The gel electrophoretic mobilities of the small molecular weight RNA components have been compared with those in Ehrlich ascites cells and found to be different.  相似文献   

17.
During vegetative growth of the cellular slime mold Dictyostelium discoideum, RNA is rapidly labeled by radioactive precursor and both the 25 S and the 17 S ribosomal RNA species appear in the cytoplasm 6–7 min after the onset of labeling. Thirty minutes after further incorporation of radioactive RNA precursors has been blocked, less than 10% of the label in RNA is associated with the nuclear fraction. After aggregation of the slime mold amoebae, RNA appears in the cytoplasm at a reduced rate, the small ribosomal subunit appearing in the cytoplasmic fraction more slowly than the larger ribosomal subunit. Some labeled RNA remains in the nuclei of developing cells long after the incorporation of 3H-uridine is blocked.  相似文献   

18.
Zusammenfassung Chlorella pyrenoidosa inkorporiert unter normalen Anzuchtbedingungen kurzfristig angebotenes Uridin fast ausschließlich in plastidäre ribosomale RNA. Es lassen sich rasch markierte Ribosomen und deren Untereinheiten von 70 S, 50 S und 30 S nachweisen. Diese Markierung wird durch Rifampin in geringen Konzentrationen bereits nach wenigen Minuten unterbunden. Auf das Zellwachstum hat Rifampin bei heterotropher Anzucht dagegen auch in höheren Konzentrationen keinen Einfluß. Chloramphenicol hemmt den kurzfristigen Uridin-Einbau in ribosomale Partikeln von 70 S, 50 S und 30 S, nur geringfügig dagegen denjenigen in ribosomale RNA. Auch die Wirkung des Chloramphenicols tritt rasch ein. Cycloheximid beeinflußt den Kurzzeit-Einbau von Uridin in ribosomale Partikeln und in RNA nicht, wenn die Inkubationszeit 60 min nicht überschreitet.Die Markierung der Nucleinsäuren von Chlorella mit 6-(14C)-Orotsäure zeigt vergleichbare Empfindlichkeiten gegen die drei Antibiotica wie der Einbau von 6-(14C)-Uridin und 5-(3H)-Uridin.
Incorporation of uridine and of orotate into chloroplast ribosome RNA of Chlorella after treatment with antibiotics
Summary Normal grown cells of Chlorella pyrenoidosa incorporate uridine exclusively into chloroplast ribosomal RNA after short time labeling. With sucrose gradient separation, labeled ribosomal particles of 70 S, 50 S and 30 S can be shown. This labeling is prevented by rifampin in low concentrations after a few minutes. At the same concentration of the antibiotic and also with 10-fold higher concentration, no effect on heterotrophic cell growth is observed. This indicates clearly that mitochondria cannot be influenced by rifampin. Chloramphenicol also inhibits the formation of uridine labeled ribosomal particles of 70 S, 50 S and 30 S. In the presence of this antibiotic, some labeled ribosomal RNA is formed. Also the effect of chloramphenicol can be shown after short incubation periods. Cycloheximide treatment of the cells within 30 and 60 min and up to the 10-fold concentration of protein synthesis inhibition (Morris, 1967) results in no effect on labeling of ribosomal RNA and of ribosomal particles in Chlorella with uridine. Only after prolonged treatment of the cells with cycloheximide is some effect on uridine incorporation observed.The comparison of the incorporation patterns of 6-(14C)-orotate, (6-14C)-uridine and 5-(3H)-uridine into nucleic acids in the presence of rifampin, chloramphenicol and cycloheximide shows some similarities. After 60 min incubation with the precursors, the incorporation is reduced by all three antibiotics. In rifampin treated cells, orotate and both uridines are preferentially incorporated into DNA. With chloramphenicol, the relative incorporation of orotate and of uridine into the 5 S and the 16 S RNA is higher as compared with the 23 S RNA. Cycloheximide results in an increase in the relative incorporation of orotate as well of uridine into DNA. The similarities of the effects of the three antibotics indicate that the preferential incorporation of uridine into chloroplast ribosomes of Chlorella is not due to a compartmentation of the uridine-UMP-pathway.

Abkürzungen BisMSB bis(O-Methylstyryl)-Benzol - PPO 2,5-Diphenyloxazol - MAK-Säule Säule aus methyliertem Albumin mit Kieselgur  相似文献   

19.
The incorporation of 5-3H-uridine and 5-3H-cytidine into nucleolar and nonnucleolar RNA in the nucleus of monkey and pig kidney cells was measured in vitro during the cell life cycle. Time-lapse cinematographic records were made of cells during asynchronous exponential proliferation, in order to identify the temporal position of individual cells in relation to the preceding mitosis. Immediately following cinematography, cells were labeled with uridine-3H and cytidine-3H for a short period, fixed, and analyzed by radioautography. Since the data permit correlation of the rate of RNA labeling with the position of a cell within the cycle, curves could be constructed describing the rate of RNA synthesis over the average cell cycle. RNA synthesis was absent in early telophase, and rose very abruptly in rate in late telophase and in very early G1 in both the nucleus and the reconstituting nucleolus. Thereafter, through the G1 and S periods the rate of nuclear RNA synthesis rose gradually. When we used a 10-min pulse, there was no detectable change in the rate for nucleolar RNA labeling in monkey kidney cells during G1 or S. When we used a 30-min labeling time, the rate of nucleolar RNA labeling rose gradually in pig kidney cells. With increasing time after mitosis, the data became more variable, which may, in part, be related to the variation in generation times for individual cells.  相似文献   

20.
Using the presence of poly(A) tracts as a marker for mRNA, we have examined the distribution of this class of RNA between polysomes and free RNP particles. This has been done in mature oocytes and in embryos aged for various times from fertilization through to hatching of a larva. The proportion of ribosomes that are in polysomes to those that are not has been calculated. In mature oocytes, 58% of the poly(A)+ RNA and 72% of the ribosomes are not in polysomes. By 1 hr, this drops to 51% of the poly(A)+ RNA and 48% of the ribosomes. By 7 hr, a plateau is reached: 30% of each are not in polysomes. The poly(A)+ RNA in the cytoplasm of oocytes and 1-hr embryos is found in particles with an average size of 50S and a range of 30–70S. The poly(A)+ RNA ranges in size from 7 to 40S, with an average size of 22S. The polyA from this RNA is 50–200 nucleotides long with an average of 115 nucleotides. These data have allowed us to calculate that 1–2% of the total RNA is poly(A)+ RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号