首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purified lipoxygenase of rabbit reticulocytes converts arachidonic acid at 0 degrees C to 15-hydroperoxyeicosatetraenoic acid (15-HPETE) and to 12-hydroperoxyeicosatetraenoic acid (12-HPETE) via reactions which involve hydrogen abstraction at C-13 and C-10, respectively. At 37 degrees C the enzyme converts arachidonic acid to additional products which were identified as 13-hydroxy-14,15-epoxy-5,8,11-eicosatrienoic acid, 8,15-dihydroperoxy-5,9,11,13- and 5,15-dihydroperoxy-6, 6,8,11,13-eicosatetraenoic acids (8,15-diHPETE and 5,15-HPETE, respectively) and diastereoisomers of 8,15-dihydroxy-5,9,11,13-eicosatetraenoic acid (8,15-diHPETEs). The 8,15- and 5,15-diHPETEs were formed by double lipoxygenation since each incorporated 2 molecules of 18O2 and since their synthesis from 15-HPETE was blocked under anaerobic conditions. The 8,15-diHETEs each incorporated 18O from 18O2 at C-15 and were found to arise from nonenzymatic hydrolysis of an epoxytriene which was identified as 14,15-leukotriene A4 by trapping in acidic methanol. This compound was a major product of 15-HPETE in anaerobic incubations. The conversion of 15-HPETE to 14,15-leukotriene A4 was inhibited by the lipoxygenase inhibitors nordihydroguairetic acid and 5,8,11,14-eicosatetraynoic acid. The 14,15-leukotriene A4 synthase and 15-lipoxygenase activities were inhibited by 5,8,11,14-eicosatetraynoic acid in a similar time-dependent manner. The results support a mechanism whereby 14,15-leukotriene A4 is synthesized from 15-HPETE by a further enzymatic step carried out by the reticulocyte 15-lipoxygenase via hydrogen abstraction at C-10 and a redox cycle of the non-heme iron atom of the enzyme.  相似文献   

2.
The preincubation of potato lipoxygenase with 9(S)-hydroperoxyoctadecatrienoic acid, 15(S)-hydroperoxyeicosatetraenoic acid or 5(S)-hydroperoxyeicosatetraenoic acid which can be subjected to further lipoxygenation led to the gradual inactivation of the lipoxygenase activity, whereas 13(S)-hydroperoxy-9,13,15-octadecatrienoic acid or 15(S)-hydroperoxy-11,13,17-eicosatrienoic acid had no significant effect. The inhibitory effect of the peroxy acids was abolished by hemoglobin. Based on these observations, it is proposed that the unstable epoxide intermediates from the respective peroxy acids may be responsible for the inactivation of potato lipoxygenase. In the comparative study, it was found that 15(S)-hydroperoxyeicosatetraenoic acid possessed more effective inhibitory role than the other acids with Ki value of 250 microM.  相似文献   

3.
4.
Endogenous arachidonic acid metabolism and protein phosphorylation have been examined in Friend erythroleukemia cells in response to the induction of differentiation by dimethyl sulfoxide and hexamethylene bisacetamide. 15-Hydroxyeicosatetraenoic acid levels were elevated in cells differentiated with hexamethylene bisacetamide or dimethyl sulfoxide compared with undifferentiated cells. Protein phosphorylation decreased markedly in differentiated cells compared with undifferentiated cells and the addition of 15-hydroperoxyeicosatetraenoic acid specifically decreased the phosphorylation of a 28-kilodalton protein. These findings indicate that products of 15-lipoxygenase may act as intracellular messengers in Friend erythroleukemia cells by affecting protein phosphorylation.  相似文献   

5.
Purification of a mammalian 5-lipoxygenase from rat basophilic leukemia cells   总被引:10,自引:0,他引:10  
5-Lipoxygenase (5-lipox) has been purified to homogeneity from the 20,000 xg supernatant of sonicated rat basophilic leukemia (RBL-1) cells using a 4-step procedure. Purification was achieved primarily through the use of anion-exchange HPLC on two different media. Using the supernatant from 1 X 10(9) cells, approximately 33 micrograms of the enzyme can be routinely isolated with an estimated net yield of 5-10%. Purified 5-lipox consists of a single Mr 73,000 band on SDS gels (reduced or unreduced). When the purified enzyme was incubated with radiolabeled arachidonic acid and products analyzed by both straight phase and reversed phase HPLC, 5-hydroperoxyeicosatetraenoic acid (5-HPETE) was the only enzymatic product detected. The purified enzyme exhibits the same characteristic lag phase and premature cessation of reaction as does the 5-lipox activity seen in crude cell homogenates.  相似文献   

6.
Earlier studies in our laboratory suggested a role for 15-lipoxygenase products of arachidonic acid, such as 15-hydroperoxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid, in supporting proliferative events in Friend erythroleukemia cells. Because lipoxins are also products of the same lipoxygenase enzyme, we tested their actions on signal transduction events related to DNA synthesis. Lipoxins A4 and B4 (10 nM) significantly enhanced [3H]thymidine incorporation into Friend cells in the absence of fetal bovine serum without affecting cell differentiation or cell number. Lipoxin B4 increased the duration of time that cells spent in the S phase of the cell cycle, and also significantly enhanced protein kinase C activity in nuclei, whereas c-fos expression was unaffected by either of the lipoxins tested. The novel, intracellular actions of lipoxins A and B on Friend erythroleukemia cells documented in this study represent a unique spectrum of effects of lipoxins on signal transduction events as compared with other eicosanoids.  相似文献   

7.
Previous work showed that rabbit aorta metabolizes arachidonic acid via 15-lipoxygenase to 15-hydroperoxyeicosatetraenoic acid (15-HPETE), which undergoes an enzymatic rearrangement to 11-hydroxy-14,15-epoxyeicosatrienoic acid (11-H-14,15-EETA) and 15-hydroxy-11,12-epoxyeicosatrienoic acid (15-H-11,12-EETA). Hydrolysis of the epoxy group results in the formation of 11,14,15- and 11,12,15-trihydroxyeicosatrienoic acids (THETAs). Endothelial cells have several heme-containing enzymes including cytochromes P450 (CYP), nitric oxide synthase (eNOS), and prostacyclin (PGI(2)) synthase that catalyze the rearrangement of 15-HPETE to HEETAs. Incubation of arachidonic acid and 15-lipoxygenase, or 15-HPETE with rabbit aortic microsomes or rat liver microsomes, a rich source of CYP, resulted in the formation of a product that comigrated with THETAs and HEETAs on HPLC. Immunoblot analysis showed the presence of CYP2C8 and CYP2J2 in aortic tissue and when CYP2J2 or CYP2C8 was incubated with arachidonic acid and 15-lipoxygenase, the major products were 11,12,15- and 11,14,15-THETAs. Incubation of purified hematin, CYP2C11, eNOS or PGI(2) synthase enzymes with arachidonic acid and 15-lipoxygenase produced a different pattern of metabolites from rabbit aortic microsomes. Clotrimazole, a non-specific CYP inhibitor, and ebastine and terfenadone, specific CYP2J2 inhibitors, blocked the ability of aortic microsomes to produce THETAs while specific inhibitors of PGI(2) synthase, eNOS or CYP2C8/2C9 had no effect on THETA production. We suggest that a CYP, possibly CYP2J2, may function as the hydroperoxide isomerase converting 15-HPETE to HEETAs in rabbit vascular tissue. Further hydrolysis of the epoxy group of the HEETAs results in the formation of 11,12,15- and 11,14,15-THETAs. The HEETAs and THETAs are both vasodilators and may function as important regulators of vascular tone.  相似文献   

8.
Selenium (Se) is an integral part of the Se-dependent glutathione peroxidase (Se-GSH-Px) catalytic domain. By modulating the cellular levels of fatty acid hydroperoxides, Se-GSH-Px can influence key enzymes of arachidonic acid cascade, in this case cyclooxygenase (COX) and lipoxygenase (LOX). To investigate this phenomenon, the effects of cellular Se status on the enzymatic oxidation of arachidonic acid were investigated in bovine mammary endothelial cells (BMEC), which were cultured in either Se-deficient (-Se) or Se-adequate (+Se) media. When stimulated with calcium ionophore A23187, BMEC produced eicosanoids of both COX and LOX pathways. Compared with the Se-adequate cells, the production of prostaglandin I(2) (PGI(2)), prostaglandin F(2) (PGF(2alpha)), and prostaglandin E(2) (PGE(2)) was significantly decreased in Se-deficient cells, whereas the production of thromboxane A(2) (TXA(2)) was markedly increased in the -Se BMEC cultures. Although the enzymatic oxidation of arachidonic acid by the LOX pathway was found to be relatively less than by the COX pathway, the BMEC cultured in -Se media produced significantly more 15-hydroperoxyeicosatetraenoic acid (15-HPETE) than the +Se cells produced. Based on these results, we postulate that cellular Se status plays an important regulatory role in the enzymatic oxidation of arachidonic acid by the COX and LOX pathways. The altered eicosanoid biosynthesis, especially the overproduction of 15-HPETE, in -Se BMEC may be one of the underlying biochemical phenomena responsible for vascular dysfunction during Se deficiency.  相似文献   

9.
The mechanisms of fenretinide-induced cell death of neuroblastoma cells are complex, involving signaling pathways mediated by free radicals or reactive oxygen species (ROS). The aim of this study was to identify mechanisms generating ROS and apoptosis of neuroblastoma cells in response to fenretinide. Fenretinide-induced ROS or apoptosis of SH-SY5Y or HTLA 230 neuroblastoma cells were not blocked by Nitro l-argenine methyl ester (l-NAME), an inhibitor of nitric oxide synthase. Flavoprotein-dependent superoxide-producing enzymes such as NADPH oxidase were also not involved in fenretinide-induced apoptosis or ROS generation. Similarly, ketoconazole, a cytochrome P450 inhibitor, and inhibitors of cyclooxygenase (COX) were also ineffective. In contrast, inhibition of phospholipase A(2) or lipoxygenases (LOX) blocked the induction of ROS and apoptosis in response to fenretinide. Using specific inhibitors of LOX, blocking 12-LOX but not 5- or 15-LOX inhibited both fenretinide-induced ROS and apoptosis. The effects of eicosatriynoic acid, a specific 12-LOX inhibitor, were reversed by the addition of the 12-LOX products, 12 (S)-hydroperoxyeicosatetraenoic acid and 12 (S)-hydroxyeicosatetraenoic acid. The targeting of 12-LOX in neuroblastoma cells may thus be a novel pathway for the development of drugs inducing apoptosis of neuroblastoma with improved tumor specificity.  相似文献   

10.
Role of lipoxygenation in human natural killer cell activation   总被引:1,自引:0,他引:1  
Nordihydroguaiaretic acid (NDGA), quercetin, eicosatetraynoic acid (ETYA), phenidone, and esculetin, agents known to inhibit cellular lipoxygenase (LO) activity, also inhibit human natural killer cell-mediated cytotoxicity (NK-CMC) of K562 tumor target cells (TC) in a dose-dependent fashion. Kinetic analysis demonstrated that LO inhibitors blocked an early event in the activation of the lytic mechanism but did not impair conjugate formation. LO inhibitors also did not affect subsequent chromium release, indicating that their site of inhibition was the NK cell and not the TC. The lipoxygenase products 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene-B4 significantly enhanced NK activity, with 5-HPETE being the more effective. Other LO products tested included 15-HPETE and the hydroxy derivatives 15-hydroxyeicosatetraenoic acid (15-HETE) and 5-HETE. These LO metabolites were either without effect on NK-CMC or inhibitory, depending upon the concentration. Additionally, we examined the ability of 5-HPETE to circumvent the effects of LO inhibitors and found that, in the presence of NDGA, ETYA or quercetin, 5-HPETE significantly (p less than 0.001) restored lytic activity. Inhibitors of LTB4 and LTC4 synthesis, diethylcarbamazine and U-60,257 respectively, produced no inhibition of NK activity. In fact, U-60,257 significantly (p less than 0.05) enhanced NK-CMC. Previous studies in our laboratory, with a new technique which allows for the separation of NK cells from K562 cells, have shown that K562-treated effector cells are greater than 90% inactivated when retested against fresh K562 in the standard chromium release assay. Lipids were extracted from K562-treated, Percoll-purified LGL and evaluated by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). No significant increases were seen in the arachidonic acid-derived LO products evaluated. Thus, our studies indicate that lipoxygenation may be required in the activation of NK-CMC, possibly as a means to generate oxygen radicals which have been previously implicated in NK-CMC.  相似文献   

11.
Arachidonic acid (AA) metabolism in the non-pregnant sheep uterus was studied in vitro using conventional chromatographic and HPLC techniques. High expression of both lipoxygenase (LOX) as well as cyclooxygenase (COX) enzymes and their activities was found in the uterine tissues. On incubation of uterine enymes with AA, the LOX products formed were identified as 5-hydroperoxyeicosatetraenoic acid (5-HPETE), 12- and 15-hydroxyeicosatetraenoic acids (12- and 15-HETEs), based on their separation on TLC and HPLC. By employing differential salt precipitation techniques, the LOXs generating products 5-HPETE (5-LOX), 12-HETE and 15-HETE (12- and 15-dual LOX) were isolated. Based on their analysis on TLC, the COX products formed were identified as prostaglandins - PGF2alpha and prostacyclin derivative 6-keto PGF1alpha. The study forms the first report on the comprehensive analysis on the metabolism of AA in sheep uterus in vitro via the LOX and COX pathways.  相似文献   

12.
Two ways for semi-enzymatic preparation of the peptide aldehydes are proposed: (1) enzymatic acylation of amino alcohols with acyl peptide esters and subsequent chemical oxidation of the resulting peptide alcohols with DMSO/acetic anhydride mixture or (2) enzymatic acylation of the preliminarily obtained by a chemical route amino aldehyde semicarbazones. Subtilisin 72, serine proteinase with a broad specificity, distributed over macroporous silica, was used as a catalyst in both cases. Due to the practical absence of water in the reaction mixtures the yields of the products in both enzymatic reactions were nearly quantitative. The second way seems to be more attractive because all chemical stages were carried out with amino acid derivatives, far less valuable compounds than peptide ones. A series of peptide aldehydes of general formula Z-Ala-Ala-Xaa-al (where Xaa-al=leucinal, phenylalaninal, alaninal, valinal) was obtained. The inhibition parameters for these compounds, in the hydrolysis reactions of corresponding chromogenic substrates for subtilisin and -chymotrypsin, were determined.  相似文献   

13.
Arachidonate 12-lipoxygenase was purified to near homogeneity from the cytosol fraction of porcine leukocytes by ammonium sulfate fractionation, DEAE-cellulose chromatography, and immunoaffinity chromatography using a monoclonal antibody against the enzyme. The purified enzyme was unstable (half-life of about 24 h at 4 degrees C) but was markedly protected from the inactivation by storage in the presence of ferrous ion or in the absence of air. The lag phase which was observed before the start of the enzyme reaction was abolished by the presence of 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid. An apparent substrate inhibition was observed with arachidonic acid and other active substrates; however, the substrate concentration curve was normalized by the presence of 0.03% Tween 20. Arachidonic acid was transformed to the omega-9 oxygenation product 12-hydroperoxy-5Z,8Z,10Z,14Z-eicosatetraenoic acid. C-12 oxygenation also occurred with 5-hydroxy- and 5-hydroperoxyeicosatetraenoic acids; the respective maximal velocities were 60 and 150% of the rate with arachidonic acid. Octadecaenoic acids were also good substrates. gamma-Linolenic acid was oxygenated in the omega-9 position (C-10), while linoleic and alpha-linolenic acids were subject to omega-6 oxygenation (C-13). A far more complex reaction was observed using 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid as substrate. Reaction occurred at 70% of the rate with arachidonic acid. The dihydroperoxy and dihydroxy products were identified by their UV absorption spectra, high performance liquid chromatography, and gas chromatography-mass spectrometry. Among these products, (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicos atetraenoic acid and (14R,15S)-erythro-dihydroperoxy-5Z,8Z,10E, 12E-eicosatetraenoic acid were produced in larger amounts than the (8R)- and (14S,15S)-threo isomers, respectively; these products were attributed to 8- and 14-oxygenation of the 15-hydroperoxy acid. Furthermore, formation of 14,15-leukotriene A4 was inferred from the characteristic pattern of its hydrolysis products comprised of equal amounts of (8R,15S)- and (8S,15S)-dihydroxy-5Z,9E,11E,13E-eicosatetraenoi c acids together with smaller amounts of (14R,15S)-erythro- and (14S,15S)-threo-dihydroxy-5Z,8Z,10E,12E-eicosate traenoic acids. Thus, both lipoxygenase and leukotriene synthase activities were demonstrated with the homogeneous preparation of porcine leukocyte 12-lipoxygenase.  相似文献   

14.
The 15-hydroperoxyeicosatetraenoic acid (15-HPETE) has been shown to affect platelet aggregation induced by collagen, arachidonic acid (AA), and PGH2-analogue. Furthermore, it also inhibits the platelet cyclooxygenase and lipoxygenase enzymes, and prostacyclin synthase. The present study was designed to test the effect of 15-HPETE on the mobilization of endogenous AA in collagen-stimulated human platelets. For this purpose, human platelets pretreated with BW755C (a dual inhibitor of cyclooxygenase and lipoxygenase) were stimulated with collagen in the presence of varied concentrations of 15-HPETE. We observed a significant inhibition of oxygenases at all concentrations of 15-HPETE. In contrast, our results indicate that 15-HPETE at lower concentrations (10 microM and 30 microM) significantly stimulated the collagen-induced release of AA from phospholipid sources. Although higher concentrations of 15-HPETE (50 microM and 100 microM) caused some inhibition of AA accumulation in the free fatty acid fraction (25% and 60%), the degree of inhibition was significantly lower than the inhibition observed for the oxygenases (65% and 88% for cyclooxygenase and 77% and 94% for lipoxygenase respectively). These results provide support that hydroperoxides also regulate phospholipases presumably by a different mechanism, which may be important in the detoxification of phospholipid peroxides.  相似文献   

15.
Human peripheral blood polymorphonuclear leukocytes (PMNs) metabolized [14C]arachidonic acid predominantly by lipoxygenase pathways. The major products were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) and 15-HETE. These and other lipoxygenase products, including their derived leukotrienes, have been implicated as mediators of inflammatory and allergic reactions. In human platelets, the nonsteroidal anti-inflammatory drug ibuprofen inhibited production of the cyclooxygenase product thromboxane B2 (I50 = 65 microM), whereas the lipoxygenase product 12-HETE was not appreciably affected even at 5 mM ibuprofen. The 5-lipoxygenase of human PMNs (measured by 5-HETE formation) was inhibited by ibuprofen but was about six times less sensitive (I50 = 420 microM) than the platelet cyclooxygenase. The unexpected observation was made that the human PMN 15-lipoxygenase/leukotriene pathway was selectively activated by 1-5 mM ibuprofen. Metabolites were identified by ultraviolet spectroscopy, by radioimmunoassay, or by retention times on high pressure liquid chromatography in comparison with authentic standards. The major product was 15-HETE; and in all of 19 donors tested, 15-HETE formation was stimulated up to 20-fold by 5 mM ibuprofen. Other identified products included 12-HETE and 15- and 12-hydroperoxyeicosatetraenoic acid. Activation of the 15-lipoxygenase by ibuprofen occurred within 1 min and was readily reversible. The effects of aspirin, indomethacin, and ibuprofen on the PMN 15-lipoxygenase were compared in six donors. Ibuprofen produced an average 9-fold stimulation of the enzyme, whereas aspirin and indomethacin resulted in an average 1.5- and 2-fold enhancement, respectively.  相似文献   

16.
Three carbonyl compounds derived from arachidonic acid have recently been characterized in human platelets, namely, 12-ketoeicosatetraenoic acid and two isomeric 12-oxododecatrienoic acids. The conditions for the synthesis of these compounds and for the synthesis of analogous products from soybean lipoxygenase, i.e., 15-ketoeicosatetraenoic acid and 15-oxopentadecatetraenoic acids, were compared with regard to the role of oxygen and fatty acid availability, and heme catalysis. Using platelet homogenates or soybean lipoxygenase and arachidonic acid as a substrate, it was found that the establishment of anaerobic conditions during the incubation was mandatory only for the synthesis of 15-oxopentadecatetraenoic acids. Anaerobic conditions, however, greatly increased the formation of 15-ketoeicosatetraenoic acid and, to a lesser extent, of 12-oxododecatrienoic acids. On the other hand, 12-hydroperoxyeicosatetraenoic acid (12-HPETE) was transformed into 12-ketoeicosatetraenoic acid and 12-oxododecatrienoic acids by platelet homogenates or soybean lipoxygenase. This transformation was increased when the incubation was performed in anaerobic conditions and in the presence of a fatty acid substrate of the enzyme. These data suggest that oxygen deprivation and excess fatty acid could play a stimulatory role in the synthesis of 12-oxo compounds by platelets. Finally, we have compared the heme-catalyzed generation of the 12-oxo and 15-oxo derivatives from their hydroperoxide precursors: whereas 12-oxododecatrienoic acids and 12-ketoeicosatetraenoic acid were formed in the proportion of 8.5: 1.5 from 12-HPETE incubated with hematin (150 nM), 15-ketoeicosatetraenoic acid was the only carbonyl compound generated from 15-HPETE in the same conditions, emphasizing the unique reactivity of the 12-HPETE.  相似文献   

17.
The stereochemistry of the major isomer of 14,15-dihydroxy-5,8,10,12-eicosatetraenoic acid formed from 15-hydroperoxyeicosatetraenoic acid in human leukocytes was determined. The structure (erythro-14(R),15(S]-14,15-dihydroxy-5,8-cis-10,12-trans-eicosatetraenoi c acid) was assigned based on sodium arsenite thin-layer chromatography, NMR spectroscopy, and comparison with material prepared by total synthesis. This compound was found to inhibit leukotriene B4-induced superoxide anion generation in human neutrophils (IC50 = 10(-8)-10(-7) M). Superoxide anion generation induced by either formylmethionyl-leucyl-phenylalanine or arachidonic acid was not affected.  相似文献   

18.
Porcine leukocytes convert exogenous arachidonic acid to a complex array of products derived via the 5-, 12-, and 15-lipoxygenase pathways of metabolism. The major monohydroxylated metabolite following addition of 100 microM arachidonic acid is 12-hydroxyeicosatetraenoic acid. Of the more polar compounds on reverse-phase high pressure liquid chromatography, the most prominent is a previously uncharacterized arachidonate product which chromatographs near to the omega-oxidized metabolites of leukotriene B4. The structure of this new product was examined by high pressure liquid chromatography, UV, NMR, and also by gas chromatography-mass spectrometry of several derivatives; it was identified as 12-oxododeca-5,8,10-(Z,Z,E)-trienoic acid. It is proposed that this C-12 trienal acid is formed from 12-hydroperoxyeicosatetraenoic acid by a cleavage reaction catalyzed by the leukocyte 12-lipoxygenase in the presence of excess arachidonic acid and under anaerobic conditions. These conditions are satisfied by addition of 100 microM arachidonic acid to the leukocyte suspension (3 X 10(7) cells/ml); 12-hydroperoxyeicosatetraenoic acid is formed as the major product, excess arachidonic acid is available, and the concomitant leukocyte respiratory burst quickly depletes the solution of oxygen. Preliminary experiments indicate that this aldehyde product has significant biological activity in the activation of leukocytes. In the course of an intense inflammatory reaction it is conceivable that the conditions for synthesis of this C-12 trienal acid and related aldehydes could prevail; such aldehydes would constitute an additional class of lipoxygenase product which exacerbates the process of inflammation.  相似文献   

19.
Washed human platelets were not able to convert eicosapentaenoic acid (EPA) to thromboxane B3 (TXB3) and 12-hydroxyeicosapentaenoic acid (AA) to washed human platelets induced conversion of EPA to TXB3 and 12-HEPE. Esculetin, a specific inhibitor of 12-lipoxygenase, prevented the effect of AA, but cyclooxygenase inhibitor did not. The conversion of AA to TXB2 was not affected by the same dose of esculetin. These data suggest that products of AA formed by 12-lipoxygenase in human platelets have stimulatory effects on EPA metabolism. When AA was preincubated with washed human platelets, its effect on EPA conversion was reduced, suggesting that a labile product of AA formed by 12-lipoxygenase is involved in the facilitation of EPA metabolism. Addition of 12-hydroperoxyeicosatetraenoic acid directly to washed human platelets caused dose-dependent synthesis of TXB3 and 12-HEPE, while addition of 12-hydroxyeicosatetraenoic acid had no effect. Thus, 12-hydroperoxyeicosatetraenoic acid formed from AA promotes the metabolism of EPA in washed human platelets.  相似文献   

20.
Prostaglandin H synthase has two distinct catalytic activities: a cyclooxygenase activity that forms prostaglandin G2 from arachidonic acid; and a peroxidase activity that reduces prostaglandin G2 to prostaglandin H2. Lipid hydroperoxides, such as prostaglandin G2, also initiate the cyclooxygenase reaction, probably via peroxidase reaction cycle enzyme intermediates. The relation between the binding sites for lipid substrates of the two activities was investigated with an analysis of the effects of arachidonic and docosahexaenoic acids on the reaction kinetics of the peroxidase activity, and their effects on the ability of a lipid hydroperoxide to initiate the cyclooxygenase reaction. The cyclooxygenase activity of pure ovine synthase was found to have an apparent Km value for arachidonate of 5.3 microM and a Ki value (competetive inhibitor) for docosahexaenoate of 5.2 microM. When present at 20 microM neither fatty acid had a significant effect on the apparent Km value of the peroxidase for 15-hydroperoxyeicosatetraenoic acid: the values were 7.6 microM in the absence of docosahexaenoic acid and 5.9 microM in its presence, and (using aspirin-treated synthase) 13.7 microM in the absence of arachidonic acid and 15.7 microM in its presence. Over a range of 1 to 110 microM the level of arachidonate had no significant effect on the initiation of the cyclooxygenase reaction by 15-hydroperoxyeicosatetraenoic acid. The inability of either arachidonic acid or docosahexaenoic acid to interfere with the interaction between the peroxidase and lipid hydroperoxides indicates that the cyclooxygenase and peroxidase activities of prostaglandin H synthase have distinct binding sites for their lipid substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号