共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D'Souza LM Larios-Sanz M Setterquist RA Willson RC Fox GE 《Biotechnology progress》2003,19(3):734-738
This laboratory previously showed that an RNA derived from 5S ribosomal RNA could be used as a carrier to harbor a nucleic acid "tag" for monitoring genetically engineered or naturally occurring bacteria. The prototype system expressed a specific tagged RNA that was stable and accumulated to high levels. For such a system to be useful there should, however, be little limitation on the sequence composition and length of the insert. To test these limitations, a collection of insertion sequences were created and introduced into the artificial 5S rRNA cassette. This library consisted of random 13- and 50-base oligonucleotides that were inserted into the carrier RNA. We report here that essentially all of the insert-containing RNAs are stable and accumulate to detectable levels. Tagged RNAs were produced by both plasmid-borne and chromosomally integrated expression systems in E. coli and several Pseudomonas strains without obvious effect on the host cell. It is anticipated that in addition to its intended use in environmental monitoring, this system can be used for in vivo selection of useful artificial RNAs. Because the carrier lends stability to the RNAs, the system may also be useful in RNA production. 相似文献
3.
The ability of pegylated liposomes (sterically stabilized liposomes-SSL) to localize in solid tumors via the enhanced permeability and retention (EPR) effect, partly depends on their long circulating properties which can be achieved by grafting polyethylene glycol (PEG) to the liposomes’ surface. Alkannin and shikonin (A/S) are naturally occurring hydroxynaphthoquinones with a well-established spectrum of wound healing, antimicrobial, anti-inflammatory, antioxidant, and recently established antitumor activity. The purpose of this work was to prepare and characterize shikonin-loaded pegylated liposomes as a new drug carrier for shikonin, as a continuation of authors’ previous work on conventional shikonin-loaded liposomal formulations. Three new pegylated liposomal formulations of shikonin (DSPC-PEG2000, EPC-PEG2000, and DPPC-PEG2000) were prepared and characterized in terms of physicochemical characteristics, pharmacokinetics, and stability (at 4?°C, for 28?d) and compared with the corresponding conventional ones. Particle size distribution, ζ-potential, entrapment efficiency, and release profile of the entrapped drug were measured. Results indicated the successful incorporation of shikonin into liposomes alongside with their good physicochemical characteristics, high entrapment efficiency, satisfactory in vitro release profile, and good physical stability. The results are considered promising and could be used as a road map for designing further in vivo experiments. 相似文献
4.
Molecular Biology Reports - Chondrocytes are the sole cell type present within cartilage, and play pivotal roles in controlling the formation and composition of health cartilage. Chondrocytes... 相似文献
5.
Meinhardt M Lück S Martin P Felka T Aicher W Rolauffs B Schmidt V 《Journal of structural biology》2012,177(2):447-458
Superficial zone chondrocytes (CHs) of human joints are spatially organized in distinct horizontal patterns. Among other factors, the type of spatial CH organization within a given articular surface depends on whether the cartilage has been derived from an intact joint or the joint is affected by osteoarthritis (OA). Furthermore, specific variations of the type of spatial organization are associated with particular states of OA. This association may prove relevant for early disease recognition based on a quantitative structural characterization of CH patterns. Therefore, we present a point process model describing the distinct morphology of CH patterns within the articular surface of intact human cartilage. This reference model for intact CH organization can be seen as a first step towards a model-based statistical diagnostic tool. Model parameters are fitted to fluorescence microscopy data by a novel statistical methodology utilizing tools from cluster and principal component analysis. This way, the complex morphology of surface CH patters is represented by a relatively small number of model parameters. We validate the point process model by comparing biologically relevant structural characteristics between the fitted model and data derived from photomicrographs of the human articular surface using techniques from spatial statistics. 相似文献
6.
7.
Regulation of chondrocyte differentiation by Cbfa1 总被引:18,自引:0,他引:18
8.
The importance of actin organization in controlling the chondrocyte phenotype is well established, but little is known about the cytoskeletal components regulating chondrocyte differentiation. Previously, we have observed up-regulation of an actin-binding gelsolin-like protein in hypertrophic chondrocytes. We have now identified it as adseverin (scinderin). Adseverin is drastically up-regulated during chondrocyte maturation, as shown by Northern blot analysis, in situ hybridization, and real-time RT-PCR. Its expression is positively regulated by PKC and MEK signaling as shown by inhibitory analyses. Over-expression of adseverin in non-hypertrophic chondrocytes causes rearrangement of the actin cytoskeleton, a change in cell morphology, a dramatic (3.5-fold) increase in cell volume, and up-regulation of Indian hedgehog (Ihh) and of collagen type X--all indicative of chondrocyte differentiation. These changes are mediated by ERK1/2 and p38 kinase pathways. Thus, adseverin-induced rearrangements of the actin cytoskeleton may mediate the PKC-dependent activation of p38 and Erk1/2 signaling pathways necessary for chondrocyte hypertrophy, as evidenced by changes in cell morphology, increase in cell size and expression of the chondrocyte maturation markers. These results demonstrate that interdependence of cytoskeletal organization and chondrogenic gene expression is regulated, at least in part, by actin-binding proteins such as adseverin. 相似文献
9.
The double D-loop DNA hybrid contains four DNA strands following hybridization of two RecA protein coated complementary single-stranded DNA probes with a homologous region of a double-stranded DNA target. A remarkable feature of the double D-loop DNA hybrids is their kinetic stabilities at internal sites within linear DNA targets after removal of RecA protein from hybrids. We report here that heterologous DNA inserts in one or both probe strands affect the kinetic stability of protein-free double D-loop hybrids. DNA heterologies normally distort DNA-DNA hybrids and consequently accelerate hybrid dissociation. In contrast, heterologous DNA inserts impede dissociation of double D-loops, especially when the insert sequences interact with each other by DNA base pairing. We propose a mechanism for this kinetic stabilization by heterologous DNA inserts based on the hypothesis that the main pathway of dissociation of double D-loop DNA hybrids is a DNA branch migration process involving the rotation of both probe-target duplexes in the hybrids. Heterologous DNA inserts constrain rotation of probe-target duplexes and consequently impede hybrid dissociation. Potential applications of the stabilized double D-loops for gene targeting are discussed. 相似文献
10.
Belisario MA Tafuri S Pontarelli G Staiano N Gionti E 《European journal of cell biology》2005,84(10):833-842
Primary chondrocytes from quail embryo epiphysis (quail epiphyseal chondrocytes, QEC) can grow either in suspension or in monolayer. In this study, the adhesion of QEC to collagen II was used as a model to study the regulation of the ligand-binding activity of integrin receptors that allows these cells to undergo a rapid transition from suspension to an adherent state. Preincubation of suspension QEC (QECSP) with the disintegrin echistatin increased by 40% their adhesion to collagen II. An inverse relationship between immobilized collagen density and echistatin-induced increase of chondrocyte adhesion was observed, thus suggesting that the disintegrin acts by increasing the ligand-binding affinity of collagen receptor(s). Further, echistatin activity does not appear to depend upon a direct binding of the disintegrin to collagen receptor(s). In fact, immobilized anti-beta1 antibodies, but not immobilized echistatin, served as effective binding sites for QECSP. Echistatin failed to stimulate chondrocyte adhesion to collagen in the presence of metabolic inhibitors, while an activating anti-beta1 antibody was still effective. Thus, echistatin may promote cell adhesion by interfering with energy-dependent signals that keep the collagen receptor(s) in a low-affinity state. Adhesion experiments performed in the presence of pharmacological inhibitors indicate that phosphatidyl inositol 3-kinase (PI3-K)/protein kinase C (PKC) and protein kinase A (PKA) pathways may transmit opposing signals on chondrocyte adhesion, and that collagen receptors are kept in a low-affinity state by PI3-kinase/PKC signalling. Since echistatin is a high-affinity ligand for alphavbeta3 integrin, the effect of the function-blocking anti-alphavbeta3 antibody LM609 was investigated. Like echistatin, LM609 stimulated chondrocyte adhesion to collagen and failed to support their attachment. Therefore, our data suggest that alphavbeta3-antagonists might regulate the binding activity of the beta1 collagen receptor, which in turn leads to the rapid transition of chondrocytes from suspension to an adherent state. 相似文献
11.
We report an optimized method for RNA extraction from human articular cartilage that does not require the use of specialized equipment or column purification. To maximize RNA yield while minimizing degradation and contamination, chondrocytes are isolated from the extracellular matrix and the traditional TRIzol protocol is modified to include two RNA-DNA-protein phase separations. We compared RNA extracted using this modified method with the traditional TRIzol method by spectrophotometry, Bioanalyzer, and real-time polymerase chain reaction (PCR). With the modified method, RNA recovery is increased by nearly 1μg per 100mg of cartilage, and RNA integrity number (RIN) is improved from 2.0 to 7.5. 相似文献
12.
Chubinskaya S Otten L Soeder S Borgia JA Aigner T Rueger DC Loeser RF 《Arthritis research & therapy》2011,13(2):R55
Introduction
The objective of this study was to investigate which genes are regulated by osteogenic protein-1 (OP-1) in human articular chondrocytes using Affimetrix gene array, in order to understand the role of OP-1 in cartilage homeostasis. 相似文献13.
Amano K Ichida F Sugita A Hata K Wada M Takigawa Y Nakanishi M Kogo M Nishimura R Yoneda T 《The Journal of biological chemistry》2008,283(43):29513-29521
Several studies indicated that a homeobox gene, Msx2, is implicated in regulation of skeletal development by controlling enchondral ossification as well as membranous ossification. However, the molecular basis by which Msx2 conducts chondrogenesis is currently unclear. In this study, we examined the role of Msx2 in chondrocyte differentiation using mouse primary chondrocytes and embryonic metatarsal explants. Treatment with BMP2 up-regulated the expression of Msx2 mRNA along with chondrocyte differentiation in murine primary chondrocytes. Overexpression of wild-type Msx2 stimulated calcification of primary chondrocytes in the presence of BMP2. We also found that constitutively active Msx2 (caMsx2) enhanced BMP2-dependent calcification more efficiently than wild-type Msx2. Consistently, caMsx2 overexpression up-regulated the expression of alkaline phosphatase and collagen type X induced by BMP2. Furthermore, organ culture experiments using mouse embryonic metatarsals indicated that caMsx2 clearly stimulated the maturation of chondrocytes into the prehypertrophic and hypertrophic stages in the presence of BMP2. In contrast, knockdown of Msx2 inhibited maturation of primary chondrocytes. The stimulatory effect of Msx2 on chondrocyte maturation was enhanced by overexpression of Smad1 and Smad4 but inhibited by Smad6, an inhibitory Smad for BMP2 signaling. These data suggest that Msx2 requires BMP2/Smad signaling for its chondrogenic action. In addition, caMsx2 overexpression induced Ihh (Indian hedgehog) expression in mouse primary chondrocytes. Importantly, treatment with cyclopamine, a specific inhibitor for hedgehogs, blocked Msx2-induced chondrogenesis. Collectively, our results indicated that Msx2 promotes the maturation of chondrocytes, at least in part, through up-regulating Ihh expression. 相似文献
14.
Anne Simon Céline Gounou Sisareuth Tan Louis Tiefenauer Marco Di Berardino Alain R. Brisson 《生物化学与生物物理学报:生物膜》2013
Free-standing lipid bilayers in nano- and micro-pores are interesting membrane models and attractive for biotechnological applications. We describe here the controlled preparation of proteo-lipid mono- and bilayers using the Langmuir–Schaefer transfer or Langmuir–Blodgett technique, respectively on hydrophobic and hydrophilic surfaces. We demonstrate the formation of suspended proteo-lipid layers by Transmission Electron Microscopy (TEM) and in situ Atomic Force Microscopy (AFM) imaging. Using Annexin-A5 as a membrane-associated protein, continuous proteo-lipid mono- and bilayers were formed, which span pore arrays over areas of several square-micrometers. The 2D organization of proteins associated to lipid monolayer is well preserved during the transfer process and the protein association is Ca2+-dependent and therefore reversible. The simple formation and reliable transfer of stabilized free-standing lipid films is a first crucial step to create biomimetic membranes for biotechnological applications and membrane protein research. 相似文献
15.
The mechanism of ion transport by carrier ionophores is investigated. The electrostatic potential is used as index of the
binding energy of a cation with valinomycin and enniatin B. The ion binding capacities of these ionophores are studied as
functions of conformation and of distance of an approaching ion-complex. The energetics of dirnerisation and the binding energy
profile of an ion in dimers of valinomycin and enniatin B are examined. The binding energy profiles and the electrostatic
potential surfaces of valinomycin and enniatin B are compared in relation to their biological activities. 相似文献
16.
Marques D Pessela BC Betancor L Monti R Carrascosa AV Rocha-Martin J Guisán JM Fernandez-Lorente G 《Biotechnology progress》2011,27(3):677-683
The preparation of novel immobilized and stabilized derivatives of trypsin is reported here. The new derivatives preserved 80% of the initial catalytic activity toward synthetic substrates [benzoyl-arginine p-nitroanilide (BAPNA)] and were 50,000-fold more thermally stable than the diluted soluble enzyme in the absence of autolysis. Trypsin was immobilized on highly activated glyoxyl-Sepharose following a two-step immobilization strategy: (a) first, a multipoint covalent immobilization at pH 8.5 that only involves low pK(a) amino groups (e.g., those derived from the activation of trypsin from trypsinogen) is performed and (b) next, an additional alkaline incubation at pH 10 is performed to favor an intense, additional multipoint immobilization between the high concentration of proximate aldehyde groups on the support surface and the high pK(a) amino groups at the enzyme surface region that participated in the first immobilization step. Interestingly, the new, highly stable trypsin derivatives were also much more active in the proteolysis of high molecular weight proteins when compared with a nonstabilized derivative prepared on CNBr-activated Sepharose. In fact, all the proteins contained a cheese whey extract had been completely proteolyzed after 6 h at pH 9 and 50°C, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Under these experimental conditions, the immobilized biocatalysts preserve more than 90% of their initial activity after 20 days. Analysis of the three-dimensional (3D) structure of the best immobilized trypsin derivative showed a surface region containing two amino terminal groups and five lysine (Lys) residues that may be responsible for this novel and interesting immobilization and stabilization. Moreover, this region is relatively far from the active site of the enzyme, which could explain the good results obtained for the hydrolysis of high-molecular weight proteins. 相似文献
17.
Despite of progresses in tissue engineering based on cell/scaffold strategy, uneven cell distribution as well as tissue formation in the scaffold, limited cell seeding efficiency and inflammatory reaction triggered by the degradation of scaffold remain problems to be resolved. In this study, we proposed a novel cell-macroaggregate cultivation system, and explored a feasible strategy to construct three-dimensional cartilage tissue with shape of human nasal alar by using cell macroaggregate. Isolated chondrocytes was cultured at high density to form a monolayer chondrocyte sheet as well as expanded for seeding on the sheet to produce mechanically operable cell macroaggregate. Chondrocyte macroaggregates were then fabricated into transplants with shape of nasal alar by using Internal support or External scaffold techniques; results of in vivo chondrogenesis were investigated in immunocompetent animal. Chondrocyte macroaggregates presented long survival time and good viability; constructs fabricated using both techniques can develop into tissues with characteristic structure of native cartilage, glycosaminoglycans as well as type II collagen were highly produced in the ECM of engineered cartilages. By placing hyaluronan ester film as Internal support, the predetermined shape of the chondrocyte macroaggregate can be well maintained. In contrast, due to the poor mechanical stability of grafts fabricated in External scaffold group, obvious deformation occurred in harvested specimens. The experiment proved the usefulness of chondrocyte macroaggregate in cartilage regeneration, and provided a new strategy to engineer cartilage with special shape by using cell macroaggregate/biodegradable support. 相似文献
18.
Alves MM Antonov YA Gonçalves MP 《International journal of biological macromolecules》2000,27(1):41-47
The establishment of phase equilibrium in aqueous gelatin-locust bean gum (LBG) systems in the process of cooling from 313 to 291 K in specific conditions, passes ahead of the gelation process(.) This allows the suggestion that macrostructure and mechanical properties of the system can be predicted on the basis of knowledge of its phase diagram, obtained for the liquid gelatin-LBG systems comprising gelatin molecular aggregates. Textural and rheological analysis of gel-like gelatin-LBG systems demonstrate the effect of two factors determining their mechanical properties and acting opposite each other when the concentration of LBG in the system increases: concentration of gelatin by LBG in the process of phase separation, and decrease in the density of the gel network. 相似文献
19.
Zuscik MJ D'Souza M Ionescu AM Gunter KK Gunter TE O'Keefe RJ Schwarz EM Puzas JE Rosier RN 《Experimental cell research》2002,276(2):310-319
Among the cellular events that are associated with the process of endochondral ossification is an incremental increase in chondrocyte basal intracellular free Ca(2+) concentration ([Ca(2+)](i)) from 50 to 100 nM. To determine if this rise in [Ca(2+)](i) functionally participates in the maturational process of growth plate chondrocytes (GPCs), we examined its effect on several markers of hypertrophy, including annexin V, bone morphogenetic protein-6, type X collagen, and indian hedgehog. Expression of these genes was determined under conditions either where the Ca(2+) chelator EGTA was used to deplete extracellular Ca(2+) and lower [Ca(2+)](i) to < 50 nM or where the extracellular addition of 5 mM CaCl(2) was used to elevate [Ca(2+)](i) to > 100 nM. Although no effect on the expression of these genes was observed following treatment with 5 mM CaCl(2), 4 mM EGTA significantly inhibited their expression. This effect was recapitulated in sternal chondrocytes and was reversed following withdrawal of EGTA. Based on these findings, we hypothesized that the EGTA-induced suppression of these genes was mediated by a factor whose expression is responsive to changes in basal [Ca(2+)](i). Since EGTA mimicked the effect of parathyroid hormone-related peptide (PTHrP) on GPC maturation, we examined the effect of low [Ca(2+)](i) on PTHrP expression. Suggesting that low [Ca(2+)](i) suppression of hypertrophy was PTHrP-dependent in GPCs, (a) treatment with 4 mM EGTA increased PTHrP expression, (b) the EGTA effect was rescued by blocking PTHrP binding to its receptor with the competitive antagonist TIP(7-39), and (c) EGTA could mimic the PTHrP stimulation of AP-1 binding to DNA. Additionally, PTHrP promoter analysis identified a domain (-1498 to -862, relative to the start codon) involved with conferring Ca(2+) sensitivity to the PTHrP gene. These findings underscore the importance of cellular Ca(2+) in GPC function and suggest that PTHrP action in the growth plate is at least partially regulated by changes in basal [Ca(2+)](i). 相似文献
20.
Tscheudschilsuren G Bosserhoff AK Schlegel J Vollmer D Anton A Alt V Schnettler R Brandt J Proetzel G 《Experimental cell research》2006,312(1):63-72
Melanoma inhibitory activity (MIA), also referred to as cartilage-derived retinoic acid-sensitive protein (CD-RAP), an 11-kDa secreted protein, is mainly expressed in cartilaginous tissue during embryogenesis and adulthood. Currently, the function of MIA in cartilage tissue is not understood. Here, we describe that MIA acts as a chemotactic factor on the mesenchymal stem cell line C3H10T1/2, stimulating cell migration significantly at concentrations from 0.24 to 240 ng/ml, while inhibiting cell migration at higher doses of 2.4 microg/ml. When analyzing the role of MIA during differentiation processes, we show that MIA by itself is not capable to induce the differentiation of murine or human mesenchymal stem cells. However, MIA influences the action of bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta 3 during mesenchymal stem cell differentiation, supporting the chondrogenic phenotype while inhibiting osteogenic differentiation. Quantitative RT-PCR analysis revealed the up-regulation of the cartilage markers MIA, collagen type II and aggrecan in human mesenchymal stem cell (HMSC) cultures differentiated in the presence of MIA and TGF-beta 3 or BMP-2 when compared to HMSC cultures differentiated in the presence of TGF-beta 3 or BMP-2 alone. Further, MIA down-regulates gene expression of osteopontin and osteocalcin in BMP-2 treated HMSC cultures inhibiting the osteogenic potential of BMP-2. In the case of human primary chondrocytes MIA stimulates extracellular matrix deposition, increasing the glycosaminoglycan content. Therefore, we postulate that MIA is an important regulator during chondrogenic differentiation and maintenance of cartilage. 相似文献