首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The environmental conditions that could lead to an increased risk for the development of an infection during prolonged space flight include: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth''s magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures.  相似文献   

2.
The expression of chemokines during an immune response may participate in determining the intensity and type of the developing immune response. In the present study, we have examined the effect of overexpressing monocyte chemoattractant protein (MCP)-1 at the site of immunization during different stages of Th1- and Th2-type granulomatous responses. The overexpression of MCP-1 by MCP-1 adenovirus during the sensitization phase of the purified protein derivative Th1-type model significantly reduced the elicitation of the granulomatous response. In contrast, the overexpression of MCP-1 during the sensitization phase of the schistosome egg Ag Th2 response led to an enhanced granulomatous reaction. When cytokines were examined upon restimulation of splenocytes ex vivo, an altered cytokine profile was observed, as compared with control mice. IFN-gamma and IL-12 were significantly reduced in the purified protein derivative Th1-type response, whereas IL-10 and IL-13 were up-regulated in the schistosome egg Ag Th2-type response. The regulation of the immune response was further examined by using the MCP-1 adenovirus at later time points during the elicitation phase. When MCP-1 was overexpressed during the elicitation phase of the responses, neither the Th1-type nor the Th2-type granuloma was altered. Likewise, the cytokine profiles after restimulation of splenocytes ex vivo were unchanged. Thus, the function of MCP-1 may depend on the stage and type of immune response.  相似文献   

3.
The regulation of innate immune responses during viral infection is a crucial step to promote antiviral reactions. Recent studies have drawn attention to a strong relationship of pathogen-associated molecular pattern recognition with autophagy for activation of APC function. Our initial observations indicated that autophagosomes formed in response to respiratory syncytial virus (RSV) infection of dendritic cells (DC). To further investigate whether RSV-induced DC activation and innate cytokine production were associated with autophagy, we used several methods to block autophagosome formation. Using 3-MA, small interfering RNA inhibition of LC3, or Beclin(+/-) mouse-derived DC, studies established a relationship between RSV-induced autophagy and enhanced type I IFN, TNF, IL-6, and IL-12p40 expression. Moreover, autophagosome formation induced by starvation also promoted innate cytokine expression in DC. The induction of starvation-induced autophagy in combination with RSV infection synergistically enhanced DC cytokine expression that was blocked by an autophagy inhibitor. The latter synergistic responses were differentially altered in DC from MyD88(-/-) and TRIF(-/-) mice, supporting the concept of autophagy-mediated TLR signaling. In addition, blockade of autophagy in RSV-infected DC inhibited the maturation of DC as assessed by MHC class II and costimulatory molecule expression. Subsequently, we demonstrated that inhibition of autophagy in DC used to stimulate primary OVA-induced and secondary RSV-infected responses significantly attenuated cytokine production by CD4(+) T cells. Thus, these studies have outlined that autophagy in DC after RSV infection is a crucial mechanism for driving innate cytokine production, leading to altered acquired immune responses.  相似文献   

4.
Sprague-Dawley rats were subjected to three 8-to-10 day space flights on the Space Shuttle. Housed in NASA's Animal Enclosure Modules, rats were flown to test the hypotheses that therapy with pegylated interleukin-2 or insulin-like growth factor-1 would ameliorate some of the effects of space flight on the immune system. As part of these experiments, we measured body and organ weights, blood cell differentials, plasma corticosterone, macrophage colony forming units, lymphocyte mitogenic, super-antigenic and interferon-gamma responses, bone marrow cell and peritoneal macrophage cytokine secretion and bone strength and mass. This paper compares some of the immunophysiological parameters of the control animals used in the Immune1-3 flight series and presents data from an animal infection model for use during space flight.  相似文献   

5.
The mechanisms that regulate the host immune response induced by human metapneumovirus (hMPV), a newly-recognized member of the Paramyxoviridae family, are largely unknown. Cytokines play an important role in modulating inflammatory responses during viral infections. IL-12p40, a known important mediator in limiting lung inflammation, is induced by hMPV and its production is sustained after the resolution phase of infection suggesting that this cytokine plays a role in the immune response against hMPV. In this work, we demonstrated that in mice deficient in IL-12p40, hMPV infection induced an exacerbated pulmonary inflammatory response and mucus production, altered cytokine response, and decreased lung function. However, hMPV infection in these mice does not have an effect on viral replication. These results identify an important regulatory role of IL-12p40 in hMPV infection.  相似文献   

6.
Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.  相似文献   

7.
Aponte VM  Finch DS  Klaus DM 《Life sciences》2006,79(14):1317-1333
The dynamics of how astronauts' immune systems respond to space flight have been studied extensively, but the complex process has not to date been thoroughly characterized, nor have the underlying principles of what causes the immune system to change in microgravity been fully determined. Statistically significant results regarding overall immunological effects in space have not yet been established due to the relatively limited amount of experimental data available, and are further complicated by the findings not showing systematically reproducible trends. Collecting in vivo data during flight without affecting the system being measured would increase understanding of the immune response process.The aims of this paper are to briefly review the current knowledge regarding how the immune system is altered in space flight; to present a group of candidate biomarkers that could be useful for in-flight monitoring and give an overview of the current methods used to measure these markers; and finally, to further establish the need and usefulness of incorporating real-time analytical techniques for in-flight assessment of astronaut health, emphasizing the potential application of MEMS/NEMS devices.  相似文献   

8.
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.  相似文献   

9.
The immune responses of human lymphoid tissue explants or cells isolated from this tissue were studied quantitatively under normal gravity and microgravity. Microgravity was either modeled by solid body suspension in a rotating, oxygenated culture vessel or was actually achieved on the International Space Station (ISS). Our experiments demonstrate that tissues or cells challenged by recall antigen or by polyclonal activator in modeled microgravity lose all their ability to produce antibodies and cytokines and to increase their metabolic activity. In contrast, if the cells were challenged before being exposed to modeled microgravity suspension culture, they maintained their responses. Similarly, in microgravity in the ISS, lymphoid cells did not respond to antigenic or polyclonal challenge, whereas cells challenged prior to the space flight maintained their antibody and cytokine responses in space. Thus, immune activation of cells of lymphoid tissue is severely blunted both in modeled and true microgravity. This suggests that suspension culture via solid body rotation is sufficient to induce the changes in cellular physiology seen in true microgravity. This phenomenon may reflect immune dysfunction observed in astronauts during space flights. If so, the ex vivo system described above can be used to understand cellular and molecular mechanisms of this dysfunction.  相似文献   

10.
Head-up tilt table experiments conducted in astronauts prior to and immediately after the NASA Neurolab Space Mission (STS-90) revealed that a reduction in stroke volume induced by moving from the supine to upright posture was associated with increased muscle sympathetic nerve activity (MSNA). Although this finding was not unexpected, lower average stroke volume and greater average MSNA measured after space flight in both supine and upright postures were positioned in a linear fashion on the same stroke volume-MSNA stimulus-response relationship as the average pre-flight stroke volume and MSNA responses. Since all astronauts who participated in the Neurolab orthostatic experiments completed the 10-min tilt table tests, these observations supported the notion that sympathetic reflex responses were not altered but functioned adequately after space flight in non-presyncopal subjects. In contrast to the Neurolab results, development of orthostatic hypotension and presyncopal events reported in astronauts during standing after space flight have been accompanied by attenuated peripheral vasoconstriction and less elevation in plasma concentrations of norepinephrine. The association between circulating norepinephrine (NE) and peripheral vascular resistance in presyncopal astronauts after space flight led to the conclusion that postflight presyncope can be attributed to a combination of inherently low-resistance responses, a strong dependence on volume status, and relative hypoadrenergic function. In the present investigation, we used graded levels of lower body negative pressure (LBNP) to produce linear reductions in stroke volume and performed direct measurements of MSNA to test the hypotheses that (1) elevations in MSNA during central hypovolemia are proportional (i.e., linear) with reductions in stroke volume and; (2) that the slope of the stroke volume-MSNA relationship will be reduced in presyncopal subjects.  相似文献   

11.
Immune system adaptation during spaceflight is a concern in space medicine. Decreased circulating leukocytes observed during and after space flight infer suppressed immune responses and susceptibility to infection. The microgravity aspect of the space environment has been simulated on Earth to study adverse biological effects in astronauts. In this report, the hindlimb unloading (HU) model was employed to investigate the combined effects of solar particle event-like proton radiation and simulated microgravity on immune cell parameters including lymphocyte subtype populations and activity. Lymphocytes are a type of white blood cell critical for adaptive immune responses and T lymphocytes are regulators of cell-mediated immunity, controlling the entire immune response. Mice were suspended prior to and after proton radiation exposure (2 Gy dose) and total leukocyte numbers and splenic lymphocyte functionality were evaluated on days 4 or 21 after combined HU and radiation exposure. Total white blood cell (WBC), lymphocyte, neutrophil, and monocyte counts are reduced by approximately 65%, 70%, 55%, and 70%, respectively, compared to the non-treated control group at 4 days after combined exposure. Splenic lymphocyte subpopulations are altered at both time points investigated. At 21 days post-exposure to combined HU and proton radiation, T cell activation and proliferation were assessed in isolated lymphocytes. Cell surface expression of the Early Activation Marker, CD69, is decreased by 30% in the combined treatment group, compared to the non-treated control group and cell proliferation was suppressed by approximately 50%, compared to the non-treated control group. These findings reveal that the combined stressors (HU and proton radiation exposure) result in decreased leukocyte numbers and function, which could contribute to immune system dysfunction in crew members. This investigation is one of the first to report on combined proton radiation and simulated microgravity effects on hematopoietic, specifically immune cells.  相似文献   

12.
The effects of genetic adjuvants on humoral and cell-mediated immunity to two human immunodeficiency virus antigens, Env and Nef, have been examined in mice. Despite similar levels of gene expression and the same gene delivery vector, the immune responses to these two gene products differed following DNA immunization. Intramuscular immunization with a Nef expression vector plasmid generated a humoral response and antigen-specific gamma interferon (IFN-gamma) production but little cytotoxic-T-lymphocyte (CTL) immunity. In contrast, immunization with an Env vector stimulated CTL activity but did not induce a high-titer antibody response. The ability to modify these antigen-specific immune responses was investigated by coinjection of DNA plasmids encoding cytokine and/or hematopoietic growth factors, interleukin-2 (IL-2), IL-12, IL-15, Flt3 ligand (FL), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Coadministration of these genes largely altered the immune responses quantitatively but not qualitatively. IL-12 induced the greatest increase in IFN-gamma and immunoglobulin G responses to Nef, and GM-CSF induced the strongest IFN-gamma and CTL responses to Env. A dual approach of expanding innate immunity by administering the FL gene, together with a cytokine that enhances adaptive immune responses, IL-2, IL-12, or IL-15, generated the most potent immune response at the lowest doses of Nef antigen. These findings suggest that intrinsic properties of the antigen determine the character of immune reactivity for this method of immunization and that specific combination of innate and adaptive immune cytokine genes can increase the magnitude of the response to DNA vaccines.  相似文献   

13.
Allergic diseases have been closely related to Th2 immune responses, which are characterized by high levels of interleukin (IL) IL-4, IL-5, IL-9 and IL-13. These cytokines orchestrate the recruitment and activation of different effector cells, such as eosinophils and mast cells. These cells along with Th2 cytokines are key players on the development of chronic allergic inflammatory disorders, usually characterized by airway hyperresponsiveness, reversible airway obstruction, and airway inflammation. Accumulating evidences have shown that altering cytokine-producing profile of Th2 cells by inducing Th1 responses may be protective against Th2-related diseases such as asthma and allergy. Interferon-gamma (IFN-gamma), the principal Th1 effector cytokine, has shown to be crucial for the resolution of allergic-related immunopathologies. In fact, reduced production of this cytokine has been correlated with severe asthma. In this review, we will discuss the role of IFN-gamma during the generation of immune responses and its influence on allergic inflammation models, emphasizing its biologic properties during the different aspects of allergic responses.  相似文献   

14.
TLRs are a major group of pattern recognition receptors that are crucial in initiating innate immune responses and are capable of recognizing Plasmodium ligands. We have investigated TLR responses during acute experimental P. falciparum (P.f.) infection in 15 malaria-naive volunteers. TLR-4 responses in whole blood ex vivo stimulations were characterized by significantly (p < 0.01) up-regulated proinflammatory cytokine production during infection compared with baseline, whereas TLR-2/TLR-1 responses demonstrated increases in both proinflammatory and anti-inflammatory cytokine production. Responses through other TLRs were less obviously modified by malaria infection. The degree to which proinflammatory TLR responses were boosted early in infection was partially prognostic of clinical inflammatory parameters during the subsequent clinical course. Although simultaneous costimulation of human PBMC with P.f. lysate and specific TLR stimuli in vitro did not induce synergistic effects on cytokine synthesis, PBMC started to respond to subsequent TLR-4 and TLR-2 stimulation with significantly (p < 0.05) increased TNF-alpha and reduced IL-10 production following increasing periods of preincubation with P.f. Ag. In contrast, preincubation with preparations derived from other parasitic, bacterial, and fungal pathogens strongly suppressed subsequent TLR responses. Taken together, P.f. primes human TLR responses toward a more proinflammatory cytokine profile both in vitro and in vivo, a characteristic exceptional among microorganisms.  相似文献   

15.
The engagement of CD137 (4-1BB), an inducible T cell costimulatory receptor and member of the TNF receptor superfamily, by agonistic Abs can promote strong tumor and viral immunity mediated by CD8(+) T cells and stimulate IFN-gamma production. However, its role in Th2-mediated immune responses has not been well defined. To address this issue, we studied the function of CD137 engagement using an allergic airway disease model in which the mice were sensitized with inactivated Schistosoma mansoni eggs followed by S. mansoni egg Ag challenge directly in the airways and Th1/2 cytokine production was monitored. Interestingly, treatment of C57BL/6 mice with agonistic anti-CD137 (2A) during sensitization completely prevents allergic airway inflammation, as shown by a clear inhibition of T cell and eosinophil infiltration into the lung tissue and airways, accompanied by diminished Th2 cytokine production and reduced serum IgE levels, as well as a reduction of airway hyperresponsiveness. At various time points after immunization, restimulated splenocytes from 2A-treated mice displayed reduced proliferation and Th2 cytokine production. In accordance with this, agonistic Ab to CD137 can directly coinhibit Th2 responses in vitro although it costimulates Th1 responses. CD137-mediated suppression of Th2 response is independent of IFN-gamma and T regulatory cells. Our study has identified a novel pathway to inhibit Th2 responses in a CD137-dependent fashion.  相似文献   

16.
17.
The mechanisms by which signaling by the innate immune system controls susceptibility to allergy are poorly understood. In this report, we show that intragastric administration of a food allergen with a mucosal adjuvant induces allergen-specific IgE, elevated plasma histamine levels, and anaphylactic symptoms in three different strains of mice lacking a functional receptor for bacterial LPS (Toll-like receptor 4 (TLR4)), but not in MHC-matched or congenic controls. Susceptibility to allergy correlates with a Th2-biased cytokine response in both the mucosal (mesenteric lymph node and Peyer's patch) and systemic (spleen) tissues of TLR4-mutant or -deficient mice. TLR4-mutant mice are not inherently impaired in their ability to regulate Th1 cytokine production because they respond to stimulation via TLR9. Coadministration of CpG oligodeoxynucleotides during sensitization of TLR4-mutant mice with allergen plus CT abrogates anaphylactic symptoms and Ag-specific IgE, and results in a Th1-polarized cytokine response. When the composition of the bacterial flora is reduced and altered by antibiotic administration (beginning at 2 wk of age), TLR4 wild-type mice become as susceptible to the induction of allergy as their TLR4-mutant counterparts. Both allergen-specific IgE and Th2 cytokine responses are reduced in antibiotic-treated mice in which the flora has been allowed to repopulate. Taken together, our results suggest that TLR4-dependent signals provided by the intestinal commensal flora inhibit the development of allergic responses to food Ags.  相似文献   

18.
CD1d-restricted invariant NKT (iNKT) cells play important regulatory roles in various immune responses, including antitumor immune responses. Previous studies have demonstrated quantitative and qualitative defects in iNKT cells of cancer patients, and these defects are clinically relevant as they are associated with poor prognosis. In this study we demonstrate that defects in the iNKT cell population can, at least in part, be attributed to defective interactions between iNKT cells and CD1d-expressing circulating myeloid dendritic cells (mDC), as mDC of patients with advanced melanoma and renal cell cancer reduced the activation and Th1 cytokine production of healthy donor-derived iNKT cells. Interestingly, this reduced activation of iNKT cells was restricted to patients with low circulating iNKT cell numbers and could be reversed by IL-12 and in part by the neutralization of TGF-beta, but it was further reduced by the neutralization of IL-10 in vitro. Additional experiments revealed discordant roles for TGF-beta and IL-10 on human iNKT cells, because TGF-beta suppressed iNKT cell activation and proliferation and IFN-gamma production while IL-10 was identified as a cytokine involved in stimulating the activation and expansion of iNKT cells that could subsequently suppress NK cell and T cell responses.  相似文献   

19.
While the in vitro properties of CD4(+) and CD8(+) cytokine-producing lymphocytes have been well studied, the in vivo cytokine production patterns and relative roles of CD4(+) and CD8(+) T lymphocytes during a primary in vivo immune response remain unclear. In this study, mice were inoculated intranasally with reovirus 1/L, and respiratory T lymphocyte populations were analyzed using multicolor flow cytometric analysis for the production of cytokine within and between classical type 1/type 2 patterns. Cytokine production observed in vivo following infection did not correlate with classical T cell cytokine expression patterns; instead, multiple types of lymphocyte populations that produced one of several possible cytokine combinations were present. Cytokine production by CD4(+) lymphocytes appears in the early and middle stages of the immune response, while CD8(+) lymphocytes produce more cytokine in the later stages. Early cytokine responses occurred predominantly in the whole lung and lung-associated lymph node populations. The complex patterns of cytokine expression seen in this study likely influence local cell-mediated immunity as well as the complex interaction of T cell subsets and the interaction of T cells with B cells which are necessary for the generation of cell-mediated and humoral immune responses required for effective broad-spectrum immunity.  相似文献   

20.
Tumors exploit several strategies to evade immune recognition, including the production of a large number of immunosuppressive factors, which leads to reduced numbers and impaired functions of dendritic cells (DCs) in the vicinity of tumors. We have investigated whether a mucin released by tumor cells could be involved in causing these immunomodulating effects on DCs. We used a recombinant purified form of the MUC1 glycoprotein, an epithelial associated mucin that is overexpressed, aberrantly glycosylated, and shed during cancer transformation. The O-glycosylation profile of the recombinant MUC1 glycoprotein (ST-MUC1) resembled that expressed by epithelial tumors in vivo, consisting of large numbers of sialylated core 1 (sialyl-T, ST) oligosaccharides. When cultured in the presence of ST-MUC1, human monocyte-derived DCs displayed a modified phenotype with decreased expression of costimulatory molecules (CD86, CD40), Ag-presenting molecules (DR and CD1d), and differentiation markers (CD83). In contrast, markers associated with an immature phenotype, CD1a and CD206 (mannose receptor), were increased. This effect was already evident at day 4 of DC culture and was dose dependent. The modified phenotype of DCs corresponded to an altered balance in IL-12/IL-10 cytokine production, with DC expressing an IL-10(high)IL-12(low) phenotype after exposure to ST-MUC1. These DCs were defective in their ability to induce immune responses in both allogeneic and autologous settings, as detected in proliferation and ELISPOT assays. The altered DC differentiation and Ag presentation function induced by the soluble sialylated tumor-associated mucin may represent a mechanism by which epithelial tumors can escape immunosurveillance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号