首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gravitation plays the important role in a pathogeny of the essential hypertension (EH). Modifications of hydrostatic pressure during body position changes, related to gravitational action, produce the significant hemodynamics shifts. Discordance of the orthostatic hemodynamics reactions with gravitational action can lead to orthostatic hypotension or proceed without any clinical signs during increased hemodynamic respond. Absence of physiological circulatory orthostatic responses, possibly, is very initial sign of EH development. This assumption is confirmed by the outcomes of the prospective studies in whose have been shown that EH more often develops in patients with normal arterial pressure accompanied by circulatory orthostatic disorders. The prehypertension (PH) became the studies subject only after publication of the report 7 of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (7 JNC). Its diagnosis based on blood pressure (BP) measurement. According to the report, the PH is a risk factor of EH development. Peculiarities of life development on the Earth, phylogenetic features of cardiovascular system evolution and physical effects of gravitational action, allow us to advance a hypothesis that the PH is the beginning of EH pathogenesis. One of the diagnostic methods may be the system hemodynamics study at passive head-up tilt.  相似文献   

2.
高血压是常见的慢性疾病,也是心脑血管病最主要的风险因素。原发性高血压是由多基因和环境因素共同作用引起的复杂疾病,但具体的发病机制仍不清楚。随着研究的深入,DNA甲基化等表观遗传学因素在原发性高血压病理过程中起到的作用逐渐受到重视。本文总结了部分原发性高血压关联基因中DNA甲基化在其患病中的研究进展,阐述可受环境因素影响的DNA甲基标记与原发性高血压的关系,进一步了解高血压的发病机制。  相似文献   

3.
The cutaneous vasodilation and renal vasoconstriction in baboons during environmental heating (EH) appear to be produced predominantly by sympathetic vasoconstrictor withdrawal and activation of the renin-angiotensin system, respectively. Since these mechanisms may be influenced differently by sodium depletion, this study examined the hypothesis that sodium depletion would have a differential effect on cutaneous and renal vascular responses to EH. Sodium depletion was produced in chronically instrumented baboons by placing them on low-salt intake for 8-19 days along with diuretic administration. EH consisted of exposing the baboon to an ambient temperature of 40-42 degrees C until core temperature (Tc) reached 39.8-40.0 degrees C. Both control plasma renin activity (PRA) and the rise in PRA with Tc during EH were considerably larger in sodium-depleted baboons. However, the magnitudes of the progressive increases in iliac vascular conductance (used as an index of hindlimb cutaneous vasodilation) and renal vascular resistance with rising Tc during EH were unaltered by sodium depletion. Therefore, neither cutaneous nor renal vascular responses to EH are influenced by elevated PRA and other changes accompanying sodium depletion in the baboon.  相似文献   

4.
The goal of this study was to analyze and generalize hemodynamic data collected over 20 years from 26 cosmonauts, who had flown from 8 to 438 days aboard orbital stations Salut-7 and Mir. This paper describes the results of ultrasonographic studies of the heart and arterial and venous peripheral vessels in different parts of human body as well as the study of venous capacity by occlusion aeroplethysmography. It was established that, at rest, the key hemodynamic parameters (the pumping function of the heart and blood supply of the brain) and integral parameters (blood pressure and heart rate) were best “protected” and remained stable throughout long exposure in microgravity. In the absence of gravitational stimulation, arterial resistance decreased in almost all vascular regions below the heart level; i.e., the antigravity distribution of the vascular tone was gradually lost as unneeded in microgravity. Venous hemodynamics was found to be most sensitive to microgravity: changes in it were expressed earlier and were more pronounced than in the arterial part of the vasculature. The changes included deceleration of venous return, a decrease in the vascular resistance in the lower body, and an increase in the leg’s venous network capacity. The functional test with the lower body’s negative pressure revealed a deterioration of gravity-dependent responses, which increased with an increase in the duration of the space flight. Cardiovascular deconditioning clearly manifested itself after the return to the Earth’s gravity as a decreased g-tolerance during reentry and orthostatic instability in the post-flight period. The results of this study confirmed the multifactorial genesis of orthostatic instability during space flights including blood redistribution, changes in the regulation of vascular tone of arterial and venous vessels in legs, and hypovolemia.  相似文献   

5.
Obstructive sleep apnea syndrome (OSAS), a disorder characterized by episodic hypoxia (EH) during sleep, is associated with systemic hypertension. We used proteomic analysis to examine differences in rat kidney protein expression during EH, and their potential relationship to EH-induced hypertension. Young male Sprague-Dawley rats were exposed to either EH or sustained hypoxia (SH) for 14 (EH14/SH14) and 30 (EH30/SH30) days. Mean arterial blood pressure was significantly increased only in EH30 (p < 0.0002). Kidney proteins were resolved by two-dimensional-PAGE and were identified by MALDI-MS. Renal expression of kallistatin, a potent vasodilator, was down-regulated in all animals. Expression of alpha-1-antitrypsin, an inhibitor of kallikrein activation, was up-regulated in EH but down-regulated in SH. Western blotting showed significant elevation of B(2)-bradykinin receptor expression in all normotensive animals but remained unchanged in hypertensive animals. Proteins relevant to vascular hypertrophy, such as smooth muscle myosin and protein-disulfide isomerase were up-regulated in EH30 but were down-regulated in SH30. These data indicate that EH induces changes in renal protein expression consistent with impairment of vasodilation mediated by the kallikrein-kallistatin pathway and vascular hypertrophy. In contrast, SH-induced changes suggest the kallikrein- and bradykinin-mediated compensatory mechanisms for prevention of hypertension and vascular remodeling. To test the hypothesis suggested by the proteomic data, we measured the effect of EH on blood pressure in transgenic hKLK1 rats that overexpress human kallikrein. Transgenic hKLK1 animals were protected from EH-induced hypertension. We conclude that EH-induced hypertension may result, at least in part, from altered regulation of the renal kallikrein system.  相似文献   

6.
Essential hypertension (EH, MIM 145500) is the most common cardiovascular disease and affects one-quarter of the world's adult population. Families with EH in a mode of maternal transmission have been occasionally observed in clinical settings and suggested an involvement of mitochondrial DNA (mtDNA) mutation. We aimed to characterize the role of mtDNA mutation in EH. We reported a large Han Chinese family with a maternally inherited EH and an extraordinarily high percentage of sudden death mainly in affected females. Analysis of the entire mtDNA genome of the proband identified a homoplasmic primary mutation m.14484T>C for Leber's hereditary optic neuropathy (LHON), along with several variants indicating haplogroup F1 status. Intriguingly, no maternal member in this family had LHON though they all harbored m.14484T>C. The arterial stiffness of the members carrying mutation m.14484T>C was significantly increased than that of non-maternal members without this mutation. No environmental factor (including age, sex, smoking, diabetes, hyperlipidemia) was correlated with the decreased aortic elastic properties observed in affected members. Mitochondrial respiration rate and membrane potential (ΔΨ(m)) were significantly reduced in lymphoblastoid cell lines established from affected members carrying m.14484T>C when compared to control cell lines (P<0.05). There was an elevation of reactive oxygen species and a compensatory increase of mitochondrial mass in mutant cell lines. Our results suggest that m.14484T>C causes EH under certain circumstance. This study provides a paradigm for diverse phenotypes of the primary LHON mutation and suggests for the necessity of routine cardiac evaluation in patients with the primary LHON mutation.  相似文献   

7.
The redistribution of a certain thoracic blood volume to the lower parts of the body and decrease of the venous return of blood to the heart during lower body negative pressure leads to the central hypovolemia and the deactivation of cardiopulmonary and arterial baroreceptors. Many compensatory mechanisms are involved during central hypovolemia, which is also reflected by the changes in the secretion of different vasoactive hormones. Due to this fact the LBNP stimulus is widely used for the investigation of regulatory (compensatory) mechanisms in cardiovascular system providing deeper understanding of orthostatic reaction. Recently several papers were published on application of this experimental model for +Gz acceleration tolerance assessment. The purpose of this study was evaluate the possible dependence between the changes of ANP secretion, renin-angiotensin-aldosterone system activity, the changes of some hemodynamic parameters during the model of gravitational stress i.e. LBNP exposure and +Gz acceleration tolerance.  相似文献   

8.
Effects of 18 days of bed rest on leg and arm venous properties.   总被引:3,自引:0,他引:3  
Venous function may be altered by bed rest deconditioning. Yet the contribution of altered venous compliance to the orthostatic intolerance observed after bed rest is uncertain. The purpose of this study was to assess the effect of 18 days of bed rest on leg and arm (respectively large and small change in gravitational gradients and use patterns) venous properties. We hypothesized that the magnitude of these venous changes would be related to orthostatic intolerance. Eleven healthy subjects (10 men, 1 woman) participated in the study. Before (pre) and after (post) 18 days of 6 degrees head-down tilt bed rest, strain gauge venous occlusion plethysmography was used to assess limb venous vascular characteristics. Leg venous compliance was significantly decreased after bed rest (pre: 0.048 +/- 0.007 ml x 100 ml(-1) x mmHg(-1), post: 0.033 +/- 0.007 ml x 100 ml(-1) x mmHg(-1); P < 0.01), whereas arm compliance did not change. Leg venous flow resistance increased significantly after bed rest (pre: 1.73 +/- 1.08 mmHg x ml(-1) x 100 ml x min, post: 3.10 +/- 1.00 mmHg x ml(-1) x 100 ml x min; P < 0.05). Maximal lower body negative pressure tolerance, which was expressed as cumulative stress index (pressure x time), decreased in all subjects after bed rest (pre: 932 mmHg x min, post: 747 mmHg x min). The decrease in orthostatic tolerance was not related to changes in leg venous compliance. In conclusion, this study demonstrates that after bed rest, leg venous compliance is reduced and leg venous outflow resistance is enhanced. However, these changes are not related to measures of orthostatic tolerance; therefore, alterations in venous compliance do not to play a major role in orthostatic intolerance after 18 days of head-down tilt bed rest.  相似文献   

9.
This study was designed to compare the effectiveness of daily short-duration -Gx gravity exposure in preventing adverse changes in skeletal and cardiac muscles and bone due to simulated microgravity. Tail suspension for 28 days was used to simulate microgravity-induced deconditioning effects. Daily standing (STD) at 1 G for 1, 2, or 4 h/day or centrifugation (CEN) at 1.5 or 2.6 G for 1 h/day was used to provide -Gx gravitation as a countermeasure. The results indicate that the minimum gravity exposure requirements vary greatly in different systems. Cardiac muscle is most responsive to such treatment: 1 h/day of -Gx gravitation by STD was sufficient to prevent adverse changes in myocardial contractility; bone is most resistant: 4 h/day of -Gx gravitation only partially alleviated the adverse changes in physical and mechanical properties of the femur. The responsiveness of skeletal muscle is moderate: 4 h/day of -Gx gravitation prevented mass reduction and histomorphometric changes in the soleus muscle during a 28-day simulation period. Increasing gravitational intensity to 2.6 G showed less benefit or no additional benefit in preventing adverse changes in muscle and bone. The present work suggests that system specificity in responsiveness to intermittent gravity exposure should be considered one of the prerequisites in proposing intermittent artificial gravity as a potential countermeasure.  相似文献   

10.
One of the main problems arising after gravitational unloading is an orthostatic intolerance leading to failure in supporting the upright posture and performing natural locomotion. Among a number of causes for the orthostatic intolerance the decreased circulating blood volume, increased venous distention, alterations in microcirculation, loss of muscular tonus, and regulatory disturbances could be mentioned. The later cause has been intensively studied recently. The aim of the present study is to examine the alterations induced by simulated gravitational unloading in the reaction of resistance vessels of isolated hind limb to the sympathetic stimuli in rats.  相似文献   

11.
Under study were effects of gravitation stresses, total hypokinesia and their combinations on blood vessels of the stomach. The work was carried out in 130 rabbits, 16 of them being used to study the normal structure of the gastric vascular bed. The vascular bed was injected with the Gerota's mass followed by clearing, making histological preparations and roentgenography. The investigation has revealed both quantitative and qualitative changes in the structure of the gastric blood vessels. The maximum endurable stress of the ventro-dorsal direction causes morphological shifts less pronounced than stresses of longitudinal directions. With prolonged terms of hypokinesia (1-12 weeks) morphological changes became more pronounced in all the layers of the stomach. A combination of successive gravitation stresses and hypokinesia during 4-12 weeks aggravated morphological changes which occurred after exposure to isolated above factors. The animals subjected to maximum endurable stresses before and after 4-week hypokinesia developed vascular changes more typical for the effects of gravitation. The pretraining of animals did not give a pronounced positive effect on the changes of the angioarchitectonics of all the gastric layers after a repeated stress following 4-week hypokinesia.  相似文献   

12.
Transition from a normal gravitational environment to that of microgravity eventually results in decreased plasma and blood volumes, increasing with duration of exposure to microgravity. This loss of vascular fluid is presumably due to negative fluid and electrolyte balance and most likely contributes to the orthostatic intolerance associated with the return to gravity. The decrease in plasma volume is presumed to be a reflection of a concurrent decrease in extracellular fluid volume with maintenance of normal plasma-interstitial fluid balance. In addition, the specific alterations in renal function contributing to these changes in fluid and electrolyte homeostasis are potentially responding to neuro-humoral signals that are not consistent with systemic fluid volume status. We have previously demonstrated an early increase in both glomerular filtration rate and extracellular fluid volume and that this decreases towards control values by 7 days of simulated microgravity. However, longer duration studies relating these changes to plasma volume alterations and the response to return to orthostasis have not been fully addressed. Male Wistar rats were chronically cannulated, submitted to 30 days head-down tilt (HDT) and followed for 7 days after return to orthostasis from HDT. Measurements of renal function and extracellular and blood volumes were performed in the awake rat.  相似文献   

13.

Chronic orthostatic intolerance (COI) is defined by changes in heart rate (HR), blood pressure (BP), respiration, symptoms of cerebral hypoperfusion and sympathetic overactivation. Postural tachycardia syndrome (POTS) is the most common form of COI in young adults and is defined by an orthostatic increase in heart rate (HR) of?≥?30 bpm in the absence of orthostatic hypotension. However, some patients referred for evaluation of COI symptoms do not meet the orthostatic HR response criterion of POTS despite debilitating symptoms. Such patients are ill defined, posing diagnostic and therapeutic challenges. This study explored the relationship among cardiovascular autonomic control, the orthostatic HR response, EtCO2 and the severity of orthostatic symptoms and fatigue in patients referred for evaluation of COI. Patients (N?=?108) performed standardized testing protocol of the Autonomic Reflex Screen and completed the Composite Autonomic Symptom Score (COMPASS-31) and the Fatigue Severity Scale (FSS). Greater severity of COI was associated with younger age, larger phase IV amplitude in the Valsalva maneuver and lower adrenal baroreflex sensitivity. Greater fatigue severity was associated with a larger reduction in ETCO2 during 10 min of head-up tilt (HUT) and reduced low-frequency (LF) power of heart rate variability. This study suggests that hemodynamic changes associated with the baroreflex response and changes in EtCO2 show a stronger association with the severity of orthostatic symptoms and fatigue than the overall orthostatic HR response in patients with COI.

  相似文献   

14.
The work was performed in 42 male rabbits which were trained for gravitation stress in a centrifuge of 2 m diameter according to two special schedules. The vascular system of the brain was injected with staining substances and studied in cleared sections. The training was established to increase the animal's resistance to stress of transversal direction and to result in adaptation of the vessels of the terminal brain to stress. Morphological changes under these conditions were not great. Of the two schedules the first one (without a preliminary "limbering" rotation) was more favourable. Four weeks after the cessation of the training cycle the animal's resistance to gravitation stress became considerably less.  相似文献   

15.
BACKGROUND: Essential hypertension (EH) is a complex multifactorial polygenic disorder that is thought to result from an interaction between an individual's genetic makeup and various environmental factors. In the kidney, prostaglandins (PGs) are important mediators of vascular tone and salt and water homeostasis, and are involved in the mediation and/or modulation of hormonal action. In previous studies, mice deficient in the prostaglandin E2 (PGE(2)) EP2 receptor had resting systolic blood pressure (BP) that was significantly lower than that of wild-type controls. The BP of those mice increased when they were put on a high-salt diet, suggesting that the EP2 receptor is involved in sodium handling by the kidney. In the present study, we investigated the association between EH and nucleotide polymorphisms in the gene encoding the prostaglandin E2 receptor subtype EP2 (PTGER2). METHODS: We selected three single-nucleotide polymorphisms (SNP) in the human PTGER2 gene (rs1254601, rs2075797, and rs17197), and we performed a genetic association study of 266 EH patients and 253 age-matched normotensive (NT) controls. RESULTS: There was no significant difference in overall distribution of genotypes or alleles of any of the SNP between the EH and NT groups. However, among men, the A/A type of the SNP rs17197 (rs17197, A/G in 3'UTR) was significantly more frequent in EH subjects than in NT subjects (P=0.041). CONCLUSION: The present findings suggest that rs17197 is useful as a genetic marker of EH in men.  相似文献   

16.
The purpose of this study was to test the hypothesis that plasma galanin concentration (pGal) is regularly increased in healthy humans with extensive orthostatic stress. Twenty-six test persons (14 men, 12 women) were brought to an orthostatic end point via a progressive cardiovascular stress (PCS) protocol consisting of 70 degrees head-up tilt plus increasing levels of lower body negative pressure until either hemodynamically defined presyncope or other signs of orthostatic intolerance occurred (nausea, clammy skin, excessive sweating, pallor of the skin). We further tested for possible gender, gravitational, and muscular training influences on plasma pGal responses: PCS was applied before and after 3 wk of daily vertical acceleration exposure training on a Human Powered Centrifuge. Test persons were randomly assigned to active (with bicycle work) or passive (without work) groups (seven men, six women in each group). Resting pGal was 26+/-3 pg/ml in men and 39+/-15 pg/ml in women (not significant); women had higher galanin responses (4.9-fold increase) than men (3.5-fold, P=0.017) to PCS exposure. Overall, PCS increased pGal to 186+/-5 pg/ml (P=0.0003), without significant differences between presyncope vs. orthostatic intolerance, pre- vs. postcentrifuge, or active vs. passive gravitational training. Increases in pGal were poorly related to synchronous elevations in plasma vasopressin. We conclude that galanin is regularly increased in healthy humans under conditions of presyncopal orthostatic stress, the response being independent of gravity training but larger in women than in men.  相似文献   

17.
Essential hypertension (EH, MIM 145500) is the most common cardiovascular disease and affects one-quarter of the world's adult population. Families with EH in a mode of maternal transmission have been occasionally observed in clinical settings and suggested an involvement of mitochondrial DNA (mtDNA) mutation. We aimed to characterize the role of mtDNA mutation in EH. We reported a large Han Chinese family with a maternally inherited EH and an extraordinarily high percentage of sudden death mainly in affected females. Analysis of the entire mtDNA genome of the proband identified a homoplasmic primary mutation m.14484T>C for Leber's hereditary optic neuropathy (LHON), along with several variants indicating haplogroup F1 status. Intriguingly, no maternal member in this family had LHON though they all harbored m.14484T>C. The arterial stiffness of the members carrying mutation m.14484T>C was significantly increased than that of non-maternal members without this mutation. No environmental factor (including age, sex, smoking, diabetes, hyperlipidemia) was correlated with the decreased aortic elastic properties observed in affected members. Mitochondrial respiration rate and membrane potential (ΔΨm) were significantly reduced in lymphoblastoid cell lines established from affected members carrying m.14484T>C when compared to control cell lines (P < 0.05). There was an elevation of reactive oxygen species and a compensatory increase of mitochondrial mass in mutant cell lines. Our results suggest that m.14484T>C causes EH under certain circumstance. This study provides a paradigm for diverse phenotypes of the primary LHON mutation and suggests for the necessity of routine cardiac evaluation in patients with the primary LHON mutation.  相似文献   

18.
The relation between changes in plasma and serum viscosity and the presence of diabetic vascular and neurological complications was investigated in 50 diabetic Africans. Diabetics with complications had significantly elevated plasma and serum viscosity compared with those of both diabetics without complications and healthy non-diabetics. Hypertension also contributed to the elevation of plasma and serum viscosity in diabetics with complications. Plasma and serum viscosity of diabetics significantly correlated with the number of vascular and neurological complications. Diabetics with cerebrovascular disease had the highest plasma and serum viscosity due to the presence of many complications. The results of this study suggest that changes in plasma and serum viscosity may be associated with abnormalities of vascular and neurological function present in diabetic Africans.  相似文献   

19.
Maintaining blood pressure during orthostatic challenges is primarily achieved by baroreceptor-mediated activation of the sympathetic nervous system, which can be divided into preganglionic and postganglionic parts. Despite their preganglionic autonomic failure, spinal cord-injured individuals demonstrate a preserved peripheral vasoconstriction during orthostatic challenges. Whether this also applies to patients with postganglionic autonomic failure is unknown. Therefore, we assessed leg vasoconstriction during 60° head-up tilt in five patients with pure autonomic failure (PAF) and two patients with autonomic failure due to dopamine-β-hydroxylase (DBH) deficiency. Ten healthy subjects served as controls. Leg blood flow was measured using duplex ultrasound in the right superficial femoral artery. Leg vascular resistance was calculated as the arterial-venous pressure gradient divided by blood flow. DBH-deficient patients were tested off and on the norepinephrine pro-drug l-threo-dihydroxyphenylserine (l-DOPS). During 60° head-up tilt, leg vascular resistance increased significantly in PAF patients [0.40 ± 0.38 (+30%) mmHg·ml(-1)·min(-1)]. The increase in leg vascular resistance was not significantly different from controls [0.88 ± 1.04 (+72%) mmHg·ml(-1)·min(-1)]. In DBH-deficient patients, leg vascular resistance increased by 0.49 ± 0.01 (+153%) and 1.52 ± 1.47 (+234%) mmHg·ml(-1)·min(-1) off and on l-DOPS, respectively. Despite the increase in leg vascular resistance, orthostatic hypotension was present in PAF and DBH-deficient patients. Our results demonstrate that leg vasoconstriction during orthostatic challenges in patients with PAF or DBH deficiency is not abolished. This indicates that the sympathetic nervous system is not the sole or pivotal mechanism inducing leg vasoconstriction during orthostatic challenges. Additional vasoconstrictor mechanisms may compensate for the loss in sympathetic nervous system control.  相似文献   

20.
In the gravitational field-flow fractionation of complex samples, various interaction and adsorption phenomena can occur in separation channels that influence fractionation and complicate the explanation of resulting fractograms. To overcome these problems, the glass surface was modified to create charge-free, non-adsorbing hydrophilic media for the mild treatment of hydrophilic biological particles. The modification was carried out in two steps: (1) by a simple lacquering of the glass surface with polystyrene diluted in toluene and (2) subsequent adsorption of a detergent layer on polystyrene. Essential suppression of ionic interactions between soluble low-molecular-mass compounds and the channel wall and decreased adsorption effects were demonstrated in separations of blood samples by gravitational field-flow fractionation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号