首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To observe the effects of simulated microgravity on beta islet cell culture, we have compared the survival rates and the insulin levels of the isolated rat islet cells cultured at micro- and normal gravity conditions. The survival rates of the cells cultured were determined by acridine orange-propidium iodide double-staining on day 3, 7 and 14. The morphology of the cells was observed by electron microscopy. Insulin levels were measured by radio immuno assays. Our results show that the cell number cultured under the microgravity condition is significantly higher than that under the routine condition (P<0.01). Some tubular structure shown by transmission electron microscopy, possibly for the transport of nutrients, were formed intercellularly in the microgravity cultured group on day 7. There were also abundant secretion particles and mitochondria in the cytoplasm of the cells. Scanning electron microscopy showed that there were holes formed between each islet, possibly connecting with the nutrient trans  相似文献   

2.
Space flight with associated microgravity is complicated by "astronaut's anemia" and other hematologic abnormalities. Altered erythroid differentiation, red cell survival, plasma volume, and progenitor numbers have been reported. We studied the impact of microgravity on engraftable stem cells, culturing marrow cells in rotary wall vessel (RWV) culture chambers mimicking microgravity and in normal gravity nonadherent Teflon bottles. A quantitative competitive engraftment technique was assessed under both conditions in lethally irradiated hosts. We assessed 8-wk engraftable stem cells over a period spanning at least one cell cycle for cytokine (FLT-3 ligand, thrombopoietin [TPO], steel factor)-activated marrow stem cells. Engraftable stem cells were supported out to 56 h under microgravity conditions, and this support was superior to that seen in normal-gravity Teflon bottle cultures out to 40 h, with Teflon bottle culture support superior to RWV from 40 to 56 h. A nadir of stem cell number was seen at 40 h in Teflon and 48 h in RWV, suggesting altered marrow stem cell cycle kinetics under microgravity. This is the first study of engraftable stem cells under microgravity conditions, and the differences between microgravity and normal gravity cultures may present opportunities for unique future stem cell expansion strategies.  相似文献   

3.
BHK-21 cells were cultured under various shear stress conditions in an Integrated Rotating-Wall Vessel (IRWV). Shear ranged from 0.5 dyn/cm2 (simulated microgravity) to 0.92 dyn/cm2. Under simulated microgravity conditions, BHK-21 cells complexed into three-dimensional cellular aggregates attaining 6 × 106 cells/ml as compared to growth under 0.92 dyn cm2 conditions. Glucose utilization in simulated microgravity was reduced significantly, and cellular damage at the microcarrier surface was kept to a minimum. Thus, the integrated rotating wall vessel provides a quiescent environment for the culture of mammalian cells. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The effects of insulin therapy in streptozotocin diabetic rats on the glucose transport response to insulin in adipose cells have been examined. At sequential intervals during subcutaneous insulin infusion, isolated cells were prepared and incubated with or without insulin, and 3-O-methylglucose transport was measured. Insulin treatment not only reversed the insulin-resistant glucose transport associated with diabetes, but resulted in a progressive hyperresponsiveness, peaking with a 3-fold overshoot at 7-8 days (12.1 +/- 0.3 versus 3.4 +/- 0.1 fmol/cell/min, mean +/- S.E.) and remaining elevated for more than 3 weeks. During the peak overshoot, glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Insulin therapy restored glucose transporter concentration in the plasma membranes of insulin-stimulated cells from a 40% depleted level previously reported in the diabetic state to approximately 35% greater than control (38 +/- 4 versus 28 +/- 2 pmol/mg of membrane protein). Glucose transporter concentration in the low-density microsomes from basal cells was also restored from an approximately 45% depleted level back to normal (50 +/- 4 versus 50 +/- 6 pmol/mg of membrane protein), whereas total intracellular glucose transporters were further increased due to an approximately 2-fold increase in low-density microsomal membrane protein. However, these increases remained markedly less than the enhancement of insulin-stimulated glucose transport activity in the intact cell. Thus, insulin treatment of diabetic rats produces a marked and sustained hyperresponsive insulin-stimulated glucose transport activity in the adipose cell with little more than a restoration to the non-diabetic control level of glucose transporter translocation. Because this enhanced glucose transport activity occurs through an increase in Vmax, insulin therapy appears to be associated with a marked increase in glucose transporter intrinsic activity.  相似文献   

5.
We sought to develop a practical and representative model to study the interactions of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) with human intestinal tissue. For this purpose, human intestinal epithelial HCT-8 cells were cultured under low-shear microgravity conditions in a rotating cell culture system. After 10 days, layered cell aggregates, or 'organoids', developed. Three lines of evidence indicated that these organoids exhibited traits characteristic of normal tissue. First, the organoids expressed normal intestinal tissue markers in patterns that suggested greater cellular differentiation in the organoids than conventionally grown monolayers. Second, the organoids produced higher levels of intestinally expressed disaccharidases and alkaline phosphatase on a cell basis than did conventionally cultured monolayers. Third, HCT-8 organoid tissue developed microvilli and desmosomes characteristic of normal tissue, as revealed by electron microscopy. Because the low-shear microgravity condition is proposed by modelling studies to more closely approximate conditions in the intestinal microvilli, we also tested the impact of microgravity of bacterial growth and virulence gene expression. No influence on growth rates was observed but intimin expression by EHEC was elevated during culture in microgravity as compared with normal gravity. That the responses of HCT-8 organoids to infection with wild-type EPEC or EHEC under microgravitational conditions approximated infection of normal tissue was demonstrated by the classical appearance of the resultant attaching and effacing lesions. We concluded that the low shear microgravity environment promoted growth of intestinal cell organoids with greater differentiation than was seen in HCT-8 cells maintained in conventional tissue culture and provided a reduced gravity environment for study of bacterial-host cell interactions.  相似文献   

6.
We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.  相似文献   

7.
Glucose transporter (GT) has been suggested to be involved in the insulin biosynthesis. However, the functional relationship between GT and insulin biosynthesis is not well understood. In this report, we have generated rat pancreatic B cell lines (RINr) that stably overexpress a cDNA encoding the brain type GT. These cell lines showed 3- to 4-fold increase in insulin mRNA and protein. These results suggest that GT might have some relationship to the insulin biosynthesis in the pancreatic B cells.  相似文献   

8.
The growth and development of protoplasts of rapeseed (Brassica napus L. cv Line) and carrot (Daucus carota L. cv. Navona) were studied onboard the Space Shuttle‘Discovery’during an 8-day International Microgravity Laboratory [IML-l) mission in January 1992. The Flight experiments were carried out in‘Biorack'. a fully controlled cell biological experimental facility. under microgravity conditions and in a l-g centrifuge. Parallel experiments were performed in a‘Biorack’module on the ground. After retrieval, some samples were subcultured on appropriate media and analysed for callus growth and regeneration to intact plants. The remainder were used for biochemical analysis. Samples fixed on board the Space Shuttle were kept in l% glutaraldehyde fixative at 4°C for 3–7 days for microscopy analysis after retrieval. Protoplasts exposed to microgravity conditions showed a delay in cell wall synthesis. Cells were swollen in appearance and formed cell aggregates with only few cells. Callus were obtained from protoplasts cultured under microgravity (Fogl). on the l-g centrifuge on board the shuttle (Flg), under normal l-g conditions on the ground (G1g) and on a centrifuge on the ground giving 1.4 g (Gl.4g). Regeneration of intact rapeseed plants was obtained from Flg. Glg and G1.4g. However, no plants were regenerated from protoplasts exposed to microgravity (Fog). Biochemical analysis indicated that the microgravity samples (Fog displayed a reduced packed cell volume, an increased concentration of soluble proteins per cell, and a reduced specific activity of peroxidase in the cytoplasm. Morphometric analysis of fixed samples demonstrated that 3-day old protoplasts under microgravity conditions were significantly larger than protoplasts kept on the l-g centrifuge in space. UItrastructural analysis by transmission electron microscopy showed that protoplasts exposed to microgravity conditions for 3 days had larger vacuoles and a slightly reduced starch content compared to Flg cells. Cell aggregates formed under microgravity conditions (Fog) had an average of 2–I cells per aggregate while aggregates formed under Flg had 8–12 cells.  相似文献   

9.
Astronauts are susceptible to a variety of conditions such as motion sickness, muscular atrophy, bone demineralization and cardiovascular deconditioning. These findings suggest that the adaptation to the absence of gravity is due, at least in part, to the effects exerted by microgravity at the cellular level. Indeed, a number of studies have indicated that gravity affects mammalian cell growth and differentiation through the modulation of gene expression. We have characterized the behaviour of endothelial cells and of the human monocytic cell line U937 cultured in the NASA-developed bioreactor to simulate microgravity, the Rotating Wall Vessels (RWV). In simulated microgravity endothelial cells showed a different behavior which was dependent from the species and from the district of origin, while U937 in the RWV proliferated slower than the controls. All the effects we observed were promptly reversible upon return to normal culture conditions. It is noteworthy that all the cells which maintained the capability to proliferate in microgravity upregulated the stress protein HSP70. We therefore propose that only the cells which sense microgravity as a stressful condition and, consequently, overexpress HSP70 maintain their proliferative potential in simulated microgravity.  相似文献   

10.
Methionine dependence is a metabolic defect characterized by the inability of eukaryotic cells in culture to proliferate in a medium where methionine has been replaced by its immediate metabolic precursor, homocysteine. This defect has been reported to be a specific property of diverse tumour-derived and transformed cell lines; normal cell strains grow well under the above culture conditions. The basis of methionine requirement in such cells is not known. We asked whether this defect might be controlled by activated oncogenes and in particular by the mutated (activated) HRAS1 oncogene derived from the EJ/T24 human carcinoma line. We report that this oncogene induces methionine requirement after transfection in non-transformed immortalized rat cells.  相似文献   

11.
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
The glucose responsiveness of alpha- and beta-cells of normal as well as untreated and insulin-treated streptozotocin diabetic rats was tested in the extracorporeal perfusion system. Also assessed was the possible in vitro effect of added insulin on the glucose sensitivity of islets from untreated diabetic animals. Insulin and glucose responsiveness of the two cell types. The rate of glucose entry islet tissue was estimated, and the effect of glucose on the tissue supply of ATP and lactate and the cyclic 3':5'-AMP level of islets was measured under the above in vitro conditions. It was demonstrated that beta-cells are more accessible to glucose than alpha-cells, that glucose entry into islet cells is not significantly modified by insulin and that glucose had no effect on ATP, lactate and cyclic 3':5'-AMP levels of islet tissue under any of the conditions investigated. High insulin in vitro elevated ATP levels of alpha-cell islets independent of extracellular glucose. Glucose caused insulin release from normal but not from diabetic islets and rapidly and efficiently suppressed stimulated glucagon secretion of the pancreas from normal and insulin treated diabetic rats. Glucose was less effective in inhibiting stimulated glucagon secretion by the pancreas from untreated diabetic rats whether insulin was added to the perfusion media or not. Therefore, profound differences of glucose responsiveness of alpha-cells fail to manifest themselves in alterations of basic parameters of glucose and energy metabolism in contrast to what had been postulated in the literature. It is however, apparent that the glucose responsiveness of alpha-cells is modified by insuling by an as yet undefined mechanism.  相似文献   

13.
Dai ZQ  Wang R  Ling SK  Wan YM  Li YH 《Cell proliferation》2007,40(5):671-684
OBJECTIVES: Microgravity is known to affect the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, a few controversial findings have recently been reported with respect to the effects of microgravity on BMSC proliferation. Thus, we investigated the effects of simulated microgravity on rat BMSC (rBMSC) proliferation and their osteogeneic potential. MATERIALS AND METHODS: rBMSCs isolated from marrow using our established effective method, based on erythrocyte lysis, were identified by their surface markers and their proliferation characteristics under normal conditions. Then, they were cultured in a clinostat to simulate microgravity, with or without growth factors, and in osteogenic medium. Subsequently, proliferation and cell cycle parameters were assessed using methylene blue staining and flow cytometry, respectively; gene expression was determined using Western blotting and microarray analysis. RESULTS: Simulated microgravity inhibited population growth of the rBMSCs, cells being arrested in the G(0)/G(1) phase of cell cycle. Growth factors, such as insulin-like growth factor-I, epidermal growth factor and basic fibroblastic growth factor, markedly stimulated rBMSC proliferation in normal gravity, but had only a slight effect in simulated microgravity. Akt and extracellular signal-related kinase 1/2 phosphorylation levels and the expression of core-binding factor alpha1 decreased after 3 days of clinorotation culture. Microarray and gene ontology analyses further confirmed that rBMSC proliferation and osteogenesis decreased under simulated microgravity. CONCLUSIONS: The above data suggest that simulated microgravity inhibits population growth of rBMSCs and their differentiation towards osteoblasts. These changes may be responsible for some of the physiological changes noted during spaceflight.  相似文献   

14.
Exposure of freshly drawn lymphocytes and lymphoblastoid cells (LB and COR3) to simulated microgravity decreased the intracellular ATP concentration to 50%-40% of the value found in normal growth conditions. The decrease was reversible although recovery to normal values occurred only slowly both in lymphocytes and in lymphoblastoid cells. Poly(ADP-ribose) polymerase (PARP ) activity was increased indicating that cells exposed to conditions of reduced gravitation experience stress. Exposure to microgravity forces cells into a condition of metabolic quiescence in which they appear to be particularly sensitive to subsequent exposures to a genotoxic agent. Thus, treatment of cells with the strong redox agent potassium bromate under microgravity conditions, indicated an impairment in repair of DNA 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidized derivative of deoxyguanosine. We conclude that gravitational modulation of the kind routinely obtained under laboratory conditions and during spaceflights is a stressful process to which cells appear to be extremely sensitive. These effects may reflect the physiological alterations observed in astronauts and in animals following spaceflights or exposure to conditions of simulated microgravity.  相似文献   

15.
Three novel human insulin-releasing cell lines designated 1.1B4, 1.4E7, and 1.1E7 were generated by electrofusion of freshly isolated of human pancreatic beta cells and the immortal human PANC-1 epithelial cell line. Functional studies demonstrated glucose sensitivity and responsiveness to known modulators of insulin secretion. Western blot, RT-PCR, and immunohistochemistry showed expression of the major genes involved in proinsulin processing and the pancreatic beta cell stimulus-secretion pathway including PC1/3, PC2, GLUT-1, glucokinase, and K-ATP channel complex (Sur1 and Kir6.2) and the voltage-dependent L-type Ca(2+) channel. The cells stained positively for insulin, and 1.1B4 cells were used to demonstrate specific staining for insulin, C-peptide, and proinsulin together with insulin secretory granules by electron microscopy. Analysis of metabolic function indicated intact mechanisms for glucose uptake, oxidation/utilization, and phosphorylation by glucokinase. Glucose, alanine, and depolarizing concentrations of K(+) were all able to increase [Ca(2+)](i) in at least two of the cell lines tested. Insulin secretion was also modulated by other nutrients, hormones, and drugs acting as stimulators or inhibitors in normal beta cells. Subscapular implantation of the 1.1B4 cell line improved hyperglycemia and resulted in glucose lowering in streptozotocin-diabetic SCID mice. These novel human electrofusion-derived beta cell lines therefore exhibit stable characteristics reminiscent of normal pancreatic beta cells, thereby providing an unlimited source of human insulin-producing cells for basic biochemical studies and pharmacological drug testing plus proof of concept for cellular insulin replacement therapy.  相似文献   

16.
Glucose interference in production of microcin B17 by Escherichia coli ZK650 was decreased sevenfold by growth in a ground-based rotating-wall bioreactor operated in the simulated microgravity mode as compared with growth in flasks. When cells were grown in the bioreactor in the normal gravity mode, relief from glucose interference was even more dramatic, amounting to a decrease in glucose interference of over 100-fold.  相似文献   

17.
This study was designed to examine insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats after conditions of simulated microgravity. To simulate microgravity, male Sprague-Dawley rats were suspended in a head-down (45 degrees) position with their hindlimbs non-weight bearing (SUS) for 14 days. In addition, rats were assigned to suspension followed by exercise (SUS-E), to cage control (CC), or to exercising control (CC-E) groups. Exercise consisted of five 10-min bouts of treadmill running at the same relative intensity for the CC-E and SUS-E rats (80-90% of maximum O2 consumption). Hindlimb perfusion results indicated that glucose uptake for the entire hindquarter at 24,000 microU/ml insulin (maximum stimulation) was significantly higher in the SUS (8.9 +/- 0.5 mumol.g-1.h-1) than in the CC (7.6 +/- 0.4 mumol.g-1.h-1) rats, signifying an increased insulin responsiveness. Glucose uptake at 90 microU/ml insulin was also significantly higher in the SUS (48 +/- 4; % of maximum stimulation over basal) than in the CC (21 +/- 4%) rats. In addition, exercise-induced increases in glucose uptake for the hindlimbs (133%) and glucose incorporation into glycogen for the plantaris (8.4-fold), extensor digitorum longus (5.4-fold), and white gastrocnemius (4.8-fold) muscles were greater for the SUS-E rats than for the CC-E rats (39% and 1.9-, 1.9-, and 3.0-fold, respectively). Therefore, suspension of the rat with hindlimbs non-weight bearing leads to enhanced muscle responses to insulin and exercise when they were applied separately. However, insulin action appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.  相似文献   

18.
Slowly growing X-ray-induced rat insulinomas and derived cell lines have been used as a model system for glucose-induced insulin release. During perfusions of tumors transplanted under the kidney capsule, the carbohydrates glucose and D-glyceraldehyde increased insulin secretion. These stimuli and the amino acids leucine and alanine also provoked insulin release in freshly isolated tumor cells. Under these conditions, glucose utilization had a Km of 4.6 mM and maximal velocity of 0.9 nmol/min/10(6) cells. A continuous cell line was established from such a preparation. In culture, glucose-induced insulin secretion was no longer detectable while responses to D-glyceraldehyde and amino acids were retained. Glucose metabolism in the cell line showed a decrease in Km to 0.7 mM glucose and an increased maximal velocity of 1.4 nmol/min/10(6) cells. Attempts to revert these alterations were undertaken using glucose-deficient culture medium to diminish glycolytic flux. Basal insulin release was lowered, while the growth pattern of the cells remained unchanged. Another approach involved the use of sodium butyrate which has been demonstrated to promote differentiation in other cell systems. Whereas sodium butyrate markedly increased cellular insulin content, the secretory responses were not improved. These results provide evidence that the loss of glucose-induced insulin secretion is paralleled by alterations in glucose metabolism.  相似文献   

19.
The aim of this work was to assess whether "modeled microgravity" affects cell response to ionizing radiation, increasing the risk associated with radiation exposure. Lymphoblastoid TK6 cells were irradiated with various doses of gamma rays and incubated for 24 h in a modeled microgravity environment obtained by the Rotating Wall Vessel bioreactor. Cell survival, induction of apoptosis and cell cycle alteration were compared in cells irradiated and then incubated in 1g or modeled microgravity conditions. Modulation of genomic damage induced by ionizing radiation was evaluated on the basis of HPRT mutant frequency and the micronucleus assay. A significant reduction in apoptotic cells was observed in cells incubated in modeled microgravity after gamma irradiation compared with cells maintained in 1g. Moreover, in irradiated cells, fewer G2-phase cells were found in modeled microgravity than in 1g, whereas more G1-phase cells were observed in modeled microgravity than in 1g. Genomic damage induced by ionizing radiation, i.e. frequency of HPRT mutants and micronucleated cells, increased more in cultures incubated in modeled microgravity than in 1g. Our results indicate that modeled microgravity incubation after irradiation affects cell response to ionizing radiation, reducing the level of radiation-induced apoptosis. As a consequence, modeled microgravity increases the frequency of damaged cells that survive after irradiation.  相似文献   

20.
The effect of jejunoileal bypass (JIB) on the enteroinsular axis was studied in vivo and in vitro in the rat. Glucose, insulin and GIP responses to oral glucose were compared in JIB and control rats. The effect of glucose and GIP on insulin release from the isolated perfused pancreas of the same animals was investigated to determine if JIB altered the sensitivity of the beta cell. Immunocytochemical studies of gut and pancreas were also carried out. Glucose, insulin and GIP responses to a glucose load were blunted after JIB, although basal GIP levels were elevated in these animals. The insulin response of the perfused JIB pancreas to GIP was 70% reduced from controls although the insulin response to glucose appeared normal. The size and area of JIB islets were unchanged from controls as was the distribution of insulin, glucagon, somatostatin and pancreatic polypeptide. GIP immunoreactive cells were present in all regions of the intestine including the JIB blind loop. This study confirms the findings of others that a relationship exists between reduced GIP and insulin response to oral glucose after JIB, and indicates that a decrease in sensitivity of the beta cell to GIP occurs following JIB that is not rapidly reversible. GIP secreted from blind loop mucosa may contribute to the high basal GIP found in JIB rats and may be causally connected to the fall in beta cell sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号