首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A series of N-(p-sulfamoylphenyl)-alpha-D-glycopyranosylamines was prepared by reaction of sulfanilamide with different monosaccharides in the presence of ammonium chloride. The new compounds were investigated for inhibition of the metallo-enzyme carbonic anhydrase (CA, EC 4.2.1.1), involved in aqueous humor secretion within the mammalian eye. Isozymes CA I and CA II were strongly inhibited by some of these compounds, which showed inhibition constants in the range of 510-1200 nM against CA I and 10-25 nM against CA II, similarly to clinically used sulfonamides, such as acetazolamide, methazolamide, dichlorophenamide, dorzolamide and brinzolamide. The presence of sugar moieties in these molecules induced an enhanced water solubility as compared to other sulfonamides. In hypertensive rabbits (a widely used animal model of glaucoma), two of the new compounds showed strong and long-lasting intraocular pressure (IOP) lowering, being more effective than dorzolamide and brinzolamide, the two clinically used, topically acting antiglaucoma sulfonamides with CA inhibitory properties.  相似文献   

3.
The inhibition of a newly cloned human carbonic anhydrase (CA, EC 4.2.1.1), isozyme XII (hCA XII), has been investigated with a series of sulfonamides, including some clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide, benzolamide, and sulpiride, or indisulam, a compound in clinical development as antitumor drug), as well as the sulfamate antiepileptic drug topiramate. Some simple amino-/hydrazine-/hydroxy-substituted aromatic/heterocyclic sulfonamides have also been included in the study. All types of activity have been detected, with several medium potency inhibitors (K(I)s in the range of 34-220 nM), whereas ethoxzolamide and several halogenated sulfanilamides showed stronger potency, with K(I)s in the range of 11-22 nM. The antiglaucoma sulfonamides used clinically, except dichlorophenamide, which is a moderate inhibitor (K(I) of 50 nM), as well as topiramate, indisulam, and sulpiride behave as very potent hCA XII inhibitors, with K(I)s in the range of 3.0-5.7 nM. Several subnanomolar inhibitors (K(I)s in the range of 0.30-0.85 nM) have also been detected. Compounds with excellent selectivity against hCA XII over hCA II have been found, showing selectivity ratios in the range of 177.7-566.7. Apparently, hCA XII is a target of the antiglaucoma sulfonamides, and potent hCA XII inhibitors may be developed/used for the management of hypoxic tumors, together with inhibitors of the other tumor-associated isozyme, CA IX.  相似文献   

4.
Despite the very close structural relationship between dapsone (4,4′-diaminodiphenyl sulfone, 4,4′ sulphonyldianiline, diaphenyl sulphone, DDS) and sulfanilamide (p-aminobenzene sulfonamide), being the prototype of all other sulfonamides, only dapsone shows remarkable efficient pharmacological activity against Mycobacterium leprae. Cells of certain micro-organism need para-aminobenzoic acid (PABA), the latter playing the role of natural substrate to biosynthesis of folic acid. Sufones and sulfonamides show competitive antagonism as chemical analogs of PABA. It is most surprising that, despite of sharing this molecular mechanism, only dapsone shows anti-leprosy activity in vivo. The study was accomplished using molecular mechanics (SYBYL) and semiempirical methods (MOPAC). The calculations of aromaticity, charges, protonation by MOPAC, and of lipophilicity by our empirical program LIPOP(hilicity) give evidence that dapsone is more lipophilic (log P values 0.97) than sulfanilamide (-0.67). The extremely lipophilic cell wall of Mycobacterium leprae contributes to the surprising difference in anti-leprosy activity. Sulfonamides are more or less deprotonated (45 to 99 %) at physiological pH units, whereas dapsone is totally undissociated. This results in different permeability rates into the bacterial cells in vivo. Compared to other sulfones and sulfonamides, the unique combination of high lipophilicity and low ionic dissociation favors anti-leprotic potency in dapsone. On principle, amide groups do not hinder activity, but cause acidity and subsequently dissociation.  相似文献   

5.
A series of aromatic/heterocyclic sulfonamides incorporating adamantyl moieties were prepared by reaction of aromatic/heterocyclic aminosulfonamides with the acyl chlorides derived from adamantyl-1-carboxylic acid and 1-adamantyl-acetic acid. Related derivatives were obtained from the above-mentioned aminosulfonamides with adamantyl isocyanate and adamantyl isothiocyanate, respectively. Some of these derivatives showed good inhibitory potency against two human CA isozymes involved in important physiological processes, CA I, and CA II, of the same order of magnitude as the clinically used drugs acetazolamide and methazolamide. The lipophilicity of the best CA inhibitors was determined and expressed as their experimental log k' IAM and theoretical ClogP value. Their lipophilicity was propitious with the crossing of the blood-brain barrier (log k' > IAM > 1.35). The anticonvulsant activity of some of the best CA inhibitors reported here has been evaluated in a MES test in mice. After intraperitoneal injection (30 mg kg(-1)), compounds A8 and A9 exhibited a high protection against electrically induced convulsions (> 90%). Their ED50 was 3.5 and 2.6 mg kg(-1), respectively.  相似文献   

6.
N-protected amino acids (Gly, Ala and Phe protected with Boc and Z groups) were reacted with sulfonamide derivatives, leading to the corresponding N-protected amino acid–sulfonamide conjugates. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory activity of the new compounds was assessed against four human (h) isoforms, hCA I, hCA II, hCA IV and hCA XII. Among them, hCA II, IV and XII are antiglaucoma drug targets, being involved in aqueous humor secretion within the eye. Low nanomolar inhibition was measured against all four isoforms with the 20 reported sulfonamides, but no selective inhibitory profiles, except for some CA XII-selective derivatives, were observed. hCA I, II and XII were generally better inhibited by sulfonamides incorporating longer scaffolds and Gly/Ala, whereas the best hCA IV inhibitors were homosulfanilamide derivatives, incorporating Phe moieties. The amino acid–sulfonamide conjugates show good water solubility and effective hCA II, IV and XII inhibition, and may be considered as interesting candidates for antiglaucoma studies.  相似文献   

7.
A new series of thioureido-substituted sulfonamides were prepared by reacting 4-isothiocyanato- or 4-isothiocyanatoethyl-benzenesulfonamide with amines, hydrazines, or amino acids bearing moieties that can lead to an enhanced hydrosolubility, such as 2-dimethylamino-ethylamine, fluorine-containing aromatic amines/hydrazines, an aminodiol, heterocyclic polyamines (derivatives of morpholine and piperazine), 4-aminobenzoic acid, or natural amino acids (Gly, Cys, Asn, Arg, and Phe). The new compounds showed good inhibitory properties against three physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, with K(I)s in the range of 24-324 nM against the cytosolic isoform CA I, of 6-185 nM against the other cytosolic isozyme CA II, and of 1.5-144 nM against the transmembrane isozyme CA XII. Some of the new derivatives were also very effective in reducing elevated intraocular pressure in hypertensive rabbits as a glaucoma animal model. Considering that this is the first study in which potent CA II/CA XII inhibitors are designed and investigated in vivo, it may be assumed that the target isozymes of the antiglaucoma sulfonamides are indeed the cytosolic CA II and the transmembrane CA XII.  相似文献   

8.
Important physiological and physio-pathological functions are played by several carbonic anhydrase (CA, EC 4.2.1.1) isozymes, which are strongly inhibited by aromatic and heterocyclic sulfonamides. Here we report several new types of such sulfonamides, incorporating furan-, thiophene- and pyrrole-carboxamide moieties in their molecules. Some of these compounds showed very good CA II and CA IV inhibitory properties. with affinities for the enzymes in the low nanomolar range. Due to their relatively low water solubility, some of the most active CA II inhibitors reported here have been formulated as aqueous suspension for topical administration as antiglaucoma agents. in normotensive and glaucomatous rabbits. The derivatives incorporating furan- and pyrrole-carboxamide moieties (but not the corresponding thiophene-substituted derivatives), showed effective and long-lasting intraocular pressure (IOP) lowering both in normotensive as well as glaucomatous animals, with potencies superior to dorzolamide and brinzolamide, the two available topically acting sulfonamide drugs. This is the first example of non-water soluble sulfonamides that significantly lower IOP, being thus similar with the recently introduced drug brinzolamide, which belongs to a completely different chemical family of antiglaucoma sulfonamides.  相似文献   

9.
The inhibition of cell duplication by many lipophilic acids was measured in Bacillus subtilis and in the following mammalian cell lines, the human epithelial-type cell lines HeLa, strain R and strain L-132, the human fibroblast cell line VA-13, and the rat glial cell line C. The results were correlated to the partition coefficient and the distribution coefficient (= apparent partition coefficient at pH 7.2) of the compounds, using octanol/water partition coefficients and pKa values either from the literature or measured for this work. For B. subtilis, the logarithm of the inhibitory potency of most compounds increases linearly with the logarithm of the partition coefficient. Exceptional high potencies were observed for compounds that can efficiently delocalize the charge of the negative ion over the whole molecule. Most compounds inhibit tissue cultures at least as potently as they inhibit B. subtilis. But some compounds are significantly more potent in tissue cultures than would have been expected from the B. subtilis data; such compounds (analgesics/antipyretics, anti-inflammatory compounds, butyrate, norepinephrine) presumably inhibits mammalian cells by specific reactions with certain cell components. However, most compounds inhibit the different cell lines to a similar degree, indicating no cellular specificity; exceptions to this rule are chlorambucil, chlortetracycline and dexamethasone. Many of the lipophilic acids that are potent inhibitors of mammalian cell replication are also teratogenic. Exceptional compounds may not reach the embryo. We propose that a number of other lipophilic acids that are potenta inhibitors and to which humans are frequently exposed should be tested for their teratogenic effect.  相似文献   

10.
Abstract

The B3LYP/6–311+G(d,p) method and three ONIOM extrapolation methods ONI-OM (B3LYP/6–311+G(d,p): AM1); ONIOM(B3LYP/6–311+G(d,p): MNDO); ONIOM (B3LYP/6–311+G(d,p): HF/3-21G(d)) were used to characterize the complexes of Zn2+ cation with anionic sulfonylated amino acid hydroxamates (RSO2NH-AA-CON(-)OH), possessing an unsubstituted RSO2NH—amino acyl moiety. According to the R moiety we distinguish between pentafluorophenyl and 4-methoxyphenyl derivates. The amino acid hydroxamates included in the study were the Gly, Ala, and Leu derivates. Of the inhibitors investigated, the weakest zinc affinity exhibits the pentafluorophenyl derivate with Gly amino acid and the strongest affinity the 4-methoxyphenyl derivate with Leu amino acid. The inhibitors form bidentate coordination bonds with the zinc cation by means of the sulfonyl oxygen and the ionized hydroxamate nitrogen atoms, respectively. The zinc affinities computed using the B3LYP/6–311 +G(d,p)//HF/6–31 +G(d,p) method are in very good agreement with the full density functional theory (DFT) B3LYP/6–311+G(d,p)//B3LYP/6- 311+G(d,p) method and this method can be adopted to model larger complexes of inhibitors with the active site of carbonic anhydrase.  相似文献   

11.
A series of aromatic sulfonamides incorporating indane moieties were prepared starting from commercially available 1- and 2-indanamine, and their activity as inhibitors of two carbonic anhydrase (CA, EC 4.2.1.1) isozymes, hCA I and II was studied. The new sulfonamides incorporating acetamido, 4-chloro-benzoyl, valproyl, tetra-, and pentafluorobenzoyl moieties acted as very potent inhibitors of the slow red blood cell isozyme hCA I (K(i)s in the range of 1.6-8.5 nM), which usually has a lower affinity for such inhibitors, as compared to isozyme II. Some derivatives also showed excellent hCA II inhibitory properties (K(i)s in the range of 2.3-12 nM), but the anticonvulsant activity of these sulfonamides was rather low as compared to that of other sulfonamide/sulfamate CA inhibitors, such as methazolamide. Furthermore, the 2-amino/acetamido-indane-5-sulfonic acids prepared during this work also showed interesting CA inhibitory properties, with inhibition constants in the range of 43-89 nM against the two isozymes, being among the most potent sulfonic acid CA inhibitors reported so far.  相似文献   

12.
The structural stability of halocarbonyl azides CXO-NNN (X=F, Cl and Br) was investigated by DFT and MP2 calculations using the 6-311++G** basis set. From the calculations, the molecules were found to have an s-cis<--> s-trans conformational equilibrium with cis being the lower -energy form. Full energy optimizations were carried out for the transition states and the minima at the B3LYP/6 -311++G** and MP2/6 -311++G** levels, from which the rotational barriers were calculated to be of the order 8-10 kcal x mol(-1). The vibrational frequencies were computed at the DFT -B3LYP level and the vibrational assignments for the normal modes of the stable conformers were made on the basis of normal coordinate calculations.  相似文献   

13.
This work presents an investigation on the conformational preferences of α,α-trehalose in gas phase and aqueous solution. Eighty-one systematically selected structures were studied at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level, giving rise to 40 unique conformers. The 19 lower energy structures and some selected other were further re-optimized at the B3LYP/6-311++G(d,p) level. The main factors accounting for the conformer’s stability were pointed out and discussed. NBO and QTAIM analyses were performed in some selected conformers in order to address the anomeric and exo-anomeric effects as well as intramolecular hydrogen bonding. The effect of solvent water on the relative stability of the conformers was accounted for by applying the conductor-like polarizable continuum model, CPCM.  相似文献   

14.
An inhibition study of the human and bovine membrane-associated isozymes of carbonic anhydrase (CA, EC 4.2.1.1), hCA IV and bCA IV, with a series of sulfonamides and sulfamates, some of which are widely clinically used, such as acetazolamide, methazolamide, ethoxzolamide, topiramate, dorzolamide, dichlorophenamide, celecoxib, and valdecoxib among others, is reported. In contrast to bCA IV, which is generally strongly inhibited by most of these derivatives, hCA IV has a rather different inhibition profile. Several of these compounds such as acetazolamide, ethoxzolamide, and bromosulfanilamide are potent hCA IV inhibitors (K(i)'s of 74-93 nM), others, such as celecoxib and some halogenated sulfanilamides are medium potency inhibitors (K(i)'s of 450-880 nM) whereas most of them are weak hCA IV inhibitors (methazolamide: 6.2 microM; dorzolamide 8.5 microM; topiramate 4.9 microM; dichlorophenamide: 15.3 microM). The hCA IV/bCA IV inhibition ratios for all the investigated compounds ranged between 1.05 (for acetazolamide) and 198.37 (for dorzolamide). Based on these results, we doubt that hCA IV is indeed one of the main contributors to the intraocular pressure (IOP) lowering effects of sulfonamide CA inhibitors, in addition to hCA II, as hypothesized earlier by Maren et al. (Mol. Pharmacol.1993, 44, 901-906). Indeed, both the very good hCA IV inhibitors (acetazolamide and ethoxzolamide) as well as the quite weak hCA IV inhibitors (methazolamide, dorzolamide, or dichlorophanamide) are effective in lowering IOP when administered either systemically or topically. The membrane-associated isozyme which probably is critical for aqueous humor secretion is hCA XII and not hCA IV.  相似文献   

15.
The inhibition of a newly cloned human carbonic anhydrase (CA, EC 4.2.1.1), isozyme VII (hCA VII), has been investigated with a series of aromatic and heterocyclic sulfonamides, including some of the clinically used derivatives (acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, brinzolamide and benzolamide), as well as the sulfamate antiepileptic drug topiramate. Inhibition data for the the other physiologically relevant cytosolic isoforms hCA I, hCA II and mCA XIII are also provided for comparison. hCA VII shows a high catalytic activity for the CO(2) hydration reaction, with a k(cat) of 9.5 x 10(5)s(-1) and k(cat)/K(m) of 8.3 x 10(7)M(-1)s(-1) at pH7.5 and 20 degrees C. A very interesting inhibition profile against hCA VII with this series of 32 sulfonamides/sulfamates was observed. hCA VII shows high affinity for all the investigated compounds, with inhibition constants in the range of 0.45-210 nM. Topiramate, ethoxzolamide and benzolamide showed subnanomolar hCA VII inhibitory activity, whereas acetazolamide, methazolamide, dorzolamide and brinzolamide showed K(I)-s in the range of 2.1-3.5 nM. Dichlorophenamide was slightly less active (K(I) of 26.5 nM). A number of heterocyclic or bicyclic aromatic sulfonamides also showed excellent hCA VII inhibitory properties (K(I)-s in the range of 4.3-7.0 nM) whereas many monosubstituted or disubstituted benzenesulfonamides were less active (K(I)-s in the range of 45-89 nM). The least active hCA VII inhibitors were some substituted benzene-1,3-disulfonamides as well as some halogenated sulfanilamides (K(I)-s in the range of 100-210 nM). The inhibition profile of hCA VII is rather different of that of the other cytosolic isozymes, providing thus a possibility for the design of more selective, hCA VII-specific inhibitors. In addition, these data furnish further evidence that hCA VII is the isozyme responsible for the anticonvulsant/antiepileptic activity of sulfonamides and sulfamates.  相似文献   

16.
We report three experiments which show that the hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle occurs at a site on the enzyme different than the active site for CO2 hydration. This is in contrast with isozymes I and II of carbonic anhydrase for which the sites of 4-nitrophenyl acetate hydrolysis and CO2 hydration are the same. The pH profile of kcat/Km for hydrolysis of 4-nitrophenyl acetate was roughly described by the ionization of a group with pKa 6.5, whereas kcat/Km for CO2 hydration catalyzed by isozyme III was independent of pH in the range of pH 6.0-8.5. The apoenzyme of carbonic anhydrase III, which is inactive in the catalytic hydration of CO2, was found to be as active in the hydrolysis of 4-nitrophenyl acetate as native isozyme III. Concentrations of N-3 and OCN- and the sulfonamides methazolamide and chlorzolamide which inhibited CO2 hydration did not affect catalytic hydrolysis of 4-nitrophenyl acetate by carbonic anhydrase III.  相似文献   

17.
Complexation energies and acidities of 19 primary, secondary and tertiary amine-boranes were investigated using MP2/6-311+G(d,p) and B3LYP/6-311+G(d,p) methods. Gas phase acidities for free amines were also calculated. Acidity values for studied complexes range from 327.3 to 349.1 kcal mol?1 and the most acidic are the ones with direct connection between deprotonation center and a π-system. Results obtained by both computational methods are in good agreement with each other and with known experimental data. Addition of BH3 increases the acidity of amines by 30 to 50 kcal mol?1. This enhancement effect was compared to the respective effect witnessed in phosphine-boranes and traced back to changes of charge delocalization on nitrogen. A question about the structural stability of several deprotonated amine-borane anions in the gas phase was also raised.  相似文献   

18.
A series of Schiff's bases was prepared by reaction of 3-formyl-chromone or 6-methyl-3-formyl-chromone with aromatic sulfonamides, such as sulfanilamide, homosulfanilamide, 4-aminoethyl-benzenesulfonamide, a pyrimidinyl-substituted sulfanilamide derivative, sulfaguanidine and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide. The zinc complexes of these sulfonamides have also been obtained. The new derivatives and their Zn(II) complexes were investigated for the inhibition of four physiologically relevant isozymes of carbonic anhydrase (CA, EC 4.2.1.1): the cytosolic isoforms I and II, as well as the tumor-associated, transmembrane isozymes CA IX and XII. Except for the sulfaguanidine-derived compounds which were devoid of activity against all isozymes, the other sulfonamides and their metal complexes showed interesting inhibitory activity. Against isozyme CA I, the inhibition constants were in the range of 13-100 nM, against isozyme CA II in the range of 1.9-102 nM, against isozyme CA IX in the range of 6.3-48nM, and against CA XII in the range of 5.9-50nM. Generally, the formyl-chromone derived compounds were better CA inhibitors as compared to the corresponding 6-methyl-chromone derivatives, and for the simple, benzenesulfonamide derivatives activity increased with an increase of the spacer from sulfanilamide to homosulfanilamide and 4-aminoethylbenzenesulfonamide derivatives, respectively. Some of these compounds may show applications for the development of therapies targeting hypoxic tumors in which CA IX and XII are often highly overexpressed.  相似文献   

19.
A detailed inhibition study of carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the beta- and gamma-families from Archaea with sulfonamides has been performed. Compounds included in this study were the clinically used sulfonamide CA inhibitors, such as acetazolamide, methazolamide, ethoxzolamide, topiramate, valdecoxib, celecoxib, dorzolamide, sulfanilamide, dichlorophanamide, as well as sulfanilamide analogs, halogenated sulfanilamides, and some 1,3-benzenedisulfonamide derivatives. The two gamma-CAs from Methanosarcina thermophila (Zn-Cam and Co-Cam) showed very different inhibitory properties with these compounds, as compared to the alpha-CA isozymes hCA I, II, and IX, and the beta-CA from Methanobacterium thermoautotrophicum (Cab). The best Zn-Cam inhibitors were sulfamic acid and acetazolamide, with inhibition constants in the range of 63-96 nM, whereas other investigated aromatic/heterocylic sulfonamides showed a rather levelled behavior, with KIs in the range of 0.12-1.70 microM. The best Co-Cam inhibitors were topiramate and p-aminoethyl-benzenesulfonamide, with KIs in the range of 0.12-0.13 microM, whereas the worst one was homosulfanilamide (KI of 8.50 microM). In the case of Cab, the inhibitory power of these compounds varied to a much larger extent, with sulfamic acid and sulfamide showing millimolar affinities (KIs in the range of 44-103 mM), whereas the best inhibitor was ethoxzolamide, with a KI of 5.35 microM. Most of these sulfonamides showed inhibition constants in the range of 12-100 microM against Cab. Thus, the three CA families investigated up to now possess a very diverse affinity for sulfonamides, the inhibitors with important medicinal, and environmental applications.  相似文献   

20.
In trials to preserve the pharmacological profile and improve the bioavailability via lipophilicity increment of baclofen 1 and searching for more potent and less toxic muscle relaxants and analgesics, nine substituted cyclic analogues of 1 were designed and synthesized. The target derivatives 5-(4-chlorophenyl)-5,6-dihydro-1,3-oxazepin-7(4H)-one (11-19) were obtained through amide formation to the corresponding intermediates (2-10) followed by cyclization using acetic anhydride. The structures of the target compounds (11-19) were confirmed by IR, (1)H NMR, MS, and elemental analyses. The neuropharmacological activities of these lipophilic cyclic analogues (11-19) were assessed for their effects on motor activity, muscle relaxation, pain relief and impaired cognition, by intraperitoneal administration at a dose of 3mg/kg with reference to those of baclofen 1. Our results showed that compounds 11-14 are devoid of all of the tested pharmacological effects associated with 1. In all paradigms tested, undecyl, tridecyl, heptdec-8-enyl and benzyl substituted analogue derivatives (15, 16, 18, and 19) revealed a significant neurological activity being vividly favorable comparable with baclofen 1. 2-Benzyl-5-(4-chlorophenyl)-5,6-dihydro-1,3-oxazepin-7(4H)-one derivative 19 is the most active candidate with high significant neurological potencies, while 5-(4-chlorophenyl)-2-(dec-8-enyl)-5,6-dihydro-1,3-oxazepin-7(4H)-one derivative 17 displayed activity at relatively higher time interval. These results probe a new structurally distinct class incorporating 1,3-oxazepine nucleus as promising candidates as GABA(B) agonists for further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号