首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A role for supplements in optimizing health: the metabolic tune-up   总被引:5,自引:0,他引:5  
An optimum intake of micronutrients and metabolites, which varies with age and genetic constitution, would tune up metabolism and give a marked increase in health, particularly for the poor, young, obese, and elderly, at little cost. (1) DNA damage. Deficiency of vitamins B-12, folic acid, B-6, C or E, or iron or zinc appears to mimic radiation in damaging DNA by causing single- and double-strand breaks, oxidative lesions or both. Half of the population may be deficient in at least one of these micronutrients. (2) The Km concept. Approximately 50 different human genetic diseases that are due to a poorer binding affinity (Km) of the mutant enzyme for its coenzyme can be remedied by feeding high-dose B vitamins, which raise levels of the corresponding coenzyme. Many polymorphisms also result in a lowered affinity of enzyme for coenzyme. (3) Mitochondrial oxidative decay. This decay, which is a major contributor to aging, can be ameliorated by feeding old rats the normal mitochondrial metabolites acetyl carnitine and lipoic acid at high levels. Many common micronutrient deficiencies, such as iron or biotin, cause mitochondrial decay with oxidant leakage leading to accelerated aging and neural decay.  相似文献   

2.
Atamna H  Frey WH 《Mitochondrion》2007,7(5):297-310
Several studies have demonstrated aberrations in the Electron Transport Complexes (ETC) and Krebs (TCA) cycle in Alzheimer's disease (AD) brain. Optimal activity of these key metabolic pathways depends on several redox active centers and metabolites including heme, coenzyme Q, iron-sulfur, vitamins, minerals, and micronutrients. Disturbed heme metabolism leads to increased aberrations in the ETC (loss of complex IV), dimerization of APP, free radical production, markers of oxidative damage, and ultimately cell death all of which represent key cytopathologies in AD. The mechanism of mitochondrial dysfunction in AD is controversial. The observations that Abeta is found both in the cells and in the mitochondria and that Abeta binds with heme may provide clues to this mechanism. Mitochondrial Abeta may interfere with key metabolites or metabolic pathways in a manner that overwhelms the mitochondrial mechanisms of repair. Identifying the molecular mechanism for how Abeta interferes with mitochondria and that explains the established key cytopathologies in AD may also suggest molecular targets for therapeutic interventions. Below we review recent studies describing the possible role of Abeta in altered energy production through heme metabolism. We further discuss how protecting mitochondria could confer resistance to oxidative and environmental insults. Therapies targeted at protecting mitochondria may improve the clinical outcome of AD patients.  相似文献   

3.
Mitochondrial decay plays a central role in the aging process. Although certainly multifactorial in nature, defective operation of the electron transport chain (ETC) constitutes a key mechanism involved in the age-associated loss of mitochondrial energy metabolism. Primarily, mitochondrial dysfunction affects the aging animal by limiting bioenergetic reserve capacity and/or increasing oxidative stress via enhanced electron leakage from the ETC. Even though the important aging characteristics of mitochondrial decay are known, the molecular events underlying inefficient electron flux that ultimately leads to higher superoxide appearance and impaired respiration are not completely understood. This review focuses on the potential role(s) that age-associated destabilization of the macromolecular organization of the ETC (i.e. supercomplexes) may be important for development of the mitochondrial aging phenotype, particularly in post-mitotic tissues.  相似文献   

4.
Mitochondria provide cellular energy supply via respiration and are the major sites for the generation of reactive oxygen species (ROS). Mitochondria also play a fundamental role in apoptosis. Heme is a key factor in mitochondrial function. Defective heme synthesis or altered heme metabolism is associated with numerous diseases. Here we investigated the molecular mechanism by which heme promotes HeLa cell growth and survival. We found that heme deficiency-induced apoptosis involves the release of cytochrome c and the activation of caspase 3. However, heme deficiency-induced apoptosis appears to occur by a unique mechanism distinct from those known to mediate mitochondrial-dependent apoptosis. Specifically, our data show that heme deficiency causes apoptosis in a pathway that is independent of ROS generation and the collapse of mitochondrial membrane potential. These results provide insights into how defective heme synthesis or altered heme metabolism causes diseases and how heme may control cell growth and cell death.  相似文献   

5.
The free radical theory of aging emphasizes cumulative oxidative damage in the genome and intracellular proteins due to reactive oxygen species (ROS), which is a major cause for aging. Caloric restriction (CR) has been known as a representative treatment that prevents aging; however, its mechanism of action remains elusive. Here, we show that CR extends the chronological lifespan (CLS) of budding yeast by maintaining cellular energy levels. CR reduced the generation of total ROS and mitochondrial superoxide; however, CR did not reduce the oxidative damage in proteins and DNA. Subsequently, calorie-restricted yeast had higher mitochondrial membrane potential (MMP), and it sustained consistent ATP levels during the process of chronological aging. Our results suggest that CR extends the survival of the chronologically aged cells by improving the efficiency of energy metabolism for the maintenance of the ATP level rather than reducing the global oxidative damage of proteins and DNA.  相似文献   

6.
Variable durations of food restriction (FR; lasting weeks to years) and variable FR intensities are applied to animals in life span-prolonging studies. A reduction in mitochondrial proton leak is suggested as a putative mechanism linking such diet interventions and aging retardation. Early mechanisms of mitochondrial metabolic adaptation induced by FR remain unclear. We investigated the influence of different degrees of FR over 3 days on mitochondrial proton leak and mitochondrial energy metabolism in rat hindlimb skeletal muscle. Animals underwent 25, 50, and 75% and total FR compared with control rats. Proton leak kinetics and mitochondrial functions were investigated in two mitochondrial subpopulations, intermyofibrillar (IMF) and subsarcolemmal (SSM) mitochondria. Regardless of the degree of restriction, skeletal muscle mass was not affected by 3 days of FR. Mitochondrial basal proton conductance was significantly decreased in 50% restricted rats in both mitochondrial subpopulations (46 and 40% for IMF and SSM, respectively) but was unaffected in other groups compared with controls. State 3 and uncoupled state 3 respiration rates were decreased in SSM mitochondria only for 50% restricted rats when pyruvate + malate was used as substrate (-34.5 and -38.9% compared with controls, P < 0.05). IMF mitochondria respiratory rates remained unchanged. Three days of FR, particularly at 50% FR, were sufficient to lower mitochondria energetic metabolism in both mitochondrial populations. Our study highlights an early step in mitochondrial adaptation to FR and the influence of the severity of restriction on this adaptation. This step may be involved in an aging-retardation process.  相似文献   

7.
8.
Mitochondria, oxidative stress and aging   总被引:14,自引:0,他引:14  
In the eighties, Miquel and Fleming suggested that mitochondria play a key role in cellular aging. Mitochondria, and specially mitochondrial DNA (mtDNA), are major targets of free radical attack. At present, it is well established that mitochondrial deficits accumulate upon aging due to oxidative damage. Thus, oxidative lesions to mtDNA accumulate with age in human and rodent tissues. Furthermore, levels of oxidative damage to mtDNA are several times higher than those of nuclear DNA. Mitochondrial size increases whereas mitochondrial membrane potential decreases with age in brain and liver.

Recently, we have shown that treatment with certain antioxidants, such as sulphur-containing antioxidants, vitamins C and E or the Ginkgo biloba extract EGb 761, protects against the age-associated oxidative damage to mtDNA and oxidation of mitochondrial glutathione. Moreover, the extract EGb 761 also prevents changes in mitochondrial morphology and function associated with aging of the brain and liver. Thus, mitochondrial aging may be prevented by antioxidants. Furthermore, late onset administration of certain antioxidants is also able to prevent the impairment in physiological performance, particularly motor co-ordination, that occurs upon aging.  相似文献   

9.
Yang JL  Weissman L  Bohr VA  Mattson MP 《DNA Repair》2008,7(7):1110-1120
By producing ATP and regulating intracellular calcium levels, mitochondria are vital for the function and survival of neurons. Oxidative stress and damage to mitochondrial DNA during the aging process can impair mitochondrial energy metabolism and ion homeostasis in neurons, thereby rendering them vulnerable to degeneration. Mitochondrial abnormalities have been documented in all of the major neurodegenerative disorders-Alzheimer's, Parkinson's and Huntington's diseases, and amyotrophic lateral sclerosis. Mitochondrial DNA damage and dysfunction may be downstream of primary disease processes such as accumulation of pathogenic proteins. However, recent experimental evidence demonstrates that mitochondrial DNA damage responses play important roles in aging and in the pathogenesis of neurodegenerative diseases. Therapeutic interventions that target mitochondrial regulatory systems have been shown effective in cell culture and animal models, but their efficacy in humans remains to be established.  相似文献   

10.
In the eighties, Miquel and Fleming suggested that mitochondria play a key role in cellular aging. Mitochondria, and specially mitochondrial DNA (mtDNA), are major targets of free radical attack. At present, it is well established that mitochondrial deficits accumulate upon aging due to oxidative damage. Thus, oxidative lesions to mtDNA accumulate with age in human and rodent tissues. Furthermore, levels of oxidative damage to mtDNA are several times higher than those of nuclear DNA. Mitochondrial size increases whereas mitochondrial membrane potential decreases with age in brain and liver.

Recently, we have shown that treatment with certain antioxidants, such as sulphur-containing antioxidants, vitamins C and E or the Ginkgo biloba extract EGb 761, protects against the age-associated oxidative damage to mtDNA and oxidation of mitochondrial glutathione. Moreover, the extract EGb 761 also prevents changes in mitochondrial morphology and function associated with aging of the brain and liver. Thus, mitochondrial aging may be prevented by antioxidants. Furthermore, late onset administration of certain antioxidants is also able to prevent the impairment in physiological performance, particularly motor co-ordination, that occurs upon aging.  相似文献   

11.
Soluble oligomers and/or aggregates of Amyloid-β (Aβ) are viewed by many as the principal cause for neurodegeneration in Alzheimer’s disease (AD). However, the mechanism by which Aβ and its aggregates cause neurodegeneration is not clear. The toxicity of Aβ has been attributed to its hydrophobicity. However, many specific mitochondrial cytopathologies e.g., loss of complex IV, loss of iron homeostasis, or oxidative damage cannot be explained by Aβ’s hydrophobicity. In order to understand the role of Aβ in these cytopathologies we hypothesized that Aβ impairs specific metabolic pathways. We focused on heme metabolism because it links iron, mitochondria, and Aβ. We generated experimental evidence showing that Aβ alters heme metabolism in neuronal cells. Furthermore, we demonstrated that Aβ binds to and depletes intracellular regulatory heme (forming an Aβ-heme complex), which provides a strong molecular connection between Aβ and heme metabolism. We showed that heme depletion leads to key cytopathologies identical to those seen in AD including loss of iron homeostasis and loss of mitochondrial complex IV. Aβ-heme exhibits a peroxidase-like catalytic activity, which catalytically accelerates oxidative damage. Interestingly, the amino acids sequence of rodent Aβ (roAβ) and human Aβ (huAβ) is identical except for three amino acids within the hydrophilic region, which is also the heme-binding motif that we identified. We found that huAβ, unlike roAβ, binds heme tightly and forms a peroxidase. Although, roAβ and huAβ equally form fibrils and aggregates, rodents do not develop AD-like neuropathology. These findings led us to propose a new mechanism for mitochondrial dysfunction and huAβ’s neurotoxicity. This mechanism prompted the development of methylene blue (MB), which increased heme synthesis, complex IV, and mitochondrial function. Thus, MB may delay the onset and progression of AD and serve as a lead to develop novel drugs to treat AD.  相似文献   

12.
To investigate the mitochondrial decay and oxidative damage resulting from aging, the activities/kinetics of the mitochondrial complexes were examined in the brains of young and old rats as well as in old rats fed R-α-lipoic acid plus acetyl-l-carnitine (LA/ALC). The brain mitochondria of old rats, compared with young rats, had significantly decreased endogenous antioxidants and superoxide dismutase activity; more oxidative damage to lipids and proteins; and decreased activities of complex I, IV and V. Complex I showed a decrease in binding affinity (increase in Km) for substrates. Feeding LA/ALC to old rats partially restored age-associated mitochondrial dysfunction to the levels of the young rats. These results indicate that oxidative mitochondrial decay plays an important role in brain aging and that a combination of nutrients targeting mitochondria, such as LA/ALC, could ameliorate mitochondrial decay through preventing mitochondrial oxidative damage. Special issue article in honor of Dr. Akitane Mori.  相似文献   

13.
Cellular manifestations of aging are most pronounced in postmitotic cells, such as neurons and cardiac myocytes. Alterations of these cells, which are responsible for essential functions of brain and heart, are particularly important contributors to the overall aging process. Mitochondria and lysosomes of postmitotic cells suffer the most remarkable age-related alterations of all cellular organelles. Many mitochondria undergo enlargement and structural disorganization, while lysosomes, which are normally responsible for mitochondrial turnover, gradually accumulate an undegradable, polymeric, autofluorescent material called lipofuscin, or age pigment. We believe that these changes occur not only due to continuous oxidative stress (causing oxidation of mitochondrial constituents and autophagocytosed material), but also because of the inherent inability of cells to completely remove oxidatively damaged structures (biological 'garbage'). A possible factor limiting the effectiveness of mitochondial turnover is the enlargement of mitochondria which may reflect their impaired fission. Non-autophagocytosed mitochondria undergo further oxidative damage, resulting in decreasing energy production and increasing generation of reactive oxygen species. Damaged, enlarged and functionally disabled mitochondria gradually displace normal ones, which cannot replicate indefinitely because of limited cell volume. Although lipofuscin-loaded lysosomes continue to receive newly synthesized lysosomal enzymes, the pigment is undegradable. Therefore, advanced lipofuscin accumulation may greatly diminish lysosomal degradative capacity by preventing lysosomal enzymes from targeting to functional autophagosomes, further limiting mitochondrial recycling. This interrelated mitochondrial and lysosomal damage irreversibly leads to functional decay and death of postmitotic cells.  相似文献   

14.
The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome–lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome–lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.  相似文献   

15.
16.
Human ferrochelatase, a mitochondrial membrane-associated protein, catalyzes the terminal step of heme biosynthesis by insertion of ferrous iron into protoporphyrin IX. The recently solved x-ray structure of human ferrochelatase identifies a potential binding site for an iron donor protein on the matrix side of the homodimer. Herein we demonstrate Hs holofrataxin to be a high affinity iron binding partner for Hs ferrochelatase that is capable of both delivering iron to ferrochelatase and mediating the terminal step in mitochondrial heme biosynthesis. A general regulatory mechanism for mitochondrial iron metabolism is described that defines frataxin involvement in both heme and iron-sulfur cluster biosyntheses. In essence, the distinct binding affinities of holofrataxin to the target proteins, ferrochelatase (heme synthesis) and ISU (iron-sulfur cluster synthesis), allows discrimination between the two major iron-dependent pathways and facilitates targeted heme biosynthesis following down-regulation of frataxin.  相似文献   

17.
According to the free radical theory of aging, oxygen-derived free radicals causes the age-associated impairment at the cellular and tissue levels. The mitochondrial theory of aging points to mitochondria, and specially mitochondrial DNA, as the major targets of free radical attack upon aging. Thus, oxidative damage to mtDNA accumulate with age in human and rodent tissues and also is inversely related to maximum life span of mammals. Mitochondrial deficits, such as a decrease in mitochondrial membrane potential, occur upon aging due to oxidative damage. The age-related mitochondrial oxidative stress may be prevented by late onset administration of certain antioxidants, such as Ginkgo biloba extract EGb 761. These antioxidants may also delay the physiological impairment associated with aging.  相似文献   

18.
Mitochondria decay with age from oxidative damage and loss of protective mechanisms. Resistance, repair, and replacement mechanisms are essential for mitochondrial preservation and maintenance. Iron plays an essential role in the maintenance of mitochondria, through its two major functional forms: heme and iron-sulfur clusters. Both iron-based cofactors are formed and utilized in the mitochondria and then distributed throughout the cell. This is an important function of mitochondria that is not directly related to the production of ATP. Heme and iron-sulfur clusters are important for the normal assembly and for the optimal activity of the electron transfer complexes. Loss of mitochondrial cytochrome c oxidase (complex IV), integrity of mtDNA, and function can result from abnormal homeostasis of iron. We review the physiological role of iron-sulfur clusters and heme in the integrity of the mitochondria and the generation of oxidants.  相似文献   

19.
20.
Crouser ED 《Mitochondrion》2004,4(5-6):729-741
Sepsis is the leading cause of death in medical intensive care units. In most fatal cases of sepsis the patient experiences an insidious, progressive decline in vital organ function, i.e. multiple organ dysfunction syndrome (MODS), which is commonly associated with signs of accelerated anaerobic metabolism despite supernormal systemic oxygen delivery. Based on this clinical scenario, tissue hypoxia has long been considered the putative mechanism of MODS. However, efforts to enhance tissue oxygenation during severe sepsis have proved ineffective, and a growing body of evidence indicates that mitochondria contribute significantly to the pathogenesis of sepsis-induced MODS. In addition to dysregulation of oxygen metabolism ('cytopathic hypoxia'), sepsis-induced mitochondrial dysfunction contributes to organ injury through accelerated oxidant production and by promoting cell death. Advances in our understanding of the mechanisms of mitochondrial damage and in its detection could revolutionize the management of this devastating disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号