首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two forms of phosphoinositidase C have been purified from the soluble fraction of rat brain. The purification scheme included gel filtration followed by chromatography on cellulose phosphate, phenyl-Sepharose, and Mono Q. Gradient sodium dodecyl sulphate-polyacrylamide gel electrophoresis gave apparent molecular masses of 151 kDa and 147 kDa. Western blotting with monoclonal antibodies showed that the isozymes corresponded to PLC-beta-1 and PLC-gamma of bovine brain. With both enzymes phosphatidylinositol 4,5-bisphosphate was a better substrate than phosphatidylinositol at neutral pH and low calcium ion concentrations. Both enzymes produced a proportion of inositol 1:2-cyclic phosphates from each substrate, particularly at acid pH. Some GTPase activity was seen in the early stages of purification, but was separated from PLC-beta-1 and PLC-gamma on Mono Q. Purified rat brain protein kinase C phosphorylated PLC-gamma but not PLC-beta-1. Incubation with the kinase increased the activity of both enzymes however, possibly by phosphorylation of another protein in the preparations.  相似文献   

2.
Monophosphatidylinositol inositol phosphohydrolase (phosphatidylinositol-specific phospholipase C. PtdIns-PLC. EC 3.1.4.10) has been purified from a Bacillus thuringiensis culture supernatant and from the cellular fraction of a recombinant Escherichia coli clone containing the PtdIns-PLC gene from B. thuringiensis. The two-step purification procedure involved ion-exchange chromatography on DEAE-Sepharose followed by separation on a Mono-Q/FPLC-column with yields of 32% and 50%, respectively. The molecular mass was determined to be 34 kDa by SDS/PAGE. The isoelectric point of the enzyme was 5.15. The amino-terminal sequences were shown to be identical for the enzymes purified from both organisms. PtdIns-PLC was inhibited by divalent cations using mixed micelles of Triton X-100 and pure phosphatidylinositol. PtdIns-PLC activity was detectable on polyacrylamide gels by activity staining on phosphatidylinostiol-containing agarose.  相似文献   

3.
A membrane-bound phosphatidylinositol 4-kinase (PtdIns kinase) has been purified to apparent homogeneity from human erythrocytes. Enzyme activity was solubilized from urea-KCl-stripped, inside-out membrane vesicles by 3% Triton X-100. Purification to apparent homogeneity was accomplished by cation-exchange chromatography on phosphocellulose, followed by heparin-acrylamide chromatography. This resulted in a nearly 3900-fold purification of PtdIns kinase activity to a specific activity of 44 nmol min-1 mg-1. The purified enzyme has an Mr of 59,000 on silver-stained SDS-PAGE; however, many preparations also contain 54 kDa and 50 kDa proteins which are related to the 59 kDa protein and have PtdIns kinase activity. Kinetic analysis of the PtdIns kinase indicate apparent Km values of 40 and 35 microM for phosphatidylinositol and ATP, respectively. The purified enzyme has been reconstituted into phospholipid liposomes and shown to phosphorylate phosphatidylinositol.  相似文献   

4.
We have recently reported that the thermophilic archaeon Methanobacterium wolfei contains two formylmethanofuran dehydrogenases, I and II. Formylmethanofuran dehydrogenase II, which is preferentially expressed in tungsten-grown cells, has been purified and shown to be a tungsten-iron-sulfur protein. We have now purified and characterized formylmethanofuran dehydrogenase I from molybdenum-grown cells and shown that it is a molybdenum-iron-sulfur protein. The purified enzyme, with a specific activity of 27 U/mg protein, was found to be composed of three subunits of apparent molecular mass 64 kDa, 51 kDa, and 31 kDa and to contain per mol 146-kDa molecule approximately 0.23 mol molybdenum, 0.46 mol molybdopterin guanine dinucleotide, and 6.6 mol non-heme iron but no tungsten (< 0.01 mol). The molybdenum enzyme differed from the tungsten enzyme (8 U/mg) in that it catalyzed the oxidation of N-furfurylformamide and formate and was inactivated by cyanide. The two enzymes also differed significantly in the pH optimum, in the apparent Km for the electron acceptor, and in the chromatographic behaviour. The molybdenum enzyme and the tungsten enzyme were similar, however, in that the N-terminal amino acid sequences determined for the alpha and beta subunits were identical up to residue 23, indicating that the two proteins are isoenzymes. The molybdenum enzyme, as isolated, was found to display an EPR signal derived from molybdenum as evidenced by isotope substitution.  相似文献   

5.
The monomer molecular mass of glucose dehydrogenase (GDH, EC 1.1.1.47) from rainbow trout liver and beef liver were estimated to be 90 kDa for both enzymes, by electrophoresis in the presence of Na-dodecyl-SO4 (SDS). The 90-kDa proteins were partially degraded to about 60 kDa when purified with a delayed procedure without protease inhibitors. Tryptic cleavage of the 90-kDa proteins gave fragments of about 60 kDa and 30 kDa, being similar for trout and beef GDH. Isoelectric points, kinetic and thermodynamic properties of the two enzymes are markedly different. Triton X-100 stimulated and stabilized the reactions catalysed by the purified enzymes.  相似文献   

6.
Three soluble enzyme fractions (F-I, F-II, and F-III) that hydrolyze phophoinositides were separated from soybean sprouts by using Matrex green gel column chromatography. Among the three phosphatidylinositol (PI)-specific phopholipsase C (PLC) enzymes, only the third fraction (F-III) was able to hydrolyze phosphatidylinositol 4,5-bisphosphate (PIP2) as well as phosphatidylinositol (PI) and phosphatidylinositol phosphate (PIP) as substrates. The F-I and F-II fractions only showed enzymatic activities for PI and PIP. The PIP2-hydrolyzing PLC protein, F-III, was partially purified using the chromatographic steps of the Matrex green gel, phenyl Toyopearl, Matrex orange gel, Mono S cation exchange, and superose 6 gel filtration columns. The molecular weight of the F-III protein was estimated to be about 64 kDa on SDS-PAGE. The protein showed immunocross-reactivity with a polyclonal antibody that was prepared against the X and Y motifs of animal PLC enzymes, the conserved catalytic domains. Ca2+ ion critically affected the PIP2-hydrolyzing PLC activity of the F-III protein, representing maximal activity at 10 microM Ca2+ concentration. The PIP2-hydrolyzing PLC activity of the protein was also significantly increased by sodium deoxycholate (SDC) from 0.05 to 0.08%. However, the activity was greatly reduced above the concentration, and no activity was detected at 0.3% SDC. In addition, the protein exhibited maximal PIP2-hydrolyzing PLC activity at pH, in the range of 6.5-7.5.  相似文献   

7.
Affinity-purified antibodies were used to identify a protein of molecular mass 45 kDa (45 kDa protein) in rat brain cytosol as phosphatidylinositol 4-phosphate (PtdIns4P) kinase. Antibodies were raised in rabbits by immunization with the purified 45 kDa protein. Anti-(45 kDa protein) immunoglobulins were isolated by affinity chromatography of the antiserum on a solid immunosorbent, which was prepared by coupling a soluble rat brain fraction, the DEAE-cellulose pool containing 10-15% 45 kDa protein, to CNBr-activated Sepharose 4B. The purified IgGs were specific for the 45 kDa protein as judged by immunoblot and by immunoprecipitation. The purified anti-(45 kDa protein) IgGs inhibited the enzyme activity of partially purified PtdIns4P kinase, whereas preimmune IgGs were ineffective. Immunoprecipitation of the 45 kDa protein from the partially purified enzyme preparation with the purified IgGs resulted in a concomitant decrease in the amount of 45 kDa protein and in PtdIns4P kinase activity. The amount of 45 kDa protein remaining in the supernatant and the activity of PtdIns4P kinase correlated with a coefficient of r = 0.87. The evidence presented lends further support for the notion that the catalytic activity of PtdIns4P kinase in rat brain cytosol resides in a 45 kDa protein.  相似文献   

8.
The enzymes 7,8-dihydroxymethylpterin-pyrophosphokinase (HPPK) and 7,8-dihydropteroate synthase (DHPS), which act sequentially in the folate pathway, were purified to homogeneity from crude extracts of Escherichia coli MC4100. The enzymes represent less than 0.01% of the total soluble protein. HPPK was purified greater than 10,000-fold; the native enzyme appears to be a monomer with a molecular mass of 25 kDa and a pI of 5.2. DHPS was purified greater than 7,000-fold; the native enzyme has an apparent molecular mass of 52 to 54 kDa and is composed of two identical 30-kDa subunits. The amino-terminal sequences for both enzymes have been determined.  相似文献   

9.
Purification and characterization of phosphoinositide 3-kinase from rat liver   总被引:64,自引:0,他引:64  
Phosphoinositide 3-kinase was purified 27,000-fold from rat liver. The enzyme was purified by acid precipitation of the cytosol followed by chromatography on DEAE-Sepharose, S-Sepharose, hydroxylapatite, Mono-Q, and Mono-S columns. When analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified phosphoinositide 3-kinase preparation contained an 85-kDa protein and a protein doublet of approximately 110 kDa. The 85- and 110-kDa proteins focus together on native isoelectric focusing gels and are cross-linked by dithiobis(succinylamide propionate), showing that the 110- and 85-kDa proteins are a complex. The apparent size of the native enzyme, as determined by gel filtration, is 190 kDa. The 85-kDa subunit is the same protein previously shown to associate with polyoma virus middle T antigen and the platelet-derived growth factor receptor (Kaplan, D. R., Whitman, M., Schaffhausen, B., Pallas, D. C., White, M., Cantley, L., and Roberts, T. M. (1987) Cell 50, 1021-1029). The two proteins co-migrate on two-dimensional gels; and, using a Western blotting procedure, 32P-labeled middle T antigen specifically blots the 85-kDa protein. The purified enzyme phosphorylates phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. The apparent Km values for ATP were found to be 60 microM with phosphatidylinositol 4-phosphate or phosphatidylinositol 4,5-bisphosphate as the substrate. The apparent Km for phosphatidyinositol is 60 microM, for phosphatidylinositol 4-phosphate is 9 microM, and for phosphatidylinositol 4,5-bisphosphate is 4 microM. The maximum specific activity using phosphatidylinositol as the substrate is 0.8 mumol/mg/min. The enzyme requires Mg2+ with an optimum of 5 mM. Substitution of Mn2+ for Mg2+ results in only approximately 10% of the Mg2(+)-dependent activity. Physiological calcium concentrations have no effect on the enzyme activity. Phosphoinositide 3-kinase has a broad pH optimum around 7.  相似文献   

10.
The presence of different isoenzymes of phosphatidylinositol 4-kinase in isolated rat liver plasma membranes and their further distribution in plasma membrane domains was examined. Both wortmannin-sensitive and -insensitive PtdIns 4-kinase activities were detected in highly purified plasma membranes obtained by aqueous two-phase affinity partitioning. The wortmannin-sensitive enzyme was identified as the 230 kDa isoform by Western blotting, whereas the 92 kDa isoform was not detected in plasma membranes. The apparent molecular weights of these isoforms were 205 and 105 kDa on SDS polyacrylamide gel electrophoresis, but approximately 500 and 230 kDa respectively on gel filtration, suggesting that both enzymes either are dimers or composed of heterologous subunits. Approximately 25% of the total 230 kDa isoenzyme present in liver, and only ca 5% of the wortmannin-insensitive one, was associated with the plasma membrane fraction. Plasma membrane domains were isolated by a combination of sucrose and Nycodenz gradient centrifugations. The 230 kDa isoform was identified in the blood sinusoidal domain, but not in the bile canalicular one, and was also found in lateral plasma membranes. The wortmannin-insensitive isoenzyme was present only in this latter material. The functional implications of this distribution of PtdIns 4-kinase isoenzymes in plasma membrane regions are discussed.  相似文献   

11.
Phospholipase C was purified from human melanoma grown as solid tumors in nude mice. The specific activity of the pure enzyme was approx. 100 mumol/min per mg; its apparent molecular mass was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis to be 150 kDa. The enzyme required calcium for activity and was activated by deoxycholate in the presence of the substrate phosphatidylinositol. The melanoma phospholipase C has a distinctly different substrate preference than those identified from normal tissues; it prefers phosphatidylinositol to phosphatidylinositol bisphosphate. The tumor enzyme was approx. 4-5-fold more active using phosphatidylinositol than phosphatidylinositol bisphosphate as the substrate.  相似文献   

12.
The pyruvate dehydrogenase complex was purified from Ascaris muscle both with and without MgCl2 treatment at the first stage of purification. The specific activity of complex purified with MgCl2 treatment was about 2-fold as high as that purified without it. In addition to three component enzymes, two unknown polypeptides of 46 and 41 kDa were found in the complex purified by the two procedures. The quantity of unknown polypeptide of 41 kDa was increased in the complex purified with MgCl2 treatment as compared with that without it. Antibodies against the three component enzymes were prepared. All the antibodies precipitated the two unknown polypeptides in addition to the three component enzymes in immunoprecipitation experiments. Antibody against the alpha-subunit of pyruvate dehydrogenase reacted with the 41 kDa polypeptide as well as the alpha-subunit in the immunoblotting method. The unknown polypeptide of 46 kDa did not react with any antibody. These results suggest that the unknown 41 kDa polypeptide is a derivative of the alpha-subunit and that the unknown 46 kDa polypeptide is not a proteolytic-degradative product of component enzymes but is a component of the Ascaris pyruvate dehydrogenase complex. When the Ascaris complex was incubated with [2-14C]pyruvate in the absence of CoASH, only lipoate acetyltransferase was acetylated. In rat heart pyruvate dehydrogenase complex, lipoate acetyltransferase and another protein (referred to as component x or protein x) were acetylated. These results indicate that the unknown polypeptide of 46 kDa is a new component.  相似文献   

13.
The properties of phosphatidylinositol kinase and diphosphoinositide kinase from rat kidney cortex were studied. The enzymes were completely Mg2+-dependent. Cutscum detergent activated phosphatidylinositol kinase, but diphosphoinositide kinase was inhibited by all detergents tested. The pH optima were 7.7 for phosphatidylinositol kinase and 6.5 for diphosphoinositide kinase. On subcellular fractionation of kidney-cortex homogenates by differential centriflgation, the distribution of phosphatidylinositol kinase resembled that of the marker enzymes for brush-border, endoplasmic-reticulum and Golgi membranes. Diphosphoinositide kinase distribution resembled that of thiamin pyrophosphatase (assayed in the absence of ATP), diphosphoinositide phosphatase and triphosphoinositide phosphatase. Activities of both kinases were low in purified brush-border fragments. Diphosphoinositide kinase is probably localized in the Golgi complex.  相似文献   

14.
Agonist-stimulated production of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], is considered the primary output signal of activated phosphoinositide (PI) 3-kinase. The physiological targets of this novel phospholipid and the identity of enzymes involved in its metabolism have not yet been established. We report here the identification of two enzymes which hydrolyze the 5-position phosphate of PtdIns(3,4,5)P3, forming phosphatidylinositol (3,4)-bisphosphate. One of these enzymes is the 75 kDa inositol polyphosphate 5-phosphatase (75 kDa 5-phosphatase), which has previously been demonstrated to metabolize inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. We have identified a second PtdIns(3,4,5)P3 5-phosphatase in the cytosolic fraction of platelets, which forms a complex with the p85/p110 form of PI 3-kinase. This enzyme is immunologically and chromatographically distinct from the platelet 43 kDa and 75 kDa 5-phosphatases and is unique in that it removes the 5-position phosphate from PtdIns(3,4,5)P3, but does not metabolize PtdIns(4,5)P2, Ins(1,4,5)P3 or Ins(1,3,4,5)P4. These studies demonstrate the existence of multiple PtdIns(3,4,5)P3 5-phosphatases within the cell.  相似文献   

15.
Two phospholipase enzymes NN1 and NN2 were purified from the venom of Naja nigricolis nigricolis Reinhardt to apparent homogeneity. NN1 was purified by a two-step anion-exchange chromatography on DEAE-cellulose column while NN2 was purified by a combination of anion-exchange chromatography and gel filtration on Sephadex G-150. The enzyme NN1 moved homogenously on acrylamide gel as a monomer with a molecular weight of 65 kDa while NN2 was a dimer of 71 kDa. Both enzymes were clearly separated. Both enzymes hydrolyzed L-alpha-phosphatidyl choline with activities of 345.5 for NN1 and 727.8 micromol min(-1) x mg(-1) for NN2. The dimeric 71-kDa enzyme has a higher haemolytic and anticoagulant activity than the monomeric 65-kDa enzyme. It is apparent that the dimeric enzyme has a more pronounced activity than the monomer has, thus toxic activity may be related to the hydrolysis of phospholipids.  相似文献   

16.
Three xylanases (Xyl1, Xyl2 and Xyl3) were purified and characterized from the culture supernatant of Cellulomonas flavigena grown on sugar cane bagasse. The enzymes were purified by affinity chromatography and gel filtration and had masses of 63 kDa, 17 kDa and 35 kDa, respectively, as measured by SDS-PAGE. All enzymes were active against 4-O-methyl-D-glucuronoxylan and xylan but had no cellulase activity with CM-cellulose, an important characteristics in biobleaching processes. © Rapid Science Ltd. 1998  相似文献   

17.
The enzymes of glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and glutathione reductase (GR) were purified from rat kidney in one chromatographic step consisting of the use of the 2',5'-ADP Sepharose 4B by using different elution buffers. This purification procedure was accomplished with the preparation of the homogenate and affinity chromatography on 2',5'-ADP Sepharose 4B. The purity and subunit molecular weights of the enzymes were checked on SDS-PAGE and purified enzymes showed a single band on the gel. The native molecular weights of the enzymes were found with Sephadex G-150 gel filtration chromatography. Using this procedure, G6PG, having the specific activity of 32 EU/mg protein, was purified 531-fold with a yield of 88%; 6PGD, having the specific activity of 25 EU/mg protein, was purified 494-fold with a yield of 73%; and GR, having the specific activity of 33 EU/mg protein, was purified 477-fold with a yield of 76%. Their native molecular masses were estimated to be 144 kDa for G6PD, 110 kDa for 6PGD, and 121 kDa for GR and the subunit molecular weights were found to be 68, 56, and 61 kDa, respectively. A new modified method to purify G6PD, 6PGD, and GR, namely one chromatographic step using the 2',5'-ADP Sepharose 4B, is described for the first time in this study. This procedure has several advantages for purification of enzymes, such as, rapid purification, produces high yield, and uses less chemical materials.  相似文献   

18.
Plasma membranes were isolated from carrot (Daucus carota L.) cells grown in suspension culture and treated with phospholipase A2 from snake or bee venom for 10 min. As a result of this treatment, phosphatidylinositol kinase activity was recovered in the soluble fraction. There was no detectable diacylglycerol kinase or phosphatidylinositol monophosphate kinase activity released from the membranes after the phospholipase A2 treatment. Treating the plasma membranes with phospholipase C or D did not release PI kinase activity. The phospholipase A2-released PI kinase was activated over 2-fold by a heat stable, soluble 70 kDa protein. The partially purified 70 kDa activator increases the Vmax but does not affect the Km of the phospholipase A2-released PI kinase.  相似文献   

19.
Two kinds of phosphoinositide-specific phospholipase C (PLC) were purified from rat liver by acid precipitation and several steps of column chromatography. About 50% of the activity could be precipitated when the pH of the liver homogenate was lowered to pH 4.7. The redissolved precipitate yielded two peaks, PLC I and PLC II, in an Affi-gel Blue column, and each was further purified to homogeneity by three sequential h.p.l.c. steps, which were different for the two enzymes. The purified PLC I and PLC II had estimated Mr values of 140,000 and 71,000 respectively on SDS/polyacrylamide-gel electrophoresis. Both enzymes hydrolysed phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) in a Ca2+- and pH-dependent manner. PLC I was most active at 10 microM- and 0.1 mM-Ca2+ for hydrolysis of PI and PIP2 respectively, whereas PLC II showed the highest activity at 5 mM- and 10 microM-Ca2+ for that of PI and PIP2 respectively. The optimal pH of the two enzymes also differed with substrates or Ca2+ concentration, in the range pH 5.0-6.0. Hydrolysis of phosphoinositides by these enzymes was completely inhibited by Hg2+ and was affected by other bivalent cations. From data obtained by peptide mapping and partial amino acid sequencing, it was clarified that PLC I and PLC II had distinct structures. Moreover, partial amino acid sequences of three proteolytic fragments of PLC I completely coincided with those of PLC-148 [Stahl, Ferenz, Kelleher, Kriz & Knopf (1988) Nature (London) 332, 269-272].  相似文献   

20.
Phosphatidylinositol 4-kinase has been purified 10,148-fold to a specific activity of 2.7 mumol/mg/min from bovine uteri. This purification was accomplished by detergent extraction of an acetone powder, ammonium sulfate precipitation, and chromatography on MonoQ, S-Sepharose, MonoP, and hydroxylapatite columns. The purified enzyme has a molecular mass of 55 kDa and appears to be monomeric. Kinetic analyses of the enzymatic activity demonstrated apparent Km values of 18 microM and 22 micrograms/ml (approximately 26 microM) for ATP and phosphatidylinositol, respectively, optimal activity in the pH range of 6.0-7.0, and a sigmoidal dependence of enzymatic activity on [Mg2+]. Ca2+ inhibited the enzyme at nonphysiological concentrations with 50% inhibition observed at a free [Ca2+] of approximately 300 microM. The purified enzyme efficiently utilized both ATP and 2'-deoxy-ATP as phosphoryl donors and specifically phosphorylated phosphatidylinositol on the fourth position. No phosphatidylinositol-4-phosphate 5-kinase activity was observed in the purified enzyme preparations. To our knowledge, this is the first reported purification of a phosphatidylinositol-specific phosphatidylinositol 4-kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号