首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete amino acid sequence of the Aspergillus cytotoxin mitogillin   总被引:4,自引:0,他引:4  
The complete amino acid sequence of the cytotoxin mitogillin has been determined by sequencing the intact chain and peptide fragments produced by cleavage at methionyl, arginyl, lysyl, and tryptophanyl residues and at one aspartic acid-proline bond. The protein consists of 149 amino acid residues with alanine at the NH2 terminus and histidine at the COOH terminus. The calculated Mr of the native mitogillin was 16 867. The native molecule presents two disulfide bridges, one between cysteine residues at positions 5 and 147 and another one between cysteine residues at positions 75 and 131. The amino acid sequence of mitogillin shows 86% homology with another cytotoxic protein called alpha-sarcin.  相似文献   

2.
S K Nayak  D Rathore  J K Batra 《Biochemistry》1999,38(31):10052-10058
Restrictocin, produced by the fungus Aspergillus restrictus, belongs to the group of ribonucleolytic toxins called ribotoxins. It specifically cleaves a single phosphodiester bond in a conserved stem and loop structure in the 28S rRNA of large ribosomal subunit and potently inhibits eukaryotic protein synthesis. Restrictocin contains 149 amino acid residues and includes four cysteines at positions 5, 75, 131, and 147. These cysteine residues are involved in the formation of two disulfide bonds, one between Cys 5 and Cys 147 and another between Cys 75 and Cys 131. In the current study, all four cysteine residues were changed to alanine individually and in different combinations by site-directed mutagenesis so as to remove one or both the disulfides. The mutants were expressed and purified from Escherichia coli. Removal of any cysteine or any one of the disulfide bonds individually did not affect the ability of the toxin to specifically cleave the 28S rRNA or to inhibit protein synthesis in vitro. However, the toxin without both disulfide bonds completely lost both ribonucleolytic and protein synthesis inhibition activities. The active mutants, containing only one disulfide bond, exhibited relatively high susceptibility to trypsin digestion. Thus, none of the four cysteine residues is directly involved in restrictocin catalysis; however, the presence of any one of the two disulfide bonds is absolutely essential and sufficient to maintain the enzymatically active conformation of restrictocin. For maintenance of the unique stability displayed by the native toxin, both disulfide bonds are required.  相似文献   

3.
Fungal ribotoxins, such as mitogillin and the related Aspergillus toxins restrictocin and α-sarcin, are highly specific ribonucleases, which inactivate the ribosome enzymatically by cleaving the eukaryotic 28S RNA of the large ribosomal subunit at a single phosphodiester bond. The site of cleavage occurs between G4325 and A4326, which are present in a 14-base sequence (the α-sarcin loop) conserved among the large subunit rRNAs of all living species. The amino acid residues involved in the cytotoxic activities of mitogillin were investigated by introducing point mutations using hydroxylamine into a recombinant Met-mature mitogillin (mitogillin with a Met codon at the N-terminus and no leader sequence) gene constructed from an Aspergillus fumigatus cDNA clone. These constructs were cloned into a yeast expression vector under the control of the GAL1 promoter and transformed into Saccharomyces cerevisiae. Upon induction of mitogillin expression, surviving transformants revealed that substitutions of certain amino acid residues on mitogillin abolished its cytotoxicity. Non-toxic mutant genes were cloned into an Escherichia coli expression vector, the proteins overexpressed and purified to homogeneity and their activities examined by in vitro ribonucleolytic assays. These studies identified the His-49Tyr, Glu-95Lys, Arg-120Lys and His-136Tyr mutations to have a profound impact on the ribonucleolytic activities of mitogillin. We conclude that these residues are key components of the active site contributing to the catalytic activities of mitogillin.  相似文献   

4.
Mitogillin is a ribonuclease secreted by the fungus Aspergillus restrictus. The substrate for mitogillin is a short, universally conserved, sequence in ribosomal RNA. Cleavage of this sequence inactivates protein synthesis. Mitogillin was crystallized by a two-chamber vapor/liquid diffusion method using ethanol as the precipitant. This method has wider potential in the use of volatile organic solvents as precipitants. Crystals of mitogillin diffract X-rays to lattice d-spacings of at least 1.6 A, and belong to the monoclinic space group P2(1), with a = 50.4 A, b = 82.4 A, c = 38.2 A and beta = 99.8 degrees.  相似文献   

5.
The action of Clostridium difficile toxins A and B depends on processing and translocation of the catalytic glucosyltransferase domain into the cytosol of target cells where Rho GTPases are modified. Here we studied the processing of the toxins. Dithiothreitol and beta-mercaptoethanol induced auto-cleavage of purified native toxin A and toxin B into approximately 250/210- and approximately 63-kDa fragments. The 63-kDa fragment was identified by mass spectrometric analysis as the N-terminal glucosyltransferase domain. This cleavage was blocked by N-ethylmaleimide or iodoacetamide. Exchange of cysteine 698, histidine 653, or aspartate 587 of toxin B prevented cleavage of full-length recombinant toxin B and of an N-terminal fragment covering residues 1-955 and inhibited cytotoxicity of full-length toxin B. Dithiothreitol synergistically increased the effect of myo-inositol hexakisphosphate, which has been reported to facilitate auto-cleavage of toxin B (Reineke, J., Tenzer, S., Rupnik, M., Koschinski, A., Hasselmayer, O., Schrattenholz, A., Schild, H., and Von Eichel-Streiber, C. (2007) Nature 446, 415-419). N-Ethylmaleimide blocked auto-cleavage induced by the addition of myo-inositol hexakisphosphate, suggesting that cysteine residues are essential for the processing of clostridial glucosylating toxins. Our data indicate that clostridial glucosylating cytotoxins possess an inherent cysteine protease activity related to the cysteine protease of Vibrio cholerae RTX toxin, which is responsible for auto-cleavage of glucosylating toxins.  相似文献   

6.
Mitogillin and the related fungal ribotoxins are highly specific ribonucleases which inactivate the ribosome enzymatically by cleaving the 23-28 S RNA of the large ribosomal subunit at a single phosphodiester bond. The site of cleavage occurs between G4325 and A4326 (rat ribosome numbering) which are present in one of the most conserved sequences (the alpha-sarcin loop) among the large subunit ribosomal RNAs of all living species. Amino acid sequence comparison of ribotoxins and guanyl/purine ribonucleases have identified domains or residues likely involved in ribonucleolytic activity or cleavage specificity. Fifteen deletion mutants (each 4 to 8 amino acid deletions) in motifs of mitogillin showing little amino acid sequence homology with guanyl/purine ribonucleases were constructed by site-directed mutagenesis. Analyses of the purified mutant proteins identified those regions in fungal ribotoxins contributing to ribosome targeting and modulating the catalytic activity of the toxin; some of the identified motifs are homologous to sequences in ribosomal proteins and elongation factors. This mutational study of mitogillin together with the recently published x-ray structure of restrictocin (a close relative of mitogillin) supports the hypothesis that the specific cleavage properties of ribotoxins are the result of natural genetic engineering in which the ribosomal targeting elements of ribosome-associated proteins were inserted into nonessential regions of T1-like ribonucleases.  相似文献   

7.
Tyrosine hydroxylase (TH) is modified by nitration after exposure of mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydrophenylpyridine. The temporal association of tyrosine nitration with inactivation of TH activity in vitro suggests that this covalent post-translational modification is responsible for the in vivo loss of TH function (Ara, J., Przedborski, S., Naini, A. B., Jackson-Lewis, V., Trifiletti, R. R., Horwitz, J., and Ischiropoulos, H. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 7659-7663). Recent data showed that cysteine oxidation rather than tyrosine nitration is responsible for TH inactivation after peroxynitrite exposure in vitro (Kuhn, D. M., Aretha, C. W., and Geddes, T. J. (1999) J. Neurosci. 19, 10289-10294). However, re-examination of the reaction of peroxynitrite with purified TH failed to produce cysteine oxidation but resulted in a concentration-dependent increase in tyrosine nitration and inactivation. Cysteine oxidation is only observed after partial unfolding of the protein. Tyrosine residue 423 and to lesser extent tyrosine residues 428 and 432 are modified by nitration. Mutation of Tyr(423) to Phe resulted in decreased nitration as compared with wild type protein without loss of activity. Stopped-flow experiments reveal a second order rate constant of (3.8 +/- 0.9) x 10(3) m(-1) s(-1) at pH 7.4 and 25 degrees C for the reaction of peroxynitrite with TH. Collectively, the data indicate that peroxynitrite reacts with the metal center of the protein and results primarily in the nitration of tyrosine residue 423, which is responsible for the inactivation of TH.  相似文献   

8.
Bacterial luciferase has been modified with the thiolating reagent S-acetylmercaptosuccinic anhydride and covalently crosslinked to either Staphylococcus aureus protein A or anti-human immunoglobulin G (IgG) with the heterobifunctional reagent m-maleimidobenzoic acid N-hydroxysuccinimide ester. The conjugates retain enzymatic light-emitting activity and have the ability to bind IgG antibody. The ability of these conjugates to detect human IgG has been demonstrated by application to rubella immunity screening. Rubella antibodies are isolated from serum on the surface of rubella antigen-coated tubes and subsequently determined by light emitted from bound conjugate. In a preliminary study, the bioluminescent immunoassay has been compared to a commercial rubella antibody radioimmunoassay and found to be comparable in the ability to determine rubella immunity.  相似文献   

9.
Us3 is a serine/threonine protein kinase encoded by herpes simplex virus 1 (HSV-1). Here, we report the identification of a physiological Us3 phosphorylation site on serine at position 147 (Ser-147) which regulates its protein kinase activity in vitro. Moreover, mutation of this site influences Us3 function, including correct localization of the enzyme and induction of the usual morphological changes in HSV-1-infected cells. These conclusions are based on the following observations: (i) in in vitro kinase assays, a domain of Us3 containing Ser-147 was specifically phosphorylated by Us3 and protein kinase A, while a mutant domain in which Ser-147 was replaced with alanine was not; (ii) in vitro, alanine replacement of Ser-147 (S147A) in Us3 resulted in significant impairment of the kinase activity of the purified molecule expressed in a baculovirus system; (iii) phosphorylation of Ser-147 in Us3 tagged with the monomeric fluorescent protein (FP) VenusA206K (VenusA206K-Us3) from Vero cells infected with a recombinant HSV-1 encoding VenusA206K-Us3 was specifically detected using an antibody that recognizes phosphorylated serine or threonine residues with arginine at the -3 and -2 positions; and (iv) the S147A mutation influenced some but not all Us3 functions, including the ability of the protein to localize itself properly and to induce wild-type cytopathic effects in infected cells. Our results suggest that some of the regulatory activities of Us3 in infected cells are controlled by phosphorylation at Ser-147.  相似文献   

10.
Viral infection permeabilizes mammalian cells to protein toxins   总被引:23,自引:0,他引:23  
  相似文献   

11.
Clostridium difficile toxin B (269 kDa) is one of the causative agents of antibiotic-associated diarrhea and pseudomembranous colitis. Toxin B acts in the cytosol of eukaryotic target cells where it inactivates Rho GTPases by monoglucosylation. The catalytic domain of toxin B is located at the N terminus (amino acid residues 1-546). The C-terminal and the middle region of the toxin seem to be involved in receptor binding and translocation. Here we studied whether the full-length toxin or only a part of the holotoxin is translocated into the cytosol. Vero cells were treated with recombinant glutathione S-transferase-toxin B, and thereafter, toxin B fragments were isolated by affinity precipitation of the glutathione S-transferase-tagged protein from the cytosolic fraction of intoxicated cells. The toxin fragment (approximately 65 kDa) was recognized by an antibody against the N terminus of toxin B and was identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis as the catalytic domain of toxin B. The toxin fragment located in the cytosol possessed glucosyltransferase activity that could modify RhoA in vitro, but it was not able to intoxicate intact cells. After treatment of Vero cells with a radiolabeled fragment of toxin B (amino acid residues 547-2366), radioactivity was identified in the membrane fraction of Vero cells but not in the cytosolic fraction of Vero cells. Furthermore, analysis of cells by fluorescence microscopy revealed that the C terminus of toxin B was located in endosomes, whereas the N terminus was detected in the cytosol. Protease inhibitors, which were added to the cell medium, delayed intoxication of cells by toxin B and pH-dependent translocation of the toxin from the cell surface across the cell membrane. The data indicate that toxin B is proteolytically processed during its cellular uptake process.  相似文献   

12.
转录因子XBP1的融合表达、纯化及多克隆抗体的制备   总被引:4,自引:0,他引:4  
人X盒结合蛋白 1(XBP 1)为一种转录因子 ,与多种肿瘤的发生、发展有密切关系 .XBP 1有2种剪切形式 ,即XBP 1S和XBP 1U .将这 2种剪切形式中的一段相同编码序列 (编码 82~ 14 7位氨基酸 )重组于谷胱甘肽S转移酶 (GST)融合蛋白表达载体pGEX KG中 ,构建成重组质粒pGST XBP 1(82~ 14 7位氨基酸 ) .将该重组质粒转化E .coliDH5α后 ,表达GST XBP 1(82~ 14 7位氨基酸 )融合蛋白 ,经谷胱甘肽 Sepharose 4B亲和层析获得纯化的融合蛋白 .用此融合蛋白免疫家兔制备多克隆抗体 .利用制备的抗体分别用Western印迹和免疫细胞化学检测XBP 1的 2种剪切形式在哺乳动物细胞中的表达 .结果表明 ,该抗体对XBP 1的 2种剪切形式均具有反应原性 ,效价高 ,特异性好 ,可以用于进一步研究XBP 1的功能  相似文献   

13.
The major substrate for Ca2+/calmodulin-dependent protein kinase III in mammalian cells is a species of Mr 100,000 that has a primarily cytoplasmic localization. This substrate has now been identified as elongation factor-2 (EF-2), a protein that catalyzes the translocation of peptidyl-tRNA on the ribosome. The amino acid sequence of 18 residues from the N-terminal of the Mr 100,000 CaM-dependent protein kinase III substrate purified from rat pancreas was found to be identical to the N-terminal sequence of authentic rat EF-2 as previously deduced from nucleic acid sequencing of a cDNA (Kohno, K., Uchida, T., Ohkubo, H., Nakanishi, S., Nakanishi, T., Fukui, T., Ohtsuka, E., Ikehara, M., and Okada, Y. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 4978-4982). CaM-dependent protein kinase III phosphorylated EF-2 in vitro with a stoichiometry of approximately 1 mol/mol on a threonine residue. Amino acid sequencing of the purified tryptic phosphopeptide revealed that this threonine residue lies within the sequence: Ala-Gly-Glu-Thr-Arg-Phe-Thr-Asp-Thr-Arg (residues 51-60 of EF-2). The Mr 100,000 protein was stoichiometrically ADP-ribosylated in vitro by the addition of diphtheria toxin and NAD. The Mr 100,000 protein was photoaffinity labeled with a GTP analog and the protein had an endogenous GTPase activity that could be stimulated by the addition of salt-washed ribosomes. These properties are all characteristic of EF-2. Dephospho-EF-2 could support poly(U)-directed polyphenylalanine synthesis in a reconstituted elongation system when combined with EF-1. In the same system, phospho-EF-2 was virtually inactive in supporting polypeptide synthesis; this effect could be reversed by dephosphorylation of phospho-EF-2. These results suggest that intracellular Ca2+ inhibits protein synthesis in mammalian cells via CaM-dependent protein kinase III-catalyzed phosphorylation of EF-2.  相似文献   

14.
The carboxyl-terminal sequences of the two polypeptide chains of the Saccharomyces cerevisiae K1 killer toxin were determined by protein sequencing and amino acid analysis of peptide fragments generated from the mature, secreted toxin. The COOH-terminal amino acid of the beta chain is histidine 316, the final residue encoded by the precursor gene. The COOH terminus of the alpha chain is at alanine 147 of the preprotoxin. Amino acid composition data for the purified toxin are consistent with that predicted from the gene sequence of the preprotoxin where the alpha and beta subunits consist of amino acid residues 45-147 and 234-316, respectively. The molecular weight of the mature alpha beta dimer is about 20,658. The COOH-terminal sequence determination completes the location of the toxin subunits in the precursor, and its configuration may be represented as prepropeptide-Pro-Arg-alpha-Arg-Arg-gamma-Lys-Arg-beta, where gamma represents the interstitial glycosylated peptide. The COOH terminal side of the paired basic residues (Arg-148 Arg-149 and Lys-232 Arg-233 of preprotoxin) are endoproteolytic processing sites for the product of the KEX2 gene (Julius, D., Brake, A., Blair, L., Kunisawa, R., and Thorner, J. (1984) Cell 37, 1075-1089), and thus maturation of the alpha subunit of killer toxin apparently requires a carboxypeptidase B-like activity. A possible candidate for this activity is the product of the KEX1 gene (Dmochowska, A., Dignard, D., Henning, D., Thomas, D.Y., and Bussey, H. (1987) Cell, in press).  相似文献   

15.
Proteins can be post-translationally modified by ADP-ribose. Previously, two classes of ADP-ribosyl protein linkages have been detected in vivo which have chemical properties indistinguishable from ADP-ribosyl arginine and ADP-ribosyl glutamate or aspartate. Reported here is the detection of a third class of endogenous ADP-ribosyl protein linkage. This class is chemically indistinguishable from ADP-ribose linked to cysteine residues by a thioglycosidic bond. The distribution of ADP-ribosyl cysteine residues was studied in subcellular fractions of rat liver. Proteins modified on cysteine were detected only in the plasma membrane fraction. Pertussis toxin is known to disrupt signal transduction of ADP-ribosylation of cysteine residues of plasma membrane GTP binding proteins. The results described here raise the interesting possibility that the endogenous modification of plasma membrane protein cysteine residues may be involved in signal transduction.  相似文献   

16.
Vibrio cholerae RTX is a large multifunctional bacterial toxin that causes actin crosslinking. Due to its size, it was predicted to undergo proteolytic cleavage during translocation into host cells to deliver activity domains to the cytosol. In this study, we identified a domain within the RTX toxin that is conserved in large clostridial glucosylating toxins TcdB, TcdA, TcnA, and TcsL; putative toxins from V. vulnificus, Yersinia sp., Photorhabdus sp., and Xenorhabdus sp.; and a filamentous/hemagglutinin-like protein FhaL from Bordetella sp. In vivo transfection studies and in vitro characterization of purified recombinant protein revealed that this domain from the V. cholerae RTX toxin is an autoprocessing cysteine protease whose activity is stimulated by the intracellular environment. A cysteine point mutation within the RTX holotoxin attenuated actin crosslinking activity suggesting that processing of the toxin is an important step in toxin translocation. Overall, we have uncovered a new mechanism by which large bacterial toxins and proteins deliver catalytic activities to the eukaryotic cell cytosol by autoprocessing after translocation.  相似文献   

17.
The steroid-binding domain of the human glucocorticoid receptor was expressed in Escherichia coli either as a fusion protein with protein A or under control of the T7 RNA polymerase promoter. The recombinant proteins were found to bind steroids with the normal specificity for a glucocorticoid receptor but with reduced affinity (Kd for triamcinolone acetonide approximately 70 nM). Glycerol gradient analysis of the E. coli lystate containing the recombinant protein indicated no interaction between the glucocorticoid receptor fragment and heat shock proteins. However, synthesis of the corresponding fragments of glucocorticoid receptor in vitro using rabbit reticulocyte lystate resulted in the formation of proteins that bound triamcinolone acetonide with high affinity (Kd 2nM). Glycerol gradient analysis of these proteins, with and without molybdate, indicated that the in vitro synthesised receptor fragments formed complexes with hsp90 as previously shown for the full-length rat glucocorticoid receptor. Radiosequence analysis of the recombinant steroid-binding domain expressed in E. coli and affinity labelled with dexamethasone mesylate identified binding of the steroid to Cys-638 predominantly. However, all cysteine residues within the steroid-binding domain were affinity labelled to a certain degree indicating that the recombinant protein has a structure similar to the native receptor but more open and accessible.  相似文献   

18.
We have investigated the structure of the mitochondrial F1-ATPase inhibitor protein from ox heart by using a differential trace-labelling method. This method has also been used to determine sites on the inhibitor protein involved in binding to both the isolated mitochondrial ATPase (F1) and to a specific anti-inhibitor antibody. Native, free inhibitor was trace-labelled on its lysine and serine residues with [14C]acetic anhydride, and inhibitor protein unfolded in guanidinium chloride or specifically bound to another protein, with [3H]acetic anhydride. Exposure/concealment of residues was deduced from the 14C/3H ratios of the peptides in a proteolytic digest of the inhibitor, after separation by h.p.l.c. None of the lysine or serine residues in the native inhibitor are as exposed as in the unfolded form. There is a gradient of reactivity, with residues 54-58 being most concealed and exposure increasing towards either end of the protein. A slight decrease in reactivity is noted in residues 1-3, suggesting that the N-terminus may be in a fairly restricted environment. These findings are discussed in the light of the predicted structure of the inhibitor protein. All but one of the labelled residues increases in reactivity when inhibitor protein binds to F1. The exception, Lys-24, is only slightly concealed. Hence, F1 binding appears not to involve the lysine or serine residues directly. This finding is consistent with the view that the F1-inhibitor interaction is hydrophobic in nature. Complementary information was provided using an anti-inhibitor antibody that binds to a site on the inhibitor different from that at which F1 binds. Binding of this antibody conceals residues 54, 58, and 65 considerably. This confirms that F1 does not interact with these hydrophilic residues on the inhibitor protein.  相似文献   

19.
A reinvestigation of the thioacetylation method of protein sequencing (G. A. Mross and R. F. Doolittle (1971) Fed. Proc. 30, 1241. G. A. Mross and R. F. Doolittle (1977) in Advanced Methods in Protein Sequence Determination (Needleman, S. B., Ed.), pp. 1-20, Springer, Berlin) has revealed that 2-methyl-5(4H)-thiazolones, prepared by trifluoroacetic acid-catalyzed cleavage of the N-terminal amino acid from a N-thioacetylated polypeptide, were found to react instantaneously with one equivalent of carboxylic acid chloride, sulfonic acid chloride, or chloroformate to yield stable derivatives suitable for identification by high-performance liquid chromatography. NMR studies confirmed the products of the derivatization to be the corresponding 5-O-substituted-2-methylthiazoles. 2-Methyl-5(4H)-thiazolones were derivatized by reaction with 3,5-dinitrobenzoyl chloride, 4-nitrophenylchloroformate, 4-nitrobenzenesulfonyl chloride, or 4-N-dimethylaminoazobenzene-4'-sulfonyl chloride (dabsyl chloride) in dichloromethane in the presence of triethylamine. Analytical standards were prepared by 1,3-dicyclohexylcarbodiimide-catalyzed cyclization of N-thioacetyl amino acids to 2-methyl-5(4H)-thiazolones followed by derivatization with 4-nitrobenzenesulfonyl chloride. Stable crystalline 2-methyl-5-O-(4'-nitrobenzenesulfonyl)thiazole standards were obtained for 15 amino acids. Cysteine, serine, and threonine proved recalcitrant toward derivatization with 4-nitrobenzenesulfonyl chloride due to the dehydration of their respective thiazolones. Alkylated cysteine derivatives including S-beta-(4-pyridylethyl)cysteine and S-ethylcysteine were derivatized without difficulty. Cyclization of N-thioacetylproline afforded a mesoionic compound which resisted derivatization, but could be detected directly. A preliminary high-performance liquid chromatographic separation was developed and the feasibility of this approach to protein sequencing demonstrated by solid-phase degradation of the oxidized insulin B chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In this paper we describe the expression and purification from bacteria of the recombinant basic leucine zipper (bZip) domain of the cAMP response element binding protein, CREB327. The bZip peptide, CREB259-327, purified to near homogeneity, maintains the sequence-specific CRE site recognition demonstrated by in vitro competition assays. Alkylation of the three cysteine residues of CREB259-327 was employed to prevent aggregation of the peptide due to cysteine oxidation. The Kd of the purified native and modified CREB259-327 for the CRE site was determined by gel retardation assays to be on the order of 10(-7) M. We employed CD spectroscopy to study the folding properties of the native and modified CREB259-327. The CD analyses of the native/modified CREB259-327 peptide demonstrated a 20% increase in the alpha-helical content upon binding to the cAMP response-element. Only a 5% increase in the alpha-helical content of CREB259-327 is observed upon binding to the AP-1 site. This observation contrasts with CREB from the GCN4 protein (Weiss, M.A., et al., 1990, Nature 347, 575-578). In addition, the two-dimensional (2D) 1H-NMR studies of the bZip CREB peptide further support the distinct features of the CREB protein, in comparison to GCN4. Analysis by CD and 2D NMR of the dimerization domain of CREB suggests that the distinct DNA binding characteristics of CREB reside in the basic portion of the bZip module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号