首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of a thromboxane synthetase inhibitor (OKY-046) on bronchoconstriction induced by aerosol leukotriene C4 and histamine was studied in anesthetized, artificially ventilated guinea pigs in order to examine whether secondary release of thromboxane A2 is produced by aerosol leukotriene C4 or not. 0.01-1.0 micrograms/ml of leukotriene C4 and 12.5-400 micrograms/ml of histamine inhaled from ultrasonic nebulizer developed for small animals caused dose-dependent increase of pressure at airway opening (Pao) which is considered to be an index representing bronchial response. Pretreatment of the animals with intravenous OKY-046 (100mg/kg) significantly reduced the airway responses produced by inhalation of 0.1, 0.33 and 1.0 micrograms/ml of leukotriene C4, while the pretreatment did not affect the histamine dose-response curve. Based on these findings and previous reports (6,7), it is suggested that aerosol leukotriene C4 activates arachidonate cyclooxygenase pathway including thromboxane A2 synthesis and the released cyclooxygenase products have bronchodilating effect as a whole.  相似文献   

2.
Leukotriene D4 (LTD4) when administered intravenously or by aerosol to guinea pigs produced changes in pulmonary mechanics including a decrease in dynamic compliance and an increase in pulmonary resistance. The effects of intravenous LTD4 (0.5 μg kg−1) were short lived and abolished by pretreatment of the animal with either cyclooxygenase inhibitors, a thromboxane synthetase inhibitor (OKY 1555) or an SRS-A antagonist (FPL 55712). These findings suggest that bronchoconstriction produced by the intravenous infusion of LTD4 at 0.5 μg kg−1 is due to the release of thromboxane A2. However, in animals treated with indomethacin, LTD4 at higher doses (>0.8 μg kg−1) still elicited a bronchoconstriction which could be blocked by FPL 557112. Nebulization of 0.1 – 1.0 μg of LTD4 into the lung produced prolonged changes in pulmonary mechanics which were inhibited by FPL 55712 and were potentiated indomethacin. LTD4, therefore, when administered by aerosol produced effects on the lung which were not mediated by cyclooxygenase products. Responses to nebulized rather than intravenous LTD4 in the guinea pig may more closely resemble those seen in human tissues.  相似文献   

3.
Leukotriene B4 induces airway hyperresponsiveness in dogs   总被引:10,自引:0,他引:10  
We studied the effect of leukotriene B4 aerosols on airway responsiveness to inhaled acetylcholine aerosols and on the cellular components and cyclooxygenase metabolites in bronchoalveolar lavage fluid in dogs. Inhalation of leukotriene B4 aerosols had no effect on resting total pulmonary resistance but increased airway responsiveness, an effect that was maximum in 3 h and that returned to control levels within 1 wk. Three hours after leukotriene B4, the number of neutrophils and the concentration of thromboxane B2 recovered in lavage fluid increased markedly. Pretreatment with the thromboxane synthase inhibitor OKY-046 prevented the increases in airway responsiveness and in thromboxane B2 but did not alter neutrophil chemotaxis. Thus we speculate that leukotriene B4 causes neutrophil chemotaxis and release of thromboxane B2, which increases airway responsiveness.  相似文献   

4.
To determine whether thromboxane A2 may be involved in ozone (O3)-induced airway hyperresponsiveness, we studied the effect of a thromboxane synthase inhibitor (OKY-046, 100 micrograms X kg-1 X min-1 iv) in five dogs exposed to O3. Airway responsiveness was assessed by determining the provocative concentration of acetylcholine aerosol that increased total pulmonary resistance by 5 cmH2O X l-1 X s. O3 (3 ppm) increased airway responsiveness as demonstrated by a decrease in acetylcholine provocative concentration from 2.42 (geometric SEM = 1.64) to 0.14 mg/ml (geometric SEM = 1.30). OKY-046 significantly inhibited this effect without altering pre-O3 responsiveness or the O3-induced increase in neutrophils and airway epithelial cells in bronchoalveolar lavage fluid. To further examine the role of thromboxane A2, we studied the effect of a thromboxane A2 mimetic, U-46619, on airway responsiveness in five additional dogs. U-46619 in subthreshold doses (i.e., insufficient to increase base-line pulmonary resistance) caused a fourfold increase in airway responsiveness to acetylcholine. Subthreshold doses of histamine had no effect. These results suggest that thromboxane A2 may be an important mediator of O3-induced airway hyperresponsiveness.  相似文献   

5.
Effects of a thromboxane A2 receptor antagonist (S-1452) on bronchoconstriction induced by inhaled leukotriene C4 and a leukotriene receptor antagonist (AS-35) on bronchoconstriction caused by inhalation of a thromboxane A2 mimetic (STA2) were studied in anesthetized, artificially ventilated guinea pigs in order to examine the interaction of thromboxane A2 and leukotrienes in airways. 0.01-1.0 mu g/ml of leukotriene C4 and 0.1-1.0 mu g/ml of STA 2 inhaled from ultrasonic nebulizer developed for small animals caused dose-dependent increase of pressure at the airway opening (Pao) which is considered to be an index representing bronchial response. Pretreatment of the animals with inhaled S-1452 (0.01, 0.033 mg/ml) significantly reduced the airway responses produced by 0.01,0.033,0.1,0.33 and 1.0 mu g/ml of leukotriene C4 in a dose dependent manner. While pretreatment with inhaled AS-35 (1mg) did not affect the STA2 dose-response curve. These findings suggest that leukotriene C4 activates thromboxane A2 generation while thromboxane A2 does not influence 5-lipoxygenase pathway in the airways.  相似文献   

6.
We studied the effects of OKY-046 (1, 10, and 30 mg/kg iv), a selective thromboxane synthase inhibitor, and of ICI 192605 (0.5 mg/kg), a selective thromboxane A2 receptor antagonist, on airflow obstruction and airway microvascular leakage induced by inhaled platelet-activating factor (PAF). Extravasated Evans blue dye content was measured as a reflection of airway microvascular leakage. In control animals, PAF caused a significantly higher increase in extravasation of dye and significantly less increase in lung resistance (RL) than histamine. OKY-046 significantly inhibited both changes in RL and airway microvascular leakage after PAF in a dose-dependent manner, whereas it inhibited histamine-induced airway microvascular leakage only at main bronchi, without any significant effect on RL. ICI 192605 significantly inhibited both RL and airway microvascular leakage induced by PAF, but not after histamine. After both PAF and histamine, changes in RL correlated significantly with the degree of microvascular leakage. Airway microvascular leakage and airflow obstruction after PAF, but not after histamine, may be dependent on thromboxane A2 generation.  相似文献   

7.
We investigated the effects of OKY-046, a potent and selective thromboxane A2 (TxA2) synthetase inhibitor, on anaphylactic bronchoconstriction and release of chemical mediators into airway lumen in sensitized guinea pigs in vivo. OKY-046 dose-dependently inhibited antigen-induced anaphylactic bronchoconstriction with or without mepyramine, a histamine H1 antagonist. In the presence of mepyramine, OKY-046 (300 mg/kg, p.o.) elicited significant reductions in histamine (1 min) and TxB2 increases (1-15 min) in bronchoalveolar lavage (BAL) fluid but significantly increased the plasma level of 6-keto-PGF1 alpha, a stable PGI2 metabolite, after antigen challenge. On the contrary, indomethacin only significantly reduced increases in TxB2 levels. These results suggest that the antiasthmatic effect of OKY-046 is probably due to inhibition of TxA2 synthesis and suppression of histamine release via a PGI2 shunting mechanism.  相似文献   

8.
BACKGROUND: Although prostaglandin D2 (PGD2), a mast cell-derived inflammatory mediator, may trigger allergic airway inflammation, its potency and the mechanism by which it induces airway microvascular leakage, a component of airway inflammation, is not clear. OBJECTIVE: We wanted to evaluate the relative potency of PGD2 to cause microvascular leakage as compared to airflow obstruction, because both responses were shown to occur simultaneously in allergic airway diseases such as asthma. The role of thromboxane A2 receptors (TP receptors) in inducing these airway responses was also examined. METHODS: Anesthetized and mechanically ventilated guinea pigs were given i.v. Evans blue dye (EB dye) and, 1 min later, PGD2 (30, 100, 300 or 1,000 nmol/kg). For comparison, the effect of 150 nmol/kg histamine or 2 nmol/kg leukotriene D4 (LTD4) was also examined. Lung resistance (R(L)) was measured for 6 min (or 25 min for selected animals) and the lungs were removed to calculate the amount of extravasated EB dye into the airways as a marker of leakage. In some of the animals, specific TP receptor antagonists, S-1452 (10 microg/kg) or ONO-3708 (10 mg/kg), or a thromboxane A2 synthase inhibitor, OKY-046 (30 mg/kg), was pretreated before giving PGD2. RESULTS: Injection of PGD2 produced an immediate and dose-dependent increase in RL (peaking within 1 min), which was significant at all doses studied. At 1,000 nmol/kg, PGD2 induced a later increase in R(L), starting at 3 min and reaching a second peak at 8 min. By contrast, only PGD2 at doses of 300 and 1,000 nmol/kg produced a significant increase in EB dye extravasation. The relative potency of 1,000 nmol/kg PGD2 to induce leakage as compared to airflow obstruction was comparable to histamine at most of airway levels, but less than LTD4. Both responses caused by PGD2 were completely abolished by S-1452 and ONO-3708, but not by OKY-046. CONCLUSION: PGD2 may induce airway microvascular leakage by directly stimulating TP receptors without generating TXA2 in guinea pigs. Microvascular leakage may play a role in the development of allergic airway inflammation caused by PGD2.  相似文献   

9.
L C Edmonds  A M Lefer 《Life sciences》1984,35(17):1763-1768
A new thromboxane synthetase inhibitor, OKY-046, at doses of 0.5 and 1.0 mg/kg prevented mortality induced by sodium arachidonate in 100% of the rabbits studied. Sodium arachidonate at a dose of 1.25 mg/kg uniformly decreased mean arterial blood pressure to values approximately 0 mm Hg, stopped respiration and produced sudden death within 3-5 minutes in all rabbits studied. OKY-046 prevented all these sequelae of the sodium arachidonate. Untreated rabbits challenged with sodium arachidonate develop large increases in circulating thromboxane B2 (TxB2) and 6-keto PGF1 alpha of about 12- to 18-fold. In contrast, OKY-046 prevented the increase in TxB2 concentrations and the pulmonary thrombosis, but did not block the rise in 6-keto PGF1 alpha following arachidonate injection. These results suggest that the protective mechanism of OKY-046 in arachidonate induced sudden death is via selective inhibition of thromboxane synthesis.  相似文献   

10.
To study the role of thromboxane A2 (TxA2) in cutaneous allergic reactions, the effect of (E)-3-[p-(1H-Imidazol-1-ylmethyl)phenyl]-2-propenoic acid hydrochloride (OKY-046), a selective TxA2 synthetase inhibitor, on cutaneous reactions in rats and mice was studied. Simultaneously, the effect of 9,11-methanoepoxy-prostaglandin H2 (U-46619), a stable analogue of TxA2, on capillary permeability in mouse and rat skin was investigated. Passive cutaneous anaphylaxis (PCA) in mouse ear was clearly inhibited by OKY-046 but not by indomethacin. The inhibitory action of OKY-046 was not influenced by pretreatment with indomethacin. Moreover, prostaglandin I2, which accumulated as a result of the inhibition of TxA2 synthetase, did not affect the PCA. But, the dye leakages caused by histamine, serotonin and leukotriene C4 in mouse ear were clearly inhibited by OKY-046. In addition, OKY-046 inhibited rat reversed cutaneous anaphylaxis, but its inhibitory action was not affected by pretreatment with indomethacin. Contrary to the above results, rat footpad passive Arthus reaction and mouse footpad tuberculin delayed hypersensitivity reaction were not affected by OKY-046. Additionally, U-46619 did not cause an increase of capillary permeability in either mouse and rat skin. These results suggest a slight role of TxA2 in cutaneous allergic reactions in mice and rats and the efficacy of OKY-046 on Type I and II reactions regardless of the inhibition of TxA2 synthetase activity.  相似文献   

11.
Pulmonary rapidly-adapting-receptors (RARs) are sensory nerve endings whose afferent fibers can be recorded in the vagus nerve. RARs may play a role in reflex bronchoconstriction as seen in anaphylaxis. They can be stimulated by chemical mediators of anaphylaxis, such as prostaglandin F2α (PGF2α). PGF2α aerosol was administered to saline and bovine serum albumin (BSA)-treated guinea pigs while recording the activity of RARs. PGF2α (250 μg/ml) given for 7–13 minutes increased both tracheal pressure and nerve activity over that produced by saline exposure in untreated guinea pigs. PGF2α administered for three minutes (5–100 μg/ml) increased RAR nerve activity in a dose-related manner in the first five minutes of the experiment only in the BSA treated guinea pigs. Since changes in tracheal pressure did not show a significant dose-response relationship, the RARs responding to PGF2α seemed to be stimulated by a direct mechanism. No correlation was shown between tracheal pressure and RAR nerve activity during PGF2α treatment. Whereas, a significant correlation was found between tracheal pressure and RAR nerve activity during histamine aerosol treatment (r=0.985). Histamine aerosol (1 to 1000 μg/ml, 3 min.) increased intratracheal pressure for 3 out of 4 doses. RAR nerve activity increased significantly only at the highest dose. Therefore, a possible direct effect of PGF2α upon RARs exists while the effect of histamine seems dependent upon changes in airway pressure in the guinea pig.  相似文献   

12.
The pharmacological activity of leukotrienes (LT) A4, C4, D4, E4, and histamine was investigated on guinea pig upper and lower bronchi. The contractions of the upper bronchi to histamine, LTA4, C4 and D4 were enhanced by cyclooxygenase inhibitors aspirin (1.67 X 10(-5) and 1.67 X 10(-6) M) and indomethacin (2.8 X 10(-6) and 2.8 X 10(-5) M) whereas the responses to LTE4 were not affected. The myotropic activity of the lower bronchi to all agonists were either very slightly or not at all modified by the presence of cyclooxygenase inhibitors. The thromboxane synthetase inhibitor OKY-046 (1.77 X 10(-5) and 1.77 X 10(-6) M) did not change the responses of higher bronchi to the agonists which suggested that the response of the upper bronchi may be mediated by prostaglandins but not by thromboxanes. The responses of the lower bronchi to leukotrienes A4, C4, D4 and E4 were inhibited by compound OKY-046. Blockade of thromboxane receptors together with inhibition of lipoxygenases by compound L-655,240 (2.53 X 10(-8) to 2.53 X 10(-5) M) had a slight effect on the stimulation of upper and lower bronchi by leukotrienes and histamine. The compound FPL-55712 (1.92 X 10(-6) and 1.92 X 10(-5) M) strongly reduced the contractions of the upper and lower bronchi to leukotrienes but did not affect the responses to histamine. These results suggest that the contractile effects of leukotrienes on upper bronchi is modulated by bronchorelaxant prostaglandins whereas the responses of the lower bronchi are mediated by thromboxanes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The role of thromboxane (Tx) in hyperacute rejection of pig lung by human blood was studied in an ex vivo model, wherein lungs from juvenile piglets were perfused with fresh heparinized human blood. In this model, hyperacute lung rejection was characterized by an abrupt rise in pulmonary vascular resistance (PVR; >1 cmH2O x ml(-1) x min) and prolific Tx elaboration (>15 ng/ml) within 5 min and loss of function within 10 min. Although papaverine significantly blunted the rise in PVR (<0.2 cmH2O x ml(-1) x min), Tx production was not inhibited (>20 ng/ml), and florid tracheal edema was usually evident within 20 min. In contrast, both inhibition of Tx synthesis (Tx < 3 ng/ml) with OKY-046 and blockade of the Tx receptor with SQ-30741 (Tx > 20 ng/ml) were not only associated with significantly lower peak PVRs (<0.2 cmH2O x ml(-1) x min) but also with attenuated increase in lung wet-to-dry ratio and airway edema. In concert, elaboration of histamine and tumor necrosis factor was blunted, and median survival increased >10-fold to 2 h (SQ-30741) and >4 h (OKY-046). Depletion of the pig lung macrophages with dichloromethyl bisphosphonate in liposomes, but not Pall filtration of the human blood or liposomes alone, significantly inhibited Tx elaboration (<0.2 vs. >8 ng/ml for Pall filtration or liposomes) and blunted PVR elevation (<0.3 cmH(2)O x ml(-1) x min) during initial perfusion. C3a and histamine elaboration were inhibited, and median survival was significantly prolonged (>4 h). These findings implicate Tx in the inflammation associated with hyperacute lung rejection and demonstrate that pulmonary intravascular macrophages are critical to its elaboration.  相似文献   

14.
The actions of leukotriene (LT) C4 and D4 on the systemic arterial pressure and the insufflation pressure in guinea pigs and rabbits were examined. In guinea pigs, 0.3 – 3 nmole/kg of LTC4 and 0.1 – 1.0 nmole/kg of LTD4 administrated from left jugular vein caused dose-dependent increase of the airway resistance measured by the Konzett-Rössler method and a triphasic blood pressure response; an initial hypotension, a secondary hypertension and a third long-lasting hypotension. All of the hypertensive phase and 100 – 150% of the increase of the airway resistance by LTC4 and LTD4 were inhibited by a selective thromboxane synthetase inhibitor, OKY-1581 (10 mg/kg, i.v.) and only the hypertension was observed. Indomethacin (10 mg/kg, i.p.) also inhibited not only the airway resistance increase, but also the prolonged hypotension by LTC4 and shortened the duration of the hypotension by LTD4. It is suggested that thromboxane might be involved in bronchoconstriction and hypertensive effects by LTC4 and LTD4 and that hypotensive prostaglandin might be involved in the hypotensive phase after LTC4 and LTD4. In rabbits, the increse of the airway resistance by LTC4 and LTD4 (upto 100 nmole/kg, i.v.) was negligible and only the hypotension was observed.  相似文献   

15.
Leukotriene D4 (5 μg/ml) aerosol constricts airways of dogs with nonspecific airway hyperreactivity but not of mongrel dogs which lack nonspecific airway hyperreactivity. RL increased 200 + 25% and Cdyn decreased to 77 ± 5% of the pre-challenge value. LTD4 (10 μg/ml) produced no further increase. Atropine (0.2 mg/kg) prevented the increase in RL and decrease in Cdyn, suggesting that part of the effect of LTD4 on airways is neurally mediated.  相似文献   

16.
PAF-acether may be involved in anaphylaxis and asthma. We tested the new PAF-acether antagonist BN 52021 against the effects of antigen in passively sensitized guinea-pigs. Bronchoconstriction by ovalbumin administered i.v. (1 mg/kg) or by aerosol (1 or 10 mg/ml for a period of 1 min) was significantly reduced by BN 52021 (1–10 mg/kg), which did not inhibit drop of leukocyte counts after the i.v. challenge. In both cases, when the guinea-pigs were pretreated by propranolol, high amounts of BN 52021 became ineffective against shock. The reduction of the anaphylactic bronchoconstriction, induced by the combination of mepyramine, aspirin and FPL 55712 was not improved by BN 52021. Tested on isolated lung strips from passively sensitized guinea-pig, BN 52021, at a concentration which inhibits PAF-induced contraction (0.1 mM), did not inhibit the anaphylactic contraction triggered by the administration of ovalbumin (10 μg/ml) nor the accompanying release of histamine and thromboxane. In contrast, BN 52021 (30 μM) significantly reduced the anaphylactic release of histamine and of thromboxane from perfused lungs of passively sensitized guinea-pigs. The results with the isolated lung strips and the propranolol-treated guinea-pigs in vivo suggest a dissociation between the anti-anaphylactic and the anti-PAF-acether properties of BN 52021.  相似文献   

17.
Combined treatment with propranolol and reserpine enhanced acetylcholine-induced doseresponse curves for bronchoconstriction in guinea pigs in vivo. This airway hyperreactivity model was investigated pharmacologically. (1) Increased capillary permeability and increases in leukocytes in bronchoalveolar lavage fluid (BALF) were not observed after this combined treatment. (2) The increased airway sensitivity to acetylcholine produced by propranolol and reserpine was inhibited by ketotifen and theophylline, reported in clinical studies to inhibit airway hyperreactivity. (3) Two leukotriene (LT) receptor antagonists, MCI-826 and FPL-55712, clearly inhibited this increased airway reactivity. (4) A thromboxane A2 (TXA2) receptor antagonist, ONO-3708, and TXA2 synthetase inhibitor, OKY-046, also inhibited this increased airway reactivity.These results suggest that the airway hyperreactivity model produced by propranolol and reserpine in guinea pigs is a valuable pharmacological tool for investigating a remedy and LT and TXA2 may be involved in the onset of this airway hyperreactivity.  相似文献   

18.
Pulmonary responses to intravenous leukotrienes C4, D4 and E4 administered as a bolus injection and by continuous infusion were studied in anesthetized guinea pigs. LTD4, LTC4 and LTE4 (respective ED50 of 0.21 ± .1, 0.64 ± .2 and 2.0 ± .1 μg kg−1) produced dose-dependent increases in insufflation pressure when given as a bolus injection to anesthetized guinea pigs (Konzett-Rössler). Bronchoconstriction was antagonized by FPL-55712 (50–200 μg kg−1), and indomethacin (50–200 μg kg−1) but was not significantly altered by mepyramine (1.0 mg kg−1), methysergide (0.1 mg kg−1), intal (10 mg kg−1) mepacrine (5 mg kg−1) or dexamethasone (10 mg kg−1). The beta adrenoceptor blocker, timolol (5 μg kg−1) produced a significantly greater potentiation of the responses to the leukotrienes than to arachidonic acid, histamine and acetylcholine. Responses to bolus injection of LTE4 but not LTD4 or LTC4 were partially antagonized by atropine (100 μg kg−1) and bilateral vagotomy. In experiments of a different design, continuous infusion of LTD4 and LTE4 (2.8–3.2 μg kg−1 min−1) into indomethacin-treated animals produced slowly developing increases in pulmonary resistance and decreases in compliance. The increase in resistance produced by LTE4 and LTD4 was partly reversed by intravenous FPL-55712 (1.0 mg kg−1) and atropine (100 μg kg−1) but was almost completely reversed by FPL-55712 (3 – 10 mg kg−1). These findings indicate that leukotrienes can produce bronchoconstriction in guinea pigs through cyclooxygenase-dependent and cyclooxygenase independent mechanisms both of which are blocked by FPL-55712. Cholinergic mechanisms are involved in the mediation of part of the response to bolus injection of LTE4 as well as a small part of the initial response to continuous infusion of LTD4 and LTE4. Intrinsic beta adrenoceptor activation serves to down modulate responses to the leukotrienes to a greater extent than responses to arachidonic acid, histamine and acetylcholine.  相似文献   

19.
To determine if the induction of immune-mediated glomerular injury influences the formation of glomerular cyclooxygenase products, we measured thromboxane B2 (TXB2), 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) production by isolated glomeruli of rabbits induced with acute serum sickness nephritis by the administration of bovine serum ablumin (BSA). Animals were randomly assigned to one of three experimental groups: animals injected with BSA (BSA group; n = 11); animals injected with normal saline (control group; n = 11); and animals injected with BSA which were treated with the thromboxane synthetase inhibitor, OKY-046 (BSA + OKY-046; n = 6). Animals in the BSA and BSA + OKY groups developed severe proteinuria and glomerular histologic lesions of nephritis. No differences in proteinuria, serum creatinine and severity of histologic nephritis were observed between the two groups. Examination of glomerular eicosanoid production at the end of the experiment showed a marked reduction of glomerular PGE2 and 6-keto-PGF1 alpha production with a smaller reduction of glomerular TXB2 production in the BSA group. In the BSA + OKY-046 group, the production of TXB2 was significantly less than that in the BSA group; despite this, no effect on proteinuria could be discerned.  相似文献   

20.
The actions of specific humoral mediators in the immediate response of the canine peripheral airways to antigen challenge are not well understood. Using a method which allows localized exposure of the peripheral lung to antigen, we investigated the role of locally released thromboxane A2 (TxA2) in the immediate response of collateral airways to aerosolized antigen. In dogs with native sensitivity to Ascaris suum antigen, resistance to flow through the collateral system (Rcs) was measured using a wedged bronchoscope technique. Local administration of antigen aerosol (25 microliters, 1:10,000 dilution) produced a gradual increase in Rcs which reached a maximum of 365% of base line in 4-8 min. Analysis of bronchoalveolar lavage fluid obtained from the exposed segment at the peak of the response demonstrated significantly more TxB2 compared with control lavage samples (41.8 +/- 7.8 pg/ml vs. 27.9 +/- 8.3; P less than 0.025). After inhibition of thromboxane synthase with UK-37,248 (3 mg/kg iv) or OKY-046 (5 mg/kg iv), the increase in Rcs was significantly reduced at 40 s (P less than 0.001) and 2 min (P less than 0.01) after antigen delivery, and the maximal increase was attenuated by 41% (P less than 0.005). In contrast, the magnitude and time course of the airway response to aerosols of a stable thromboxane analog (U-46619) were not affected by blockade. Despite a similar attenuation (42%) of the maximal increase in Rcs by sodium meclofenamate (3 mg/kg iv), this cyclooxygenase inhibitor had no effect on the time course of the antigenic response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号