首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To test the hypothesis that leukocyte infiltration mediated by intercellular adhesion molecule (ICAM)-1 is involved in early alcohol-induced liver injury, male wild-type or ICAM-1 knockout mice were fed a high-fat liquid diet with either ethanol or isocaloric maltose-dextrin for 4 wk. There were no differences in mean urine alcohol concentrations between the groups fed ethanol. Alcohol administration significantly increased liver size and serum alanine aminotransferase levels in wild-type mice over high-fat controls, effects that were blunted significantly in ICAM-1 knockout mice. Dietary ethanol caused severe steatosis, mild inflammation, and focal necrosis in livers from wild-type mice. Furthermore, livers from wild-type mice fed ethanol showed significant increases in the number of infiltrating leukocytes, which were predominantly lymphocytes. These pathological changes were blunted significantly in ICAM-1 knockout mice. Tumor necrosis factor (TNF)-alpha mRNA expression was increased in wild-type mice fed ethanol but not in ICAM-1 knockout mice. These data demonstrate that ICAM-1 and infiltrating leukocytes play important roles in early alcohol-induced liver injury, most likely by mechanisms involving TNF-alpha.  相似文献   

2.
Reduced early alcohol-induced liver injury in CD14-deficient mice   总被引:11,自引:0,他引:11  
Activation of Kupffer cells by gut-derived endotoxin is associated with alcohol-induced liver injury. Recently, it was shown that CD14-deficient mice are more resistant to endotoxin-induced shock than wild-type controls. Therefore, this study was designed to investigate the role of CD14 receptors in early alcohol-induced liver injury using CD14 knockout and wild-type BALB/c mice in a model of enteral ethanol delivery. Animals were given a high-fat liquid diet continuously with ethanol or isocaloric maltose-dextrin as control for 4 wk. The liver to body weight ratio in wild-type mice (5.8 +/- 0.3%) was increased significantly by ethanol (7.3 +/- 0.2%) but was not altered by ethanol in CD14-deficient mice. Ethanol elevated serum alanine aminotransferase levels nearly 3-fold in wild-type mice, but not in CD14-deficient mice. Wild-type and knockout mice given the control high-fat diet had normal liver histology, whereas ethanol caused severe liver injury (steatosis, inflammation, and necrosis; pathology score = 3.8 +/- 0.4). In contrast, CD14-deficient mice given ethanol showed minimal hepatic changes (score = 1.6 +/- 0.3, p < 0.05). Additionally, NF-kappa B, TGF-beta, and TNF-alpha were increased significantly in wild-type mice fed ethanol but not in the CD14 knockout. Thus, chronic ethanol feeding caused more severe liver injury in wild-type than CD14 knockouts, supporting the hypothesis that endotoxin acting via CD14 plays a major role in the development of early alcohol-induced liver injury.  相似文献   

3.
The oxidant source in alcohol-induced liver disease remains unclear. NADPH oxidase (mainly in liver Kupffer cells and infiltrating neutrophils) could be a potential free radical source. We aimed to determine if NADPH oxidase inhibitor diphenyleneiodonium sulfate (DPI) affects nuclear factor-kappaB (NF-kappaB) activation, liver tumor necrosis factor-alpha (TNF-alpha) mRNA expression, and early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-16 g. kg(-1). day(-1)) continuously for up to 4 wk, using the Tsukamoto-French intragastric enteral feeding protocol. DPI or saline vehicle was administered by subcutaneous injection for 4 wk. Mean urine ethanol concentrations were similar between the ethanol- and ethanol plus DPI-treated groups. Enteral ethanol feeding caused severe fat accumulation, mild inflammation, and necrosis in the liver (pathology score, 4.3 +/- 0.3). In contrast, DPI significantly blunted these changes (pathology score, 0.8 +/- 0.4). Enteral ethanol administration for 4 wk also significantly increased free radical adduct formation, NF-kappaB activity, and TNF-alpha expression in the liver. DPI almost completely blunted these parameters. These results indicate that DPI prevents early alcohol-induced liver injury, most likely by inhibiting free radical formation via NADPH oxidase, thereby preventing NF-kappaB activation and TNF-alpha mRNA expression in the liver.  相似文献   

4.
Cytochrome P450 (CYP) 2E1 is induced by ethanol and is postulated to be a source of reactive oxygen species during alcoholic liver disease. However, there was no difference in liver pathology and radical formation between wild-type and CYP2E1 knockout mice fed ethanol. Other CYP isoforms may contribute these effects if CYP2E1 is inhibited or absent. The purpose of this study was, therefore, to determine if blocking most of the P450 isoforms with 1-aminobenzotriazole (ABT; 100 mg/kg i.g.), has any effect on liver damage and oxidative stress due to alcohol in rats and mice. Male C57BL/6 mice and Wistar rats were fed either high-fat control or ethanol-containing enteral diet for 4 weeks. ABT had a significant inhibitory effect on many P450 isoforms independent of concomitant alcohol administration. However, ABT did not protect against liver damage due to alcohol in either species. Indices of oxidative stress and inflammation were also similar in livers from vehicle-treated and ABT-treated animals fed ethanol. In summary, suppression of P450 activity with ABT had no apparent effect on oxidative stress caused by alcohol in both rats and mice. These data support the hypothesis that oxidative stress and liver damage can occur independently of CYP activities in both rats and mice during early alcohol-induced liver injury.  相似文献   

5.
Oxidants have been shown to be involved in alcohol-induced liver injury. This study was designed to test the hypothesis that the antioxidant polyphenolic extract of green tea, comprised predominantly of epigallocatechin gallate, protects against early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-14 g kg(-1) day(-1)) and green tea (300 mg kg(-1) day(-1)) continuously for 4 weeks using an intragastric enteral feeding protocol. Mean body weight gains (approximately 4 g/day) were not significantly different between treatment groups, and green tea extract did not the affect average concentration or the cycling of urine ethanol concentrations (0-550 mg dl(-1) day(-1)). After 4 weeks, serum ALT levels were increased significantly about 4-fold over control values (35+/-3 IU/l) by enteral ethanol (114+/-18); inclusion of green tea extract in the diet significantly blunted this increase (65+/-10). Enteral ethanol also caused severe fatty accumulation, mild inflammation, and necrosis in the liver. While not affecting fat accumulation or inflammation, green tea extract significantly blunted increases in necrosis caused by ethanol. Furthermore, ethanol significantly increased the accumulation of protein adducts of 4-hydroxynonenal, a product of lipid peroxidation and an index of oxidative stress; green tea extract blocked this effect almost completely. TNFalpha protein levels were increased in liver by alcohol; this phenomenon was also blunted by green tea extract. These results indicate that simple dietary antioxidants, such as those found in green tea, prevent early alcohol-induced liver injury, most likely by preventing oxidative stress.  相似文献   

6.
Oxidants have been shown to be involved in alcohol-induced liver injury. This study was designed to determine whether cocoa flavonoid extract, composed mostly of epicatechin and epicatechin oligomers, protects against early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-14 g/kg per day) and cocoa extract (400 mg/kg per day) continuously for 4 weeks using an enteral feeding protocol. Mean body weight gains ( approximately 4 g/day) were not significantly different between treatment groups. Cocoa extract did not affect average daily urine ethanol concentrations ( approximately 200mg/dL). After 4 weeks, serum alanine amino transferase levels of the ethanol group were increased nearly fourfold (110+/-16 IU/L) compared to control values (35+/-3 IU/L); this effect of ethanol was blocked by cocoa extract (60+/-6 IU/L). Additionally, enteral ethanol caused severe fat accumulation, mild inflammation, and necrosis in the liver; cocoa extract significantly blunted these changes. Increases in liver TNFalpha protein levels caused by ethanol were completely blocked by cocoa extract. Further, ethanol significantly increased the accumulation of protein adducts of 4-hydroxynonenal, a product of lipid peroxidation serving as an index of oxidative stress; again this was counteracted by the addition of cocoa extract. These results indicate that dietary flavanols such as those found in cocoa can prevent early alcohol-induced liver injury.  相似文献   

7.
AIM:To study the effect of both acute and chronic alcohol exposure on heme oxygenases(HOs) in the brain,liver and duodenum.METHODS:Wild-type C57BL/6 mice,heterozygous Sod2 knockout mice,which exhibit attenuated manganese superoxide dismutase activity,and liver-specific ARNT knockout mice were used to investigate the role of alcohol-induced oxidative stress and hypoxia.For acute alcohol exposure,ethanol was administered in the drinking water for 1 wk.Mice were pair-fed with regular or ethanol-containing Lieber De Carli liquid diets for 4 wk for chronic alcohol studies.HO expression was analyzed by real-time quantitative polymerase chain reaction and Western blotting.RESULTS:Chronic alcohol exposure downregulated HO-1 expression in the brain but upregulated it in the duodenum of wild-type mice.It did not alter liver HO-1 expression,nor HO-2 expression in the brain,liver or duodenum.In contrast,acute alcohol exposure decreased both liver HO-1 and HO-2 expression,and HO-2 expression in the duodenum of wild-type mice.The decrease in liver HO-1 expression was abolished in ARNT+/-mice.Sod2+/-mice with acute alcohol exposure did not exhibit any changes in liver HO-1 and HO-2 expression or in brain HO-2 expression.However,alcohol inhibited brain HO-1 and duodenal HO-2 but increased duodenal HO-1 expression in Sod2+/-mice.Collectively,these findings indicate that acute and chronic alcohol exposure regulates HO expression in a tissue-specific manner.Chronic alcohol exposure alters brain and duodenal,but not liver HO expression.However,acute alcohol exposure inhibits liver HO-1 and HO-2,and also duodenal HO-2 expression.CONCLUSION:The inhibition of liver HO expression by acute alcohol-induced hypoxia may play a role in the early phases of alcoholic liver disease progression.  相似文献   

8.
Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.  相似文献   

9.
10.
Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obese subjects, through its overexpression in fat tissue. However, how exercise can modify the expression of TNF-alpha is controversial. We examined TNF-alpha in adipose tissue using an animal model of insulin resistance that was produced by feeding rats a diet high in sucrose. The rats were allocated to one of three groups: those receiving a starch-based diet (control group): those fed a high-sucrose diet (sucrose-fed group): and those fed a high-sucrose diet and given wheel exercise (exercised group). The animals were allowed to eat and drink ad lib for 4 or 12 weeks (4 wk: control n=7, sucrose-fed n=7, exercised n=10; 12 wk: control n=5, sucrose-fed n=5, exercised n=9). The voluntary wheel exercise was initiated with the feeding of the high-sucrose diet. The rats in the exercise groups ran 15 +/- 3 km/week. We showed that 12-week voluntary running exercise significantly (P<0.05) increased both TNF-alpha protein (5-fold) and mRNA (1.4 fold) in the mesenteric fat of insulin-resistant rats compared to non-exercised sucrose-fed mice. Accordingly, in exercised group, plasma glucose (124 +/- 9 mEq/L vs 141 +/- 11 mEq/L). and free fatty acid (0.98 +/- 0.07 mEq/L vs 1.4 +/- 0.05 mEq/L) concentrating in portal vein blood were reduced compared to sucrose-fed group. The amounts of fatty tissue both in mesenteric and subcutaneous tissues were significantly (P<0.05) decreased through running exercise. We consider that up-regulation of TNF-alpha in mesenteric fat may be a compensatory mechanism for the reduction of fatty acid in adipose tissues and this change could control metabolic homeostasis during exercise to modulate a hyperinsulinemic state.  相似文献   

11.
The small intestine is main site of exogenous lipid digestion and absorption, and it is important for lipid metabolic homeostasis. Cell death-inducing DNA fragmentation-factor like effector C (CIDEC) is active in lipid metabolism in tissues other than those in the intestine. We developed small intestine-specific CIDEC (SI-CIDEC-/-) knockout C57BL/6J mice by Cre/LoxP recombination to investigate the in vivo effects of intestinal CIDEC on lipid metabolism. Eight-week-old SI-CIDEC-/- mice fed a high-fat diet for 14 weeks had 15% lower body weight, 30% less body fat mass, and 79% lower liver triglycerides (TG) than wild-type (WT) mice. In addition, hepatic steatosis and fatty liver inflammation were less severe in knockout mice fed a high-fat diet (HFD) compared with wild-type mice fed an HFD. SI-CIDEC-/- mice fed an HFD diet had lower serum TG and higher fecal TG and intestinal lipase activity than wild-type mice. Mechanistic studies showed that CIDEC accelerated phosphatidic acid synthesis by interacting with 1-acylglycerol-3-phosphate-O-acyltransferase to promote TG accumulation. This study identified a new interacting protein and previously unreported CIDEC mechanisms that revealed its activity in lipid metabolism of the small intestine.  相似文献   

12.
Hemorrhagic shock and resuscitation cause endotoxemia and hepatocellular damage. Because lipopolysaccharide-binding protein (LBP) enhances cellular responses to endotoxin, our aim was to determine whether LBP contributes to hemorrhage/resuscitation-induced injury by comparing LBP knockout and wild-type mice. Under pentobarbital anaesthesia, wild-type and LBP-deficient mice were hemorrhaged to 30 mmHg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer solution. Serum alanine aminotransferase (ALT) necrosis, neutrophil infiltration, and 4-hydroxynonenal by histology/cytochemistry and stress kinase activation by immunoblot analysis were then determined. ALT in wild-type mice was 2,461 +/- 383 and 1,418 +/- 194 IU/l (means +/- SE), respectively, at 2 and 6 h after resuscitation versus sham ALT of 102 +/- 6 IU/l. In LBP-deficient mice, ALT was blunted at both time points to 1,108 +/- 340 and 619 +/- 171 IU/l (P < 0.05). Liver necrosis after 6 h was also attenuated from 3.5 +/- 0.8% in wild-type mice to 1.3 +/- 0.5% in LBP-deficient mice (P < 0.05). After hemorrhage/resuscitation, neutrophil infiltration increased 71% more in wild-type than LBP knockout mice. Similarly, hepatic 4-hydroxynonenal staining, indicative of lipid peroxidation, decreased from 33.8 +/- 4.5% in wild-type mice to 11.6 +/- 1.9% in knockout mice (P < 0.05). After hemorrhage/resuscitation, activation of MAPKs, JNK and ERK, occurred in wild-type mice, which was largely blocked in LBP-deficient mice. However, endotoxin in portal blood after resuscitation was not significantly different between wild-type and knockout mice. In conclusion, hemorrhagic shock and resuscitation to mice cause severe, LBP-mediated hepatocellular damage. An absence of LBP blunts hepatocellular injury with decreased neutrophil infiltration, oxidative stress, and c-Jun and ERK activation.  相似文献   

13.
Ebselen prevents early alcohol-induced liver injury in rats   总被引:3,自引:0,他引:3  
Oxidants have been shown to be involved in alcohol-induced liver injury. Moreover, 2-phenyl-1,2-benzisoselenazole-3(2H)-one (ebselen), an organoselenium compound and glutathione peroxidase mimic, decreases oxidative stress and protects against stroke clinically. This study was designed to test the hypothesis that ebselen protects against early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10-16 g/kg/d) continuously for up to 4 weeks using the intragastric enteral feeding protocol developed by Tsukamoto and French. Ebselen (50 mg/kg twice daily, intragastrically) or vehicle (1% tylose) was administered throughout the experiment. Mean urine ethanol concentrations were not significantly different between treatment groups, and ebselen did not affect body weight gains or cyclic patterns of ethanol concentrations in urine. After 4 weeks, serum ALT levels were increased significantly about 4-fold over control values (37 +/- 5 IU/l) by enteral ethanol (112 +/- 7 IU/l); ebselen blunted this increase significantly (61 +/- 8 IU/l). Enteral ethanol also caused severe fatty accumulation, mild inflammation, and necrosis in the liver (pathology score: 4.3 +/- 0.3). In contrast, these pathological changes were blunted significantly by ebselen (pathology score: 2.5 +/- 0.4). While there were no significant effects of either ethanol or ebselen on glutathione peroxidase activity in serum or liver tissue, ebselen blocked the increase in serum nitrate/nitrite caused by ethanol. Furthermore, ethanol increased the activity of NF-kappaB over 5-fold, the number of infiltrating neutrophils 4-fold, and the accumulation of 4-hydroxynonenal over 5-fold. Ebselen blunted all of these effects significantly. These results indicate that ebselen prevents early alcohol-induced liver injury, most likely by preventing oxidative stress, which decreases inflammation.  相似文献   

14.
15.
Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD). While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α), conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.  相似文献   

16.
Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (CIH) during sleep. OSA is associated with nonalcoholic steatohepatitis (NASH) in obese individuals and may contribute to progression of nonalcoholic fatty liver disease from steatosis to NASH. The purpose of this study was to examine whether CIH induces inflammatory changes in the liver in mice with diet-induced hepatic steatosis. C57BL/6J mice (n = 8) on a high-fat, high-cholesterol diet were exposed to CIH for 6 mo and were compared with mice on the same diet exposed to intermittent air (control; n = 8). CIH caused liver injury with an increase in serum ALT (461 +/- 58 U/l vs. 103 +/- 16 U/l in the control group; P < 0.01) and AST (637 +/- 37 U/l vs. 175 +/- 13 U/l in the control group; P < 0.001), whereas alkaline phosphatase and total bilirubin levels were unchanged. Histology revealed hepatic steatosis in both groups, with mild accentuation of fat staining in the zone 3 hepatocytes in mice exposed to CIH. Animals exposed to CIH exhibited lobular inflammation and fibrosis in the liver, which were not evident in control mice. CIH caused significant increases in lipid peroxidation in serum and liver tissue; significant increases in hepatic levels of myeloperoxidase and proinflammatory cytokines IL-1beta, IL-6, and CXC chemokine MIP-2; a trend toward an increase in TNF-alpha; and an increase in alpha1(I)-collagen mRNA. We conclude that CIH induces lipid peroxidation and inflammation in the livers of mice on a high-fat, high-cholesterol diet.  相似文献   

17.
Cholestatic hepatitis is frequently found in Niemann-Pick C (NPC) disease. We studied the influence of diet and the low density lipoprotein receptor (LDLR, Ldlr in mice, known to be the source of most of the stored cholesterol) on liver disease in the mouse model of NPC. Npc1-/- mice of both sexes, with or without the Ldlr knockout, were fed a 18% fat, 1% cholesterol ("high-fat") diet and were evaluated by chemical and histological methods. Bile acid transporters [multidrug resistance protein (Mrps) 1-5; Ntcp, Bsep, and OatP1, 2, and 4] were quantitated by real-time RT-PCR. Many mice died prematurely (within 6 wk) with hepatomegaly. Histopathology showed an increase in macrophage and hepatocyte lipids independent of Ldlr genotype. Non-zone-dependent diffuse fibrosis was found in the surviving mice. Serum alanine aminotransferase was elevated in Npc1-/- mice on the regular diet and frequently became markedly elevated with the high-fat diet. Serum cholesterol was increased in the controls but not the Npc1-/- mice on the high-fat diet; it was massively increased in the Ldlr-/- mice. Esterified cholesterol was greatly increased by the high-fat diet, independent of Ldlr genotype. gamma-Glutamyltransferase was also elevated in Npc1-/- mice, more so on the high-fat diet. Mrps 1-5 were elevated in Npc1-/- liver and became more elevated with the high-fat diet; Ntcp, Bsep, and OatP2 were elevated in Npc1-/- liver and were suppressed by the high-fat diet. In conclusion, Npc1-/- mice on a high-fat diet provide an animal model of NPC cholestatic hepatitis and indicate a role for altered bile acid transport in its pathogenesis.  相似文献   

18.
The thyroid hormone-binding protein μ-crystallin (CRYM) mediates thyroid hormone action by sequestering triiodothyronine in the cytoplasm and regulating the intracellular concentration of thyroid hormone. As thyroid hormone action is closely associated with glycolipid metabolism, it has been proposed that CRYM may contribute to this process by reserving or releasing triiodothyronine in the cytoplasm. We aimed to clarify the relationship between CRYM and glycolipid metabolism by comparing wild-type and CRYM knockout mice fed a high-fat diet. Each group was provided a high-fat diet for 10 weeks, and then their body weight and fasting blood glucose levels were measured. Although no difference in body weight was observed between the two groups with normal diet, the treatment with a high-fat diet was found to induce obesity in the knockout mice. The knockout group displayed increased dietary intake, white adipose tissue, fat cell hypertrophy, and hyperglycemia in the intraperitoneal glucose tolerance test. In CRYM knockout mice, liver fat deposits were more pronounced than in the control group. Enhanced levels of PPARγ, which is known to cause fatty liver, and ACC1, which is a target gene for thyroid hormone and is involved in the fat synthesis, were also detected in the livers of CRYM knockout mice. These observations suggest that CRYM deficiency leads to obesity and lipogenesis, possibly in part through increasing the food intake of mice fed a high-fat diet.  相似文献   

19.
In female SD rats that were injected with 4 g/kg BW ethanol p.o. followed by a 5 mg/kg BW lipopolysaccharide (LPS) i.v. injection, serum glutamic pyruvic transaminases (GPT) activity increased to about eight times that of normal rats. In this model, rats that had been fed a diet containing 1% Hydrangeae Dulcis Folium (HDF) extracts for fifteen days showed significantly lower serum GPT activity (380.0+/-58.2 IU/l) than the control group (3527.0+/-774.1 IU/l). HDF's efficacy was far superior to milk thistle in this model (2950.0+/-915.9 IU/l). When mouse macrophages were treated with HDF extracts at 50 microg/ml, TNF-alpha production induced by LPS was suppressed to about 10% of the control. Rat serum TNF-alpha levels induced by LPS was decreased to 58.7% of the control by administering 1000 mg/kg BW HDF extract p.o. These results indicate that HDF prevents alcohol-induced liver injury through the inhibition of TNF-alpha production.  相似文献   

20.
Role of PYK2 in the development of obesity and insulin resistance   总被引:3,自引:0,他引:3  
Non-receptor proline-rich tyrosine kinase-2 (PYK2), which is activated by phosphorylation of one or more of its tyrosine residues, has been implicated in the regulation of GLUT4 glucose transporter translocation and glucose transport. Some data favor a positive role of PYK2 in stimulating glucose transport, whereas other studies suggest that PYK2 may participate in the induction of insulin resistance. To ascertain the importance of PYK2 in the setting of obesity and insulin resistance, we (1) evaluated the regulation of PYK2 in mice fed a high-fat diet and (2) characterized body and glucose homeostasis in wild type (WT) and PYK2(-/-) mice on different diets. We found that both PYK2 expression and phosphorylation were significantly increased in liver and adipose tissues harvested from high-fat diet fed mice. Wild type and PYK2(-/-) mice were fed a high-fat diet for 8 weeks to induce insulin resistance/obesity. Surprisingly, in response to this diet PYK2(-/-) mice gained significantly more weight than WT mice (18.7+/-1.2g vs. 9.5+/-0.6g). Fasting serum leptin and insulin and blood glucose levels were significantly increased in high-fat diet fed mice irrespective of the presence of PYK2 protein. There was a close correlation between serum leptin and body weight. Intraperitoneal glucose tolerance tests revealed that as expected, the high-fat diet resulted in increased blood glucose levels following glucose administration in wild type mice compared to those fed normal chow. An even greater increase in blood glucose levels was observed in PYK2(-/-) mice compared to wild type mice. These results demonstrate that a lack of PYK2 exacerbates weight gain and development of glucose intolerance/insulin resistance induced by a high-fat diet, suggesting that PYK2 may play a role in slowing the development of obesity, insulin resistance, and/or frank diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号