首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY 1. Piscivores (annual stocking of 1000 individuals ha?1 of 0+ pike and a single stocking of 30 kg ha?1 of large 20–30 cm perch) were stocked in seven consecutive years in a shallow eutrophic lake in Denmark. The stocking programme aimed at changing food‐web structure by reducing zooplanktivorous and benthivorous fish, with resultant effects on lower trophic levels and ultimately water quality. 2. The fish community and water quality parameters (Secchi depth, concentrations of total phosphorus, chlorophyll a and suspended solids) were monitored between 1996 and 2000 and relationships were evaluated between predatory fish and potential prey and between zooplanktivorous or benthivorous fish and water quality parameters. In addition, potential consumption of piscivorous fishes was calculated. 3. The density of fish feeding on larger zooplankton or benthos (roach >15 cm, crucian carp >15 cm) declined distinctly during the study period. This effect was attributed to predation by large (>50 cm) pike. Based on scale readings, we cautiously suggest that the stocking of 0+ pike boosted the adult pike population to produce an unexpected impact in later years. Conversely, no direct impact of stocked 0+ pike was detected on 0+ roach. 4. A major decline in the recruitment strength of 0+ roach was observed in 2000. A combination of (i) the indirect effect of large pike preying on adult roach, with negative effect on roach reproduction and (ii) the direct predation effect of 0+ pike and/or 1+ and 2+ perch recruited in the lake, provides the most likely explanation of this phenomenon. 5. A marked increase in Secchi depth in 2000 and declining trends in suspended solids, chlorophyll‐a and total phosphorus concentrations were observed. These changes may also be attributable to changes in the fish community, although the relationships were not straightforward. 6. This 7‐year study indicates that piscivorous fish may be a significant structuring force in shallow eutrophic lakes, suggesting that stocking piscivores can increase predation pressure on cyprinids. However, the general lack of impact of 0+ pike points to the need of refining current stocking practices in several countries across Europe.  相似文献   

2.
Meijer  M. -L.  de Haan  M. W.  Breukelaar  A. W.  Buiteveld  H. 《Hydrobiologia》1990,200(1):303-315
Experimental reduction of the fish stock in two shallow lakes in The Netherlands shows that such a biomanipulation can lead to a substantial increase in transparency, which is caused not only by a decrease in algal biomass, but also by a decrease in resuspended sediment and detritus. A model was developed to describe transparency in relation to chlorophyll-a and inorganic, suspended solids (resuspended sediment). With the use of this model it is shown that more than 50% of the turbidity in these shallow lakes before biomanipulation was determined by the sediment resuspension, mainly caused by benthivorous fish. Another analysis reveals that the concentration of inorganic suspended solids and the biomass of benthivorous fish are positively correlated, and that even in the absence of algae a benthivorous fish biomass of 600 kg ha−1 can reduce the Secchi depth to 0.4 m in shallow lakes. In addition, it is argued that algal biomass is also indirectly reduced by removal of benthivorous fish. Reduction of benthivorous fish is necessary to get macrophytes and macrophytes seem to be necessary to keep the algal biomass low in nutrient-rich shallow lakes. It is concluded that the impact of benthivorous fish on the turbidity can be large, especially in shallow lakes.  相似文献   

3.
In Tissawewa, a shallow, eutrophic reservoir in southeastern Sri Lanka, the effect of a major drought on the ecosystem was studied by monitoring the size-structured fish community and its resource base. Primary production was determined as well as the production and diets of ten taxa belonging to four trophic guilds (i.e. herbivorous/detritivorous, benthivorous, zooplanktivorous/insectivorous, piscivorous) that made up more than 98% of the total fish biomass. Two extreme states of the ecosystem were distinguished. Before the drought most primary production was generated byphytoplankton, suspended fine particulate detritus was an important food source and total fish density was high. After the drought the ecosystem was characterised by high macrophyte density, low concentration of suspended detritus and low total fish density. The availability and origin of detritus appeared to be the major factor influencing fish production in Tissawewa. The small pelagic herbivore/detritivore A. melettinus contributed the most biomass and production to the fish community before the drought. After the drought, however, biomass and production dropped considerably. In contrast, the production of the most important species in terms of fisheries yield, the exotic herbivorous/detritivorous tilapias, was hardly affected. Although the composition of their food, benthic detritus, had markedly changed. In Sri Lankan reservoirs a subsidiary fishery for pelagic minor cyprinids was suggested to increase the current yield which is based almost entirely on the exotic tilapia species. The perturbation observed in this study, however, showed that the production of pelagic species was affected particularly by the environmental changes. Exploitation of these species can, therefore, only be considered in combination with hydrological and other management measures that control the environmental conditions of the reservoirs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Despite the common occurrence of ontogenetic niche shifts, their consequences for morphological adaptations have been little studied. To address this question, we studied morphological adaptations related to ontogenetic niche shifts in Eurasian perch (Perca fluviatilis) in eight lakes that varied in density of benthic resources and planktivorous fish biomass. Perch start to feed on pelagic zooplankton, then shift to benthic resources at intermediate sizes, and finally, when large enough, mainly feed on fish. These three functional niches over ontogeny are expected to set constraints on the morphology and size-specific growth of perch. The growth of perch was negatively related to planktivorous fish biomass in the zooplanktivorous niche, but positively related to planktivorous fish biomass in the piscivorous niche. The number of gill rakers of perch was negatively related to the biomass of planktivorous fish, providing evidence for the occurrence of character displacement as a consequence of competition in the zooplanktivorous niche. Perch in lakes with low densities of predator-sensitive macroinvertebrates had greater body height measurements and a larger mouth early during ontogeny. This pattern is suggested to be a result of a selection for increased efficiency in the benthic niche when the availability of benthic resources is low. Perch in lakes with a high biomass of planktivorous fishes had fusiform body morphology, a thicker tail and a larger mouth then the average piscivorous perch. The different responses of perch morphology to variation in the availability of benthic resources compared to variation in planktivore biomass are suggested to be partly because the availability of the former resource to a larger extent is set by abiotic conditions (humic content). We suggest that the key factors affecting size-specific growth and body morphology of perch in the system studied are the availability of resources in the benthivorous and piscivorous niches. We also provide evidence for morphological trade-offs, especially between the benthivorous and the piscivorous ontogenetic niches. Received: 6 July 1999 / Accepted: 8 September 1999  相似文献   

5.
1. Eutrophication has a profound effect on the biological structure and function of shallow lakes, altering the composition and abundance of submerged macrophyte and fish assemblages. Relatively little is known, however, about decadal to centennial‐scale change in these important aspects of shallow lake ecology. 2. Established palaeolimnological inference models are limited to reconstructing a single variable. As macrophyte and zooplanktivorous fish abundance exert dual and interacting controls on cladoceran assemblages a single variable inference model may contain significant error. To obviate this problem, we applied a new cladoceran‐based multivariate regression tree (MRT) model to cladoceran subfossil assemblages from dated cores from a small shallow lake (Felbrigg Lake, U.K.) to assess long‐term change in fish and submerged macrophyte abundance. Plant macrofossil, chironomid and mollusc subfossil assemblages were also analysed to track changes in biological structure and function and to evaluate the inferences of the MRT model. 3. Over the 200+ year period covered by the sediment cores, there was good agreement in the timing and nature of ecological change reflected by the plant macrofossil, mollusc, chironomid and cladoceran data. The sediment sequence was divided into three dated zones: c. 1797–1890, c. 1890–1954 and c. 1954–present. Prior to 1890 plant‐associated mollusc, cladoceran and chironomid assemblages indicated a species‐rich macrophyte community; a scenario confirmed by the plant macrofossil data. From c. 1890 to 1954 macrophyte‐associated species of all three invertebrate groups remained abundant but the proportion of pelagic cladocerans rose. Post‐1954 mollusc and chironomid assemblages changed to sediment associated detrital feeders and the proportion of pelagic cladoceran taxa increased further. 4. The cladoceran‐based MRT model indicated a long period of stability, c. 1790–1927, characterised by abundant submerged macrophytes and zooplanktivorous fish. From c. 1927 to 1980, the MRT model inferred a decline in zooplanktivorous fish density (ZF) but relative stability in August macrophyte abundance. From 1980 to 2000, an increase in zooplanktivorous fish was inferred tallying well with available data on the fish population (since the 1970s), which indicated extirpation of perch in the 1970s and a subsequent increase in the rudd population. The model inferred little change in August macrophyte abundance until post‐c. 1980 at which point it indicated a decline. The surface sediment assemblage was placed in MRT group A, where submerged plants are absent or very rare in late summer in good agreement with current conditions at the site. 5. The MRT model, applied here for the first time, appears to have successfully tracked changes in macrophyte abundance and ZF over the last 200 years at Felbrigg Lake. The inferences agreed with historical observations on the fish community and the supporting palaeolimnological data. Given that multiple structuring forces shape most biological communities, the application of a model capable of allowing for this represents a significant advance in palaeolimnology.  相似文献   

6.
1. In this study, we examine how a 7‐year period of expanding submerged stonewort (Chara spp.) vegetation during a shift from turbid to clear water in a shallow lake influenced individual growth and population size structure of perch (Perca fluviatilis). We expected that a shift from phytoplankton to macrophyte dominance and clear water would improve feeding conditions for perch during a critical benthivorous ontogenetic stage, and enhance the recruitment of piscivorous perch. 2. Growth analysis based on opercula showed that growth during the second year of life was significantly higher in years with abundant vegetation than in years with turbid water and sparse vegetation. Growth was not affected during the first, third and fourth year of life. Stable isotope analyses on opercula from 2‐year‐old perch showed that the increase in growth coincided with a change in carbon source in the diet. Stable nitrogen ratio did not change, indicating that the increased growth was not an effect of any change in trophic position. 3. Following the expansion of submerged vegetation, perch size range and abundance of piscivorous perch increased in central, unvegetated areas of the lake. In stands of stoneworts, however, mainly benthivorous perch were caught, and size range did not change with time. 4. Our findings provide empirical support for the notion that establishment of submerged vegetation may lead to increased recruitment of piscivorous perch, because of improved competitive conditions for perch during the benthivorous stage. This is likely to constitute a benthic‐pelagic feedback coupling, in which submerged vegetation and clear water promote the recruitment of piscivorous perch, which, in turn, may increase water clarity through top‐down effects in the pelagic.  相似文献   

7.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

8.
1. Fish play a key role in the functioning of temperate shallow lakes by affecting nutrient exchange among habitats as well as lake trophic structure and dynamics. These processes are, in turn, strongly influenced by the abundance of submerged macrophytes, because piscivorous fish are often abundant at high macrophyte density. Whether this applies to warmer climates as well is virtually unknown. 2. To compare fish community structure and dynamics in plant beds between subtropical and temperate shallow lakes we conducted experiments with artificial submerged and free‐floating plant beds in a set of 10 shallow lakes in Uruguay (30°–35°S) and Denmark (55°–57°N), paired along a gradient of limnological characteristics. 3. The differences between regions were more pronounced than differences attributable to trophic state. The subtropical littoral fish communities were characterised by higher species richness, higher densities, higher biomass, higher trophic diversity (with predominance of omnivores and lack of true piscivores) and smaller body size than in the comparable temperate lakes. On average, fish densities were 93 ind. m−2 (±10 SE) in the subtropical and 10 ind. m−2 (±2 SE) in the temperate lakes. We found a twofold higher total fish biomass per unit of total phosphorus in the subtropical than in the temperate lakes, and as fish size is smaller in the former, the implication is that more energy reaches the littoral zone fish community of the warmer lakes. 4. Plant architecture affected the spatial distribution of fish within each climate zone. Thus, in the temperate zone fish exhibited higher densities among the artificial free‐floating plants while subtropical fish were denser in the artificial submerged plant beds. These patterns appeared in most lakes, regardless of water turbidity or trophic state. 5. The subtropical littoral fish communities resembled the fish communities typically occurring in temperate eutrophic and hypertrophic lakes. Our results add to the growing evidence that climate warming may lead to more complex and omnivory‐dominated food webs and higher density and dominance of smaller‐sized fish. This type of community structure may lead to a weakening of the trophic cascading effects commonly observed in temperate shallow lakes and a higher risk of eutrophication.  相似文献   

9.
Jeppesen  E.  Jensen  J. P.  Kristensen  P.  Søndergaard  M.  Mortensen  E.  Sortkjær  O.  Olrik  K. 《Hydrobiologia》1990,(1):219-227
In order to evaluate short-term and long-term effects of fish manipulation in shallow, eutrophic lakes, empirical studies on relationships between lake water concentration of total phosphorus (P) and the occurrence of phytoplankton, submerged macrophytes and fish in Danish lakes are combined with results from three whole-lake fish manipulation experiments. After removal of less than 80 per cent of the planktivorous fish stock a short-term trophic cascade was obtained in the nutrient regimes, where large cyanobacteria were not strongly dominant and persistent. In shallow Danish lakes cyanobacteria were the most often dominating phytoplankton class in the P-range between 200 and 1 000μg P l−1. Long-term effects are suggested to be closely related to the ability of the lake to establish a permanent and wide distribution of submerged macrophytes and to create self-perpetuating increases in the ratio of piscivorous to planktivorous fish. The maximum depth at which submerged macrophytes occurred, decreased exponentially with increasing P concentration. Submerged macrophytes were absent in lakes>10 ha and with P levels above 250–300μg P l−1, but still abundant in some lakes<3 ha at 650μg P l−1. Lakes with high cover of submerged macrophytes showed higher transparencies than lakes with low cover aboveca. 50μg P l−1. These results support the alternative stable state hypothesis (clear or turbid water stages). Planktivorous fish>10 cm numerically contributed more than 80 per cent of the total planktivorous and piscivorous fish (>10 cm) in the pelagical of lakes with concentrations above 100μg P l−1. Below this threshold level the proportion of planktivores decreased markedly toca. 50 per cent at 22μg P l−1. The extent of the shift in depth colonization of submerged macrophytes and fish stock composition in the three whole-lake fish manipulations follows closely the predictions from the relationships derived from the empirical study. We conclude that a long-term effect of a reduction in the density of planktivorous fish can be expected only when the external phosphorus loading is reduced to below 0.5–2.0 g m−2 y−1. This loading is equivalent to an in-lake summer concentration below 80–150μg P l−1. Furthermore, fish manipulation as a restoration tool seems most efficient in shallow lakes.  相似文献   

10.
1. It is well accepted that fish, if abundant, can have a major impact on the zooplankton community structure during summer, which, particularly in eutrophic lakes, may cascade to phytoplankton and ultimately influence water clarity. Fish predation affects mean size of cladocerans and the zooplankton grazing pressure on phytoplankton. Little is, however, known about the role of fish during winter. 2. We analysed data from 34 lakes studied for 8–9 years divided into three seasons: summer, autumn/spring and winter, and four lake classes: all lakes, shallow lakes without submerged plants, shallow lakes with submerged plants and deep lakes. We recorded how body weight of Daphnia and then cladocerans varied among the three seasons. For all lake types there was a significant positive correlation in the mean body weight of Daphnia and all cladocerans between the different seasons, and only in lakes with macrophytes did the slope differ significantly from one (winter versus summer for Daphnia). 3. These results suggest that the fish predation pressure during autumn/spring and winter is as high as during summer, and maybe even higher during winter in macrophyte‐rich lakes. It could be argued that the winter zooplankton community structure resembles that of the summer community because of low specimen turnover during winter mediated by low fecundity, which, in turn, reflects food shortage, low temperatures and low winter hatching from resting eggs. However, we found frequent major changes in mean body weight of Daphnia and cladocerans in three fish‐biomanipulated lakes during the winter season. 4. The seasonal pattern of zooplankton : phytoplankton biomass ratio showed no correlation between summer and winter for shallow lakes with abundant vegetation or for deep lakes. For the shallow lakes, the ratio was substantially higher during summer than in winter and autumn/spring, suggesting a higher zooplankton grazing potential during summer, while the ratio was often higher in winter in deep lakes. Direct and indirect effects of macrophytes, and internal P loading and mixing, all varying over the season, might weaken the fish signal on this ratio. 5. Overall, our data indicate that release of fish predation may have strong cascading effects on zooplankton grazing on phytoplankton and water clarity in temperate, coastal situated eutrophic lakes, not only during summer but also during winter.  相似文献   

11.
12.
Top–down control of phytoplankton biomass through piscivorous fish manipulation has been explored in numerous ecological and biomanipulation experiments. Piscivores are gape-limited predators and it is hypothesized that the distribution of gape sizes relative to distribution of body depths of prey fish may restrict piscivore effects cascading to plankton. We examined the top–down effects of piscivorous largemouth bass on nutrients, turbidity, phytoplankton, zooplankton and fish in ponds containing fish assemblages with species representing a range of body sizes and feeding habits (western mosquitofish, bluegill, channel catfish, gizzard shad and common carp). The experimental design consisted of three replicated treatments: fishless ponds (NF), fish community without largemouth bass (FC), and fish community with largemouth bass (FCB). Turbidity, chlorophyll a, cyclopoid copepodid and copepod nauplii densities were significantly greater in FC and FCB ponds than in NF ponds. However, these response variables were not significantly different in FC and FCB ponds. The biomass and density of shallow-bodied western mosquitofish were reduced and bluegill body depths shifted toward larger size classes in the presence of largemouth bass, but the biomass and density of all other fish species and of the total fish community were unaffected by the presence of largemouth bass. Our results show that top–down impacts of largemouth bass in ecosystems containing small- and deep-bodied fish species may be most intense at the top of the food web and alter the size distribution and species composition of the fish community. However, these top–down effects may not cascade to the level of the plankton when large-bodied benthivorous fish species are abundant.  相似文献   

13.
1. In shallow temperate lakes, submerged plants often provide refuge for pelagic zooplankton against fish predation, a mechanism with potential strong cascading effects on water transparency and on the entire ecosystem. In (sub)tropical lakes, however, the interaction between aquatic plants and predation may be more complex, particularly because fish density is high within the plant beds in such systems. 2. Using laboratory ‘habitat choice’ experiments, we determined the effects of three (sub)tropical free‐floating plants, Eichhornia crassipes, Pistia stratiotes and Salvinia auriculata and the cosmopolitan submerged Ceratophyllum demersum, on horizontal movement by the water flea Daphnia obtusa. We tested for avoidance of plants in the absence and presence of alarm signals from crushed conspecifics and chemical cues from the fish Cnesterodon decemmaculatus, the fish have been subjected to different feeding regimes. 3. In the absence of other stimuli, D. obtusa strongly avoided the plants and the crushed conspecifics, as expected. However, the response to fish was insignificant regardless of their previous feeding regime. The avoidance of free‐floating plants was more pronounced than that of the submerged plant. Contrary to predictions based on research in temperate lakes, Daphnia did not take refuge among the plants but rather swam away from them when exposed simultaneously to plants and alarm signals. 4. We hypothesise that the avoidance of plants by D. obtusa may ultimately be attributable to an expectedly higher predation risk within the plants than in the pelagic, because of a high density of associated zooplanktivorous fish in the former. In the (sub)tropics, therefore, aquatic plants and particularly the free‐floating ones, may not promote cascading effects via Daphnia grazing on phytoplankton as seen in temperate eutrophic lakes.  相似文献   

14.
Shallow eutrophic lakes commonly exist in two alternative stable states: a clear-water state and a turbid water state. A number of mechanisms, including both abiotic and biotic processes, buffer the respective states against changes, whereas other mechanisms likely drive transitions between states. Our earlier research shows that a large proportion of zooplanktivorous fish populations in shallow lakes undertake seasonal migrations where they leave the lake during winter and migrate back to the lake in spring. Based on our past research, we propose a number of scenarios of how feedback processes between the individual and ecosystem levels may affect stability of alternative stable states in shallow lakes when mediated by fish migration. Migration effects on shallow lakes result from processes at different scales, from the individual to the ecosystem. Our earlier research has shown that ecosystem properties, including piscivore abundance and zooplankton productivity, affect the individual state of zooplanktivorous fish, such as growth rate or condition. Individual state, in turn, affects the relative proportion and timing of migrating zooplanktivorous fish. This change, in turn, may stabilize states or cause runaway processes that eventually lead to state shifts. Consequently, such knowledge of processes coupled to seasonal migration of planktivorous fish should increase our understanding of shallow lake dynamics.  相似文献   

15.
1. Shallow lakes in the Boreal Transition Zone (BTZ) in Alberta, Canada are naturally productive systems that provide important breeding and moulting habitat for many waterfowl (Anseriformes). To examine the relative importance of biotic and abiotic factors on waterfowl population densities, species richness and community composition, we surveyed 30 shallow lakes and evaluated the relationships among fish communities, lake characteristics and waterfowl in both breeding and moulting habitat. Shallow lakes were either fishless (n = 15), contained only small‐bodied fishes (n = 10) or contained large‐bodied, mostly predatory, fish in addition to small‐bodied fish (n = 5). 2. Environmental factors, including water colour, submerged aquatic vegetation, lake area and potassium, explained 24.3% of the variation in breeding waterfowl communities. Fish assemblage contributed independently to a small but significant proportion (13.4%) of the variation, while 13.8% of the explained variation was shared between environmental factors and fish assemblage. In total, 51.5% of the variation in breeding waterfowl communities was explained. 3. Overall, 55.5% of the total variation in moulting waterfowl communities was explained. Environment alone [especially total phosphorus, lake area, maximum depth and dissolved organic carbon (DOC)] and variation shared by fish and environment similarly accounted for most of the explained variation in moulting waterfowl communities (21.7% and 25.7% respectively), while fish assemblage was only one‐third as important (8.1%). 4. Both breeding and moulting waterfowl densities increased with lake productivity, even in eutrophic and hypereutrophic lakes. Breeding waterfowl density was also twice as great in fishless lakes than in lakes with fish, after accounting for lake area. 5. Certain waterfowl taxa were linked to fishless lakes, especially in the moulting season. Canvasback and moulting ring‐necked ducks were linked to small‐bodied fish lakes, whereas moulting common goldeneye were indicators of large‐bodied fish lakes. Knowledge of fish presence and species composition can therefore help guide conservation and management of waterfowl habitat in western Canada. Our results suggest that management efforts to maintain the most productive waterfowl habitat in the BTZ should focus on smaller, shallow, fishless lakes, particularly given that larger fish‐bearing systems have greater regulatory protection.  相似文献   

16.

Within the Danube River delta's lakes the Oligochaeta communities comprise between 7.9% and 36.2% of the total biomass of benthic fauna. Their importance in energy flow at the ecosystem level changed in relation to fast trophic transition of all shallow lakes to the hypertrophic state. The parameters of the energy budget of the dominant populations and the potential production of benthivorous fish species assessed during 1976–1994 interval support this conclusion. P/B ratio, K 1 and K 2 coefficients assessed for both the 1976–1980 and 1991–1994 intervals revealed different functional patterns of response of Potamothrix hammoniensis (Michaelsen, 1901) and Limnodrilus hoffmeisteri (Claparede, 1862) to varying trophic conditions. Changes in communities structure, size of the constituent populations and their age distribution, as well as the quantity and quality of food supply and level of hypoxia at the sediment/water interface were the main factors that affected the role of these populations as energy carrier from the huge energy pool represented by sedimented organic carbon to benthivorous fish species.

  相似文献   

17.
SUMMARY 1. The strong stabilising effect of increased submerged macrophytes (charophytes) and benthivorous fish reduction on the clear water state was shown for shallow Lake Veluwe and Lake Wolderwijd. 2. The first two links in the chain of relationships from external phosphorus (P) loading to in‐lake total‐P concentrations to chlorophyll a concentrations to water transparency, showed a significant correlation with the areal fraction of coverage with charophytes. Higher coverages lead to (i) lower ratios of the in‐lake total‐P concentration compared with the volume weighted average concentration in the inlet water, indicating a higher retention of P in the presence of charophytes (ii) lower chlorophyll a to total‐P ratios, indicating a positive effect of charophytes on top‐down control of algae, and (iii) higher water transparency because of lower algal turbidity. Transparency further improved as a result of benthivorous fish reduction and a significant positive correlation between non‐algal turbidity and benthivorous fish biomass. 3. A model was developed taking into account the inherent variability in precipitation and uncertainties in the empirical relationships determining phosphorus export from stream catchments and other sources and eutrophication variables in the receiving lakes. The model was used to compute (i) probability distributions for in‐lake total‐P, chlorophyll a and Secchi Disc transparency in relation to the coverage with charophytes and benthivorous fish biomass, and (ii) exceedence probabilities with respect to critical values for in‐lake total‐P and water transparency for several management scenarios. 4. The effects of an expected rise in external nutrient loading on the in‐lake total‐P and chlorophyll a concentrations and on water transparency can be compensated for by two proposed control measures: (i) extended treatment at a waste water treatment plant directly discharging into Lake Veluwe, and (ii) diverting the outlet of a stream draining a catchment with high fertilisation. The minimal internal charophyte coverage needed to sufficiently stabilise the clear water state and to meet with the objective of a summer mean water transparency of at least 1 m was estimated at well over 30% of the lake area, while the benthivorous fish stock should be maintained at the present level of c. 20 kg ha?1.  相似文献   

18.
Although submerged vegetation is considered to be the most suitable refuge against predators and form of foraging habitat for small fishes, submerged plants are often scarce or lacking in turbid eutrophic lakes. To evaluate emergent (Zizania latifolia) and floating-leaved (Nelumbo nucifera) vegetation as refuge areas against predators and as foraging habitats for small fishes, we investigated the fauna, abundance, and size distribution of the fish community as well as the abundance of possible prey for small fishes in beds of each vegetation type in a eutrophic shallow lake: Lake Teganuma in Japan. The leaves and stems of N. nucifera occupied an area 4.2 times larger than that of Z. latifolia. The high coverage of the water surface with plants most likely induced the hypoxia found in the N. nucifera bed. The diversity of small fishes was greater in the Z. latifolia bed with piscivorous fish than in the N. nucifera bed without piscivorous fish. The diversity of fish species in the vegetation was enhanced when there was an increased diversity of possible food sources rather than an absence of predators. Some aquatic insects of the same species had a much lower δ13C signature at hypoxic locations than at less hypoxic locations in the N. nucifera bed. Such site differences within a bed were not observed in the organisms caught in the Z. latifolia bed. The insects in hypoxic zones with a δ13C signature lower than ?30 ‰ were more depleted in 13C than the surface sediment or attached algae, suggesting that the larvae in the hypoxic zones incorporated the organic materials generated by methane-oxidizing bacteria. We can therefore conclude that floating-leaved vegetation, especially a N. nucifera bed, is not suitable as a replacement for submerged vegetation because of its potential to induce hypoxia, which can decrease the diversity of the fish fauna.  相似文献   

19.
In shallow temperate lakes many ecological processes depend on submerged macrophytes. In subtropical and tropical lakes, free-floating macrophytes may be equally or more important. We tested the hypothesis that different macrophyte growth forms would be linked with different bottom-up and top-down mechanisms in out-competing phytoplankton. We compared experimentally the effects of submerged and free-floating plants on water chemistry, phytoplankton biomass, zooplankton and fish community structure in a shallow hypertrophic lake (Lake Rodó, 34°55S 56°10W, Uruguay). Except for the retention of suspended solids, we found no other significant bottom-up process connected with either Eichhornia crassipes or Potamogeton pectinatus. Free-floating plants had a lower abundance of medium-sized zooplankton than any other microhabitat and submerged plants were apparently preferred by microcrustaceans. Fish showed a differential habitat use according to species, size-class and feeding habits. Dominant omnivore-planktivores, particularly the smallest size classes, preferred submerged plants. In contrast, omnivore-piscivores were significantly associated with free-floating plants. The density of omnivorous-planktivorous fish, by size class, significantly explained the distribution of medium-sized zooplankton, the high number of size 0 fish being the main factor. The abiotic environment and the structure of the zooplankton community explained little of the fish distribution pattern. Our results suggest that bottom-up effects of free-floating plants are weak when cover is low or intermediate. Top-down effects are complex, as effects on zooplankton and fish communities seem contradictory. The low piscivores:planktivores ratio in all microhabitats suggests, however, that cascading effects on phytoplankton through free-floating plant impacts on piscivorous fish are unlikely to be strong.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号