首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human keratin 18 (K18) and keratin 8 (K8) and their mouse homologs, Endo B and Endo A, respectively, are expressed in adult mice primarily in a variety of simple epithelial cell types in which they are normally found in equal amounts within the intermediate filament cytoskeleton. Expression of K18 alone in mouse L cells or NIH 3T3 fibroblasts from either the gene or a cDNA expression vector results in K18 protein which is degraded relatively rapidly without the formation of filaments. A K8 cDNA containing all coding sequences was isolated and expressed in mouse fibroblasts either singly or in combination with K18. Immunoprecipitation of stably transfected L cells revealed that when K8 was expressed alone, it was degraded in a fashion similar to that seen previously for K18. However, expression of K8 in fibroblasts that also expressed K18 resulted in stabilization of both K18 and K8. Immunofluorescent staining revealed typical keratin filament organization in such cells. Thus, expression of a type I and a type II keratin was found to be both necessary and sufficient for formation of keratin filaments within fibroblasts. To determine whether a similar proteolytic system responsible for the degradation of K18 in fibroblasts also exists in simple epithelial cells which normally express a type I and a type II keratin, a mutant, truncated K18 protein missing the carboxy-terminal tail domain and a conserved region of the central, alpha-helical rod domain was expressed in mouse parietal endodermal cells. This resulted in destabilization of endogenous Endo A and Endo B and inhibition of the formation of typical keratin filament structures. Therefore, cells that normally express keratins contain a proteolytic system similar to that found in experimentally manipulated fibroblasts which degrades keratin proteins not found in their normal polymerized state.  相似文献   

2.
The cytoskeletal B protein isolated from extraembryonic endodermal cells (Endo B) is a 50-kDa subunit of intermediate filaments that is expressed in trophoblast and extraembryonic endoderm of early mouse embryos. Endo B was compared to cytokeratin D of adult mouse liver by immunoprecipitation, two-dimensional gel electrophoresis, and peptide mapping. The two proteins were indistinguishable. A cDNA probe for Endo B mRNA identified mRNA species of similar size in liver and endoderm, and primer extension analysis indicates that the Endo B mRNAs from the two cell types have similar 5' ends. An internal fragment of the Endo B cDNA was found to cross-hybridize with a conservative domain of a human type I keratin cDNA under low stringency conditions, demonstrating that Endo B is related to type I keratins. However, under stringent conditions necessary for genomic Southern analysis, mouse and human genomic fragments homologous to the Endo B cDNA were distinct from those defined by hybridization with the type I keratin cDNA. These results indicate that Endo B is related to the type I keratin family and expands the number of type I keratin genes identified in both the mouse and human genomes. It is likely that extraembryonic endoderm, one of the first differentiated cell types of the mammalian embryo, and adult liver express the same Endo B gene.  相似文献   

3.
A cDNA clone of a keratin-related, intermediate filament protein, designated Endo B, was constructed from size-fractionated parietal endodermal mRNA and characterized. The 1466-nucleotide cDNA insert contains an open reading frame of 1272 nucleotides that would result in 5' and 3' noncoding sequences of 54 and 60 nucleotides, respectively. The predicted amino acid composition, molecular weight (47,400), and peptide pattern correlate well with data obtained on the isolated protein. The predicted amino acid sequence fits easily into the general domain structure suggested for all intermediate filament proteins with a unique amino-terminal head domain, a large conserved central domain of predominantly alpha-helical structure, and a relatively unique carboxyl-terminal or tail domain. Over the entire molecule, Endo B is 43% identical with human 52-kDa epidermal type I keratin. However, over two of the three regions contained in the central domain that are predicted to form coiled-coil structures, the Endo B is 54-68% identical with other type I keratin sequences. This homology, along with the presence of the completely conserved sequence DNARLAADDFR-KYE, which is found in all type I keratins, permits the unambiguous identification of Endo B as a type I keratin. Comparison of the Endo B sequence to other intermediate filament proteins reveals 22 residues which are identical in all intermediate filament proteins regardless of whether filament formation requires only one type of protein subunit (vimentin, desmin, glial fibrillar acidic protein, or a neurofilament protein) or two dissimilar types (type I and type II keratins). Endo B mRNA was detectable in RNA isolated from F9 cells treated with retinoic acid for 48 h. Approximately three to five genes homologous to Endo B were detected in the mouse genome.  相似文献   

4.
G J Giudice  E Fuchs 《Cell》1987,48(3):453-463
Through gene transfection studies, we have discovered that the forced expression of a foreign type II epidermal keratin in fibroblasts can trigger the expression of an endogenous type I epidermal keratin. Both the transfected and the induced proteins participate in the formation of filamentous structures. Interestingly, this regulation appears to be unidirectional: the expression of a transfected type I keratin does not induce type II expression. Rather, nonfilamentous aggregates of type I protein accumulate in the cytoplasm. In contrast, simple epithelial cells transfected with either a type I or a type II epidermal keratin gene do not respond by inducing the expression of a host epidermal keratin. In this case, the foreign protein is incorporated into the endogenous keratin network. These results suggest the possibility that type I keratin expression may be dependent on the accumulation of unpolymerized type II keratin.  相似文献   

5.
The expression of keratin 18 (K18) is restricted in humans primarily to a variety of single layered or simple epithelia. However, direct introduction of a cloned K18 gene into cultured, somatic cells by DNA transfection has been shown to result in the promiscuous expression of K18 even while the endogenous mouse form of K18 (Endo B) remains silent. To determine if the cloned K18 genomic DNA fragment contains sufficient information to be regulated appropriately when subjected to a normal developmental environment, and to determine if the cloned gene is expressed in diverse epithelia, the K18 gene, including 2.5 kb of 5' flanking sequence and 3.5 kb of 3' flanking sequence, has been introduced into the germ line of mice. Mice from all three resulting K18 transgenic lines express the gene in an appropriate tissue-specific pattern that includes hepatocytes, simple epithelia of the intestinal tract, ductal cells of several glands and epithelial cells of the thymus. No expression of K18 was found in muscle, heart, or in most of the brain even in mice carrying 18 copies of the K18 gene. In most tissues, the level of K18 RNA was directly proportional to copy number and was as efficiently expressed as the endogenous Endo B gene. The K18 protein was identified by both protein blotting methods and indirect immunofluorescence staining. No pathological consequences of overexpression of the K18 gene were observed. The cloned K18 gene appears to contain all cis-acting DNA sequences necessary for appropriate expression. In addition, diverse epithelial cell types are able to express this single human gene.  相似文献   

6.
K T Trevor 《The New biologist》1990,2(11):1004-1014
The murine keratins Endo B and Endo A, which are homologs of the human keratins K18 and K8, constitute the intermediate filaments (IFs) that are found in all simple epithelia of the adult and in the first epithelial derivatives of the early embryo. The cellular role of simple epithelial keratins in development and differentiation was investigated by inducing filament collapse in HR9 endoderm and F9 embryonal carcinoma cells in which mutant Endo B protein was constitutively expressed. By immunolocalization techniques a perturbation of the keratin network was revealed as well as concomitant disruption of vimentin IFs and displacement of surface desmosomal proteins, demonstrating an intimate structural association of Endo B/A filaments with these cellular components. In aggregates of differentiating F9 cells displaying altered Endo A/B IFs, the formation of a compact, polarized visceral endoderm layer was significantly compromised. These results indicate that an intact keratin network influences the three-dimensional formation of cell-cell or cell-substratum contacts in embryonic visceral endoderm.  相似文献   

7.
Keratin 8 (K8) is a type II keratin that is associated with the type I keratins K18 or K19 in single layered epithelia. We generated a bacterial artificial chromosome (BAC) transgenic mouse line that expresses the tamoxifen inducible CreER(T2) inserted into the endogenous murine K8 gene. The transgenic mouse line contains two copies of the BAC transgene. To determine the expression specificity and inducibility of CreER(T2), the K8-CreER(T2) mice were bred with a Gt(ROSA 26)( ACTB-tdTomato-EGFP ) fluorescent protein-based reporter transgenic mouse line. We demonstrated that CreER(T2) and the endogenous K8 gene share the same patterns of expression and that the enzymatic activity of CreER(T2) can be efficiently induced by tamoxifen in all K8-expressing tissues. This mouse line will be useful for studying gene function in development and homeostasis of simple epithelia, and investigating both tissue lineage hierarchy and the identity of the cells of origin for epithelial cancers.  相似文献   

8.
9.
Epithelial cells always co-express acidic and basic keratin polypeptides. Mesenchymal cells, which do not normally contain keratins, can be induced by the inhibitor of DNA methylation 5-azacytidine to synthesize the basic keratin Endo A. In the present paper we show that the acidic keratins Endo B and Endo C can also be induced by 5-azacytidine in teratocarcinoma-derived fibroblasts. Furthermore, individual cells in which Endo B and/or Endo C keratins are found, always co-express the basic polypeptide Endo A. Other cytokeratins are not or very rarely found. Interestingly, Endo A, B, and C are usually associated in vivo and are known to be the first keratin polypeptides appearing during the development of the mouse embryo.  相似文献   

10.
Comprehensive analysis of keratin gene clusters in humans and rodents   总被引:1,自引:0,他引:1  
Here, we present the comparative analysis of the two keratin (K) gene clusters in the genomes of man, mouse and rat. Overall, there is a remarkable but not perfect synteny among the clusters of the three mammalian species. The human type I keratin gene cluster consists of 27 genes and 4 pseudogenes, all in the same orientation. It is interrupted by a domain of multiple genes encoding keratin-associated proteins (KAPs). Cytokeratin, hair and inner root sheath keratin genes are grouped together in small subclusters, indicating that evolution occurred by duplication events. At the end of the rodent type I gene cluster, a novel gene related to K14 and K17 was identified, which is converted to a pseudogene in humans. The human type II cluster consists of 27 genes and 5 pseudogenes, most of which are arranged in the same orientation. Of the 26 type II murine keratin genes now known, the expression of two new genes was identified by RT-PCR. Kb20, the first gene in the cluster, was detected in lung tissue. Kb39, a new ortholog of K1, is expressed in certain stratified epithelia. It represents a candidate gene for those hyperkeratotic skin syndromes in which no K1 mutations were identified so far. Most remarkably, the human K3 gene which causes Meesmann's corneal dystrophy when mutated, lacks a counterpart in the mouse genome. While the human genome has 138 pseudogenes related to K8 and K18, the mouse and rat genomes contain only 4 and 6 such pseudogenes. Our results also provide the basis for a unified keratin nomenclature and for future functional studies.  相似文献   

11.
Two classical mouse hair coat mutations, Rex (Re) and Rex wavy coat (Re(wc)), are linked to the type I inner root sheath (IRS) keratin genes of chromosome 11. An N-ethyl-N-nitrosourea-induced mutation, M100573, also maps close to the type I IRS keratin genes. In this study, we demonstrate that Re and M100573 mice bear mutations in the type I IRS gene Krt25; Re(wc) mice bear an additional mutation in the type I IRS gene Krt27. These three mutations are located in the helix termination motif of the 2B alpha-helical rod domain of a type I IRS keratin protein. Immunohistological analysis revealed abnormal foam-like immunoreactivity with an antibody raised to type II IRS keratin K71 in the IRS of Re/+ mice. These results suggest that the helix termination motif is essential for the proper assembly of types I and II IRS keratin protein complexes and the formation of keratin intermediate filaments.  相似文献   

12.
13.
The intracellular distribution of extra-embryonic endodermal, cytoskeletal proteins A (Endo A) and B (Endo B) was investigated by double-label immunofluorescent microscopy and double-label immunoelectron microscopy. In parietal endodermal cells, the immunofluorescent distribution of Endo B was always coincident with that of Endo A and could be distinguished from vimentin, particularly at the periphery of the cell. At the electron microscopic level, antibodies against both Endo A and Endo B recognized both bundles and individual intermediate filaments. Double-label immunoelectron microscopy was achieved by use of two sizes of colloidal gold particles (5 nm and 20 nm) that were stabilized with secondary antibodies. These results show that Endo A and B are found in the same intermediate filament and probably co-polymerize to form such structures.  相似文献   

14.
15.
Keratins I and II form the largest subgroups of mammalian intermediate filament (IF) proteins and account as obligatory heteropolymers for the keratin filaments of epithelia. All human type I genes except for the K18 gene are clustered on chromosome 17q21, while all type II genes form a cluster on chromosome 12q13, that ends with the type I gene K18. Highly related keratin gene clusters are found in rat and mouse. Since fish seem to lack a keratin II cluster we screened the recently established draft genomes of a bird (chicken) and an amphibian (Xenopus). The results show that keratin I and II gene clusters are a feature of all terrestrial vertebrates. Because hair with its multiple hair keratins and inner root sheath keratins is a mammalian acquisition, the keratin gene clusters of chicken and Xenopus tropicalis have only about half the number of genes found in mammals. Within the type I clusters all genes have the same orientation. In type II clusters there is a rare gene of opposite orientation. Finally we show that the genes for keratins 8 and 18, which are the first expression pair in embryology, are not only adjacent in mammals, but also in Xenopus and three different fish. Thus neighboring K8 and K18 genes seem a feature shared by all vertebrates. In contrast to the two well defined keratin gene clusters of terrestrial vertebrates, three teleost fish show an excess of type I over type II genes, the lack of a keratin type II gene cluster and a striking dispersal of type I genes, that are probably the result of the teleost-specific whole genome duplication followed by a massive gene loss. This raises the question whether keratin gene clusters extend beyond the ancestral bony vertebrate to cartilage fish and lamprey. We also analyzed the complement of non-keratin IF genes of the chicken. Surprisingly, an additional nuclear lamin gene, previously overlooked by cDNA cloning, is documented on chromosome 10. The two splice variants closely resemble the lamin LIII a + b of amphibia and fish. This lamin gene is lost on the mammalian lineage.  相似文献   

16.
Complete structure of the gene for human keratin 18   总被引:11,自引:0,他引:11  
D A Kulesh  R G Oshima 《Genomics》1989,4(3):339-347
  相似文献   

17.
18.
Keratin intermediate filaments (IF) are obligate heteropolymers containing equal amounts of type I and type II keratin. We have previously shown that microinjected biotinylated type I keratin is rapidly incorporated into endogenous bundles of keratin IF (tonofilaments) of PtK2 cells. In this study we show that the earliest steps in the assembly of keratin subunits into tonofilaments involve the extremely rapid formation of discrete aggregates of microinjected keratin. These are seen as fluorescent spots containing both type I and type II keratins within 1 min post-injection as determined by double label immunofluorescence. These observations suggest that endogenous type II keratin subunits can be rapidly mobilized from their endogenous state to form complexes with the injected type I protein. Furthermore, confocal microscopy and immunogold electron microscopy suggest that the type I-type II keratin spots from in close association with the endogenous keratin IF network. When the biotinylated protein is injected at concentrations of 0.3-0.5 mg/ml, the organization of the endogenous network of tonofilaments remains undisturbed during incorporation into tonofilaments. However, microinjection of 1.5-2.0 mg/ml of biotinylated type I results in significant alterations in the organization and assembly state of the endogenous keratin IF network soon after microinjection. The results of this study are consistent with the existence of a state of equilibrium between keratin subunits and polymerized keratin IF in epithelial cells, and provide further proof that IF are dynamic elements of the cytoskeleton of mammalian cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号