首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site. Fluorescence resonance energy transfer was examined between the 344W donor probe and 2'(3')-O-(N-methylanthraniloyl) (mant)-nucleotide acceptor probes in the active site of this construct. The observed fluorescence resonance energy transfer efficiencies were 6.4% in the presence of mant ADP and 23.8% in the presence of mant ATP, corresponding to distances of 33.4 A and 24.9 A, respectively. Our results are consistent with structural rearrangements in which there is an 8.5-A closure between the 344W residue and the mant moiety during the transition from the strongly (ADP) to weakly (ATP) actin-bound states of the myosin ATPase cycle.  相似文献   

2.
J A Sleep  P D Boyer 《Biochemistry》1978,17(25):5417-5422
The effect of actin concentration on the myosin catalyzed exchange of phosphate oxygens with water accompanying ATP hydrolysis has been investigated. The extent of exchange was found to extrapolate to zero at infinite actin concentration at 23 and 0 degrees C for myosin subfragments S1(A1) and S1(A2). This result is consistent with actin associating directly with the product of the hydrolysis step and is not readily consistent with refractory state schemes in which the entire flow goes via a dissociating pathway. The possibility of a refractory state in the form of a phosphorylated intermediate or a bound metaphosphate state with hydrolysis occurring in the transition to the refractory state merits consideration. A full analysis of the dependence of intermediate exchange on the rate constants of the acto-S1 scheme is given and the errors arising from other methods of analysis are discussed. The rate of oxygen exchange was measured as 10 s-1 (23 degrees C) a value comparable with but slightly lower than the rate of reversal of the ATP cleavage step.  相似文献   

3.
Y Ishii  S S Lehrer 《Biochemistry》1985,24(23):6631-6638
The fluorescence of pyrene-TM [rabbit skeletal tropomyosin (TM) labeled at Cys with N-(1-pyrenyl)maleimide] consists of monomer and excimer bands [Betcher-Lange, S., & Lehrer, S.S. (1978) J. Biol. Chem. 253, 3757-3760]; an increase in excimer fluorescence with temperature is due to a shift in equilibrium from a chain-closed state (N) to a chain-open state (X) associated with a helix pretransition [Graceffa, P., & Lehrer, S.S. (1980) J. Biol. Chem. 255, 11296-11300]. In this study, we show that the presence of appreciable excimer fluorescence at temperatures below the N----X pretransition (initial excimer) is due to perturbation of the TM chain-chain interaction by the pyrenes at Cys-190. Fluorescence and ATPase titrations indicated that the label caused a decrease in TM binding to F-actin primarily due to reduced end to end TM interactions on the actin filament. Under conditions where pyrene-TM was bound to F-actin, however, the excimer fluorescence did not increase with temperature, indicating that F-actin stabilizes tropomyosin by inhibiting the N----X transition. The binding of myosin subfragment 1 (S1) to pyrene-TM-F-actin at low ratios to actin caused time-dependent changes in fluorescence. After equilibrium was reached, the initial excimer fluorescence was markedly reduced and remained constant over the pretransition temperature range. Further stabilization of tropomyosin conformation on F-actin is therefore associated with S1 binding. Effects of the binding of S1 to the F-actin-tropomyosin thin filament on the state of tropomyosin were studied by monitoring the monomer fluorescence of pyrene-TM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The mechanism of kinesin ATPase has been investigated by transient state kinetic analysis. The results satisfy the scheme [formula: see text] where T, D, and P(i) refer to nucleotide tri- and diphosphate and inorganic phosphate, respectively. The nucleotide-binding steps were measured by the fluorescence enhancement of mant (2'-(3')-O-(N-methylanthraniloyl)-ATP and mant-ADP. The initial rapid equilibrium binding steps (1) and (6) are followed by isomerizations (k2 = 170 +/- 30 s-1 at 20 degrees C, k-5 greater than 100 s-1). The increase in fluorescence is 20-25% larger for K.T** than K.D*. The rate constant of the hydrolysis step k3 is 6-7 s-1. The fluorescence decreases after formation of K.T** at a rate of 7-10 s-1. This change could occur in step 3 or in step 4 if k4 much greater than k3. The value of k4 is larger than 0.1 s-1. The steady state rate is 0.003 s-1 which agrees with the rate of ADP dissociation (k5). Step 5 is rate limiting in the scheme in agreement with the conclusion of Hackney (Hackney, D. D. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 6314-6318) that ADP dissociation is the rate-limiting step.  相似文献   

5.
Peyser YM  Shaya S  Ajtai K  Burghardt TP  Muhlrad A 《Biochemistry》2003,42(43):12669-12675
High concentration of the cosolvent poly(ethylene glycol) (PEG) induces reversible aggregation of skeletal myosin subfragment 1 (S1) and inhibition of its Mg-ATPase activity [Highsmith et al. (1998) Biophys. J. 74, 1465-1472]. In the present work the effect of aggregation on the various steps of the ATPase cycle was studied. The isomerization and hydrolysis steps of the cycle were not affected by S1 aggregation since the formation of the "trapped" S1.MgADP.phosphate analogue complexes, which mimic the prehydrolysis M*ATP and posthydrolysis M**ADP.P(i) transition states, proceeded without any hindrance. Similar conclusions could be reached from the chemical modification of Lys-83 and Cys-707 in the presence of MgATP and MgATPgammaS, which indicated that the most populated intermediate of the cycle in solubilized and aggregated S1 is M**ADP.P(i). The dissociation of the trapped S1.MgADP.phosphate analogue complexes resembling the M**ADP.P(i) state was strongly inhibited by PEG-6000, showing that the transition from this intermediate is prevented by the aggregation. This step is presumably inhibited because the coupled swinging of the lever arm from the closed to the open position is constrained by the close packing of aggregated S1.  相似文献   

6.
C Tesi  K Kitagishi  F Travers  T Barman 《Biochemistry》1991,30(16):4061-4067
The post-ATP binding steps of myosin subfragment 1 (S1) and actomyosin subfragment 1 (actoS1) ATPases were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The cleavage and release of Pi steps were studied by the rapid-flow quench method and the interaction of actin with S1 plus ATP by light scattering in a stopped-flow apparatus. At -15 degrees C, the interaction of actin with S1 remains tight, and the Km for the activation of S1 ATPase is very small (0.3 microM). The chemical data were interpreted by E + ATP----E*.ATP----E**.ADP.Pi----E*.ADP----products, where E is S1 or actoS1. In Pi burst experiments with S1, there was a large Pi burst of free Pi, but E**.ADP.Pi could not be detected. Here the predominant complex in the seconds time range is E*.ATP and in the steady-state E*.ADP. With actoS1, there was a small Pi burst of E**.ADP.Pi, evidence that the cleavage steps for S1 and actoS1 are different. From the stopped-flow experiments, the dissociation of actoS1 by ATP was complete, even at actin concentrations 60X its Km. Further, no interaction of actin with the key intermediate M*.ATP could be detected. Therefore, at -15 degrees C, actoS1 ATPase occurs by a dissociative pathway; in particular, the cleavage step appears to occur in the absence of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The kinetics of the association of actin with myosin subfragment-1 (S1) has been studied by using S1 labeled at the sulfhydryl group SH1 with 5-(iodoacetamido)fluorescein (S1-AF). Upon rapid mixing in a stopped-flow apparatus, the fluorescence intensity of the fluorescein moiety increased by 50%, followed by a slower increase that was well resolved. This slow phase of the fluorescence change could not be fitted to either a monoexponential or a biexponential function, but it could be fitted to a sum of three exponential terms yielding three observed first-order rate constants (lambda i). The dissociation of acto.-(S1-AF) was studied by displacement of S1-AF from the complex with native S1. The dissociation kinetics was characterized by a single rate constant (approximately 0.012 s-1 at 20 degrees C), and this constant was independent of S1 concentration. Together with previous equilibrium data that were obtained under identified conditions for formation of acto-subfragment-1 (Lin, S.-H., and H. C. Cheung. 1991. Biochemistry. 30:4317-4323), a six-state two-pathway model is proposed as a minimum kinetic scheme for formation of rigor acto.S1. In this model, unbound subfragment-1 exists in two conformational states (S1' and S1) which are in equilibrium with each other, one corresponding to the previously established low-temperature state and the other to the high-temperature state. Each subfragment-1 state can interact with actin to form a collision complex, followed by two isomerizations to form two acto-subfragment-1 states (A.S1' and A.S1). Both isomerizations were visible in stopped-flow experiments. Two special cases of the model were considered: 1) a rapid pre-equilibration of the initial collision complex with actin and S1, and 2) trace accumulation of the collision complex. The first case required that the three combinations of the three observed rate constants be independent of actin concentration. The data were incompatible with this approximation. The other special case required that the sum of the lambda i vary linearly with actin concentration and the other two combinations of lambda i vary with actin concentration in a quadratic fashion. The present data were in agreement with the second case. At 20 degrees C and in 60 mM KCl, 2 mM MgCl2, 30 mM 2-([-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino)ethanesulfonic acid, and pH 7.5, the biomolecular association rate constants for the interaction of actin with S1' and S1 were 8.58 x 10(5) and 1.11 x 10(6) M-1 s-1, respectively.  相似文献   

8.
Root DD  Wang K 《Biochemistry》2001,40(5):1171-1186
Human nebulin fragments, NA3 and NA4, corresponding to individual superrepeats display high-affinity interactions with individual actin protomers in cosedimentation and solid-phase binding assays. Stoichiometric analysis of nebulin fragment-induced actin polymerization and inhibition of actin-activated S1 ATPase indicate that one superrepeat influences multiple actin molecules along the F-actin filament, consistent with a combination of strong and weak interactions of nebulin over the length of the actin filament. The mechanisms by which human nebulin fragments affect the interaction between actin and myosin S1 are studied by fluorescence quenching, polarization, and resonance energy transfer. We show that, under strong binding conditions, premixing actin with the NA3 prior to adding myosin subfragment 1 (S1) inhibits the rate of actoS1 association. The nebulin fragments, NA3 and NA4, caused little effect on the extent of actoS1 binding at equilibrium but did alter the nature of the complex as evidenced by an increase in the resonance energy transfer efficiencies between S1 and actin in the absence of ATP. The addition of low concentrations of ATP rapidly dissociates the strong-binding actoS1 irrespective of the presence or absence of nebulin fragment. Interestingly, the strongly bound state reforms rapidly after S1 hydrolyzes all available ATP. These observations are consistent with the notion that nebulin might contribute to optimizing the alignment of actomyosin interactions and inhibit suboptimal actomyosin contacts.  相似文献   

9.
The rate of release of inorganic phosphate (Pi) from cycling cross-bridges in rabbit portal-anterior mesenteric vein smooth muscle was determined by following the fluorescence of the Pi-reporter, MDCC-PBP (Brune, M., J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb. 1998. Biochemistry. 37:10370-10380). Cross-bridge cycling was initiated by photolytic release of ATP from caged-ATP in Triton-permeabilized smooth muscles in rigor. When the regulatory myosin light chains (MLC20) had been thiophosphorylated, the rate of Pi release was biphasic with an initial rate of 80 microM s-1 and amplitude 108 microM, decreasing to 13.7 microM s-1. These rates correspond to fast and slow turnovers of 1.8 s-1 and 0.3 s-1, assuming 84% thiophosphorylation of 52 microM myosin heads. Activation by Ca2+-dependent phosphorylation subsequent to ATP release resulted in slower Pi release, paralleling the rate of contraction that was also slower than after thiophosphorylation, and was also biphasic: 51 microM s-1 and 13.2 microM s-1. These rates suggest that the activity of myosin light chain kinase and phosphatase ("pseudo-ATPase") contributes <20% of the ATP usage during cross-bridge cycling. The extracellular "ecto-nucleotidase" activity was reduced eightfold by permeabilization, conditions in which the ecto-ADPase was 17% of the ecto-ATPase. Nevertheless, the remaining ecto-ATPase activity reduced the precision of the estimate of cross-bridge ATPase. We conclude that the transition from fast to slow ATPase rates reflects the properties and forces directly acting on cross-bridges, rather than the result of a time-dependent decrease in activation (MLC20 phosphorylation) occurring in intact smooth muscle. The mechanisms of slowing may include the effect of positive strain on cross-bridges, inhibition of the cycling rate by high affinity Mg-ADP binding, and associated state hydrolysis.  相似文献   

10.
The reactions of pyrene-labeled actin with myosin subfragment 1 (S1) and S1-ligand complexes at low ionic strength are described by the schemes [formula: see text] where M refers to a myosin head; A is actin; L is ligand; the asterisk refers to a high fluorescence state of actin; and K1 and K3 are association constants. K1 is reduced approximately 10-fold for M.ADP or M.pyrophosphate versus M alone. The rate constant of the isomerization step (k2) is 150-200 s-1 for A*M, A*M.ADP, and A*M-pyrophosphate (20 degrees C). The interaction between the ligand the actin binding sites reduces K2 from 2,000 for A*M to 50-100 for A*M.ADP and to approximately unity for A*M-pyrophosphate. The A*M.ADP state is equated with the AM'.ADP state of Sleep and Hutton (Sleep, J., A., and Hutton, R. L. (1980) Biochemistry 19, 1276-1283).  相似文献   

11.
M A Geeves 《Biochemistry》1989,28(14):5864-5871
The equilibrium and dynamics of the interaction between actin, myosin subfragment 1 (S1), and ADP have been investigated by using actin which has been covalently labeled at Cys-374 with a pyrene group. The results are consistent with actin binding to S1.ADP (M.D) in a two-step reaction, A + M.D K1 equilibrium A-M.D K2 equilibrium A.M.D, in which the pyrene fluorescence only monitors the second step. In this model, K1 = 2.3 X 10(4) M-1 (k+1 = 4.6 X 10(4) M-1 s-1) and K2 = 10 (k+2 less than or equal to 4 s-1); i.e., both steps are relatively slow compared to the maximum turnover of the ATPase reaction. ADP dissociates from both M.D and A-M.D at 2 s-1 and from A.M.D at greater than or equal to 500 s-1; therefore, actin only accelerates the release of product from the A.M.D state. This model is consistent with the actomyosin ATPase model proposed by Geeves et al. [(1984) J. Muscle Res. Cell Motil. 5, 351]. The results suggest that A-M.D cannot break down at a rate greater than 4 s-1 by dissociation of ADP, by dissociation of actin, or by isomerizing to A.M.D. It is therefore unlikely to be significantly occupied in a rapidly contracting muscle, but it may have a role in a muscle contracting against a load where the ATPase rate is markedly inhibited. Under these conditions, this complex may have a role in maintaining tension with a low ATP turnover rate.  相似文献   

12.
The addition of ATP to turkey gizzard myosin causes an enhancement of the intrinsic tryptophan fluorescence. The level of fluorescence enhancement is determined by the myosin conformation. The transition of myosin from the folded (10 S) state to the extended (6 S) state is accompanied by a decrease in the fluorescence level. Phosphorylation-dephosphorylation of myosin does not directly influence fluorescence and will induce changes only if the myosin conformation is altered. Under the appropriate conditions, phosphorylation of myosin favors the transition of 10 S to 6 S. The phosphorylation dependence of the associated fluorescence decrease is not linear, and it is proposed that the phosphorylation of both light chains is required for the full transition. The tryptophan residues involved respond to the binding of ATP at the hydrolytic sites. Since the fluorescence properties of gizzard myosin are influenced by the myosin conformation, it is reasonable to assume that the active sites are also modified by the shape of the myosin molecule.  相似文献   

13.
K Ajtai  L Pótó  T P Burghardt 《Biochemistry》1990,29(33):7733-7741
The nitroxide spin label (iodoacetamido)proxyl (IPSL) was specifically and rigidly attached to sulfhydryl 1 (SH1) on myosin subfragment 1 (S1). The specificity of this label for SH1 was demonstrated by using a technique where the spin label is localized on the electrophoresis-isolated proteolytic fragments of myosin using electron paramagnetic resonance (EPR). Studies of the rigidity of the probe on SH1 indicate that the IPSL is immobilized on the surface of S1 in the presence and absence of the nucleotides MgADP or MgATP. The EPR spectrum of muscle fibers decorated with IPSL-S1 shows that the IPSL-S1 rotates from its orientation in rigor upon binding MgADP. The angular displacement due to nucleotide binding is larger than that detected with the (maleimido)tempo spin label [Ajtai, K., French, A. R., & Burghardt, T. P. (1989) Biophys. J. 56, 535-541], demonstrating that the IPSL is oriented on the myosin cross-bridge in a manner that is favorable for detecting cross-bridge rotation during the rigor to MgADP state transition.  相似文献   

14.
Magnesium (Mg2+) is the physiological divalent cation stabilizing nucleotide or nucleotide analog in the active site of myosin subfragment 1 (S1). In the presence of fluoride, Mg2+ and MgADP form a complex that traps the active site of S1 and inhibits myosin ATPase. The ATPase inactivation rate of the magnesium trapped S1 is comparable but smaller than the other known gamma-phosphate analogs at 1.2 M-1 s-1 with 1 mM MgCl2. The observed molar ratio of Mg/S1 in this complex of 1.58 suggests that magnesium occupies the gamma-phosphate position in the ATP binding site of S1 (S1-MgADP-MgFx). The stability of S1-MgADP-MgFx at 4 degrees C was studied by EDTA chase experiments but decomposition was not observed. However, removal of excess fluoride causes full recovery of the K+-EDTA ATPase activity indicating that free fluoride is necessary for maintaining a stable trap and suggesting that the magnesium fluoride complex is bonded to the bridging oxygen of beta-phosphate more loosely than the other known phosphate analogs. The structure of S1 in S1-MgADP-MgFx was studied with near ultraviolet circular dichroism, total tryptophan fluorescence, and tryptophan residue 510 quenching measurements. These data suggest that S1-MgADP-MgFx resembles the M**.ADP.Pi steady-state intermediate of myosin ATPase. Gallium fluoride was found to compete with MgFx for the gamma-phosphate site in S1-MgADP-MgFx. The ionic radius and coordination geometry of magnesium, gallium and other known gamma-phosphate analogs were compared and identified as important in determining which myosin ATPase intermediate the analog mimics.  相似文献   

15.
It is known that ternary complexes of myosin subfragment 1 (S1) with ADP and the Pi analogs beryllium fluoride (BeFx) and aluminum fluoride (AlF4-) are stable analogs of the myosin ATPase intermediates M* x ATP and M** x ADP x Pi, respectively. Using kinetic approaches, we compared the rate of formation of the complexes S1 x ADP x BeFx and S1 x ADP x AlF4- in the absence and in the presence of F-actin, as well as of the interaction of these complexes with F-actin. We show that in the absence of F-actin the formation of S1 x ADP x BeFx occurs much faster (3-4 min) than that of S1 x ADP x AlF4- (hours). The formation of these complexes in the presence of F-actin led to dissociation of S1 from F-actin, this process being monitored by a decrease in light scattering. The light scattering decrease of the acto-S1 complex occurred much faster after addition of BeFx (during 1 min) than after addition of AlF4- (more than 20 min). In both cases the light scattering of the acto-S1 complex decreased by 40-50%, but it remained much higher than that of F-actin measured in the absence of S1. The interaction of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes with F-actin was studied by the stopped-flow technique with high time resolution (no more than 0.6 sec after mixing of S1 with F-actin). We found that the binding of S1 x ADP x BeFx or S1 x ADP x AlF4- to F-actin is accompanied by a fast increase in light scattering, but it does not affect the fluorescence of a pyrene label specifically attached to F-actin. We conclude from these data that within this time range a "weak" binding of the S1 x ADP x BeFx and S1 x ADP x AlF4- complexes to F-actin occurs without the subsequent transition of the "weak" binding state to the "strong" binding state. Comparison of the light scattering kinetic curves shows that S1 x ADP x AlF4- binds to F-actin faster than S1 x ADP x BeFx does: the second-order rate constants for the "weak" binding to F-actin are (62.8 +/- 1.8) x 10(6) M-1 x sec-1 in the case of S1 x ADP x AlF4- and (22.6 +/- 0.4) x 10(6) M-1 x sec-1 in the case of S1 x ADP x BeFx. We conclude that the stable ternary complexes S1 x ADP x BeFx and S1 x ADP x AlF4- can be successfully used for kinetic studies of the "weak" binding of the myosin heads to F-actin.  相似文献   

16.
beta-cardiac myosin subfragment 1 (betaS1) tertiary structure and dynamics were characterized with proteolytic digestion, nucleotide analogue trapping kinetics, and intrinsic fluorescence changes accompanying nucleotide binding. Proteolysis of betaS1 produces the 25, 50, and 20 kDa fragments and a new cut within the 50-kDa fragment at Arg369. F-actin inhibits cleavage of the 50-kDa fragment and fails to inhibit cleavage at the 50/20 kDa junction, suggesting betaS1 presents an actoS1 conformation fundamentally different from skeletal S1. Time-dependent changes in Mg(2+)-ATPase accompanying proteolysis identifies cleavage points that lie within the energy transduction pathway. The nucleotide analogue trapping kinetics reveal the presence of a reversible weakly actin attached state. Comparison of nucleotide analogue induced betaS1 structures with the transient structures occurring during ATPase indicates analogue induced and transient structures are in a one-to-one correspondence. Tryptophan fluorescence enhancement accompanies the binding or trapping of nucleotide or nucleotide analogues. Isolation of Trp508 fluorescence shows it is an ATP-sensitive tryptophan and that its vicinity changes conformation sequentially with the transient intermediates accompanying ATPase. These studies elucidate energy transduction and suggest how mutations of betaS1 implicated in disease might undermine function, stability, or efficiency.  相似文献   

17.
Hybrid contractile apparatus was reconstituted in skeletal muscle ghost fibers by incorporation of skeletal muscle myosin subfragment 1 (S1), smooth muscle tropomyosin and caldesmon. The spatial orientation of FITC-phalloidin-labeled actin and IAEDANS-labeled S1 during sequential steps of the acto-S1 ATPase cycle was studied by measurement of polarized fluorescence in the absence or presence of nucleotides conditioning the binding affinity of both proteins. In the fibers devoid of caldesmon addition of nucleotides evoked unidirectional synchronous changes in the orientation of the fluorescent probes attached to F-actin or S1. The results support the suggestion on the multistep rotation of the cross-bridge (myosin head and actin monomers) during the ATPase cycle. The maximal cross-bridge rotation by 7 degrees relative to the fiber axis and the increase in its rigidity by 30% were observed at transition between A**.M**.ADP.Pi (weak binding) and A--.M--.ADP (strong binding) states. When caldesmon was present in the fibers (OFF-state of the thin filament) the unidirectional changes in the orientation of actin monomers and S1 were uncoupled. The tilting of the myosin head and of the actin monomer decreased by 29% and 90%, respectively. It is suggested that in the "closed" position caldesmon "freezes" the actin filament structure and induces the transition of the intermediate state of actomyosin towards the weak-binding states, thereby inhibiting the ATPase activity of the actomyosin.  相似文献   

18.
J Gollub  C R Cremo  R Cooke 《Biochemistry》1999,38(31):10107-10118
We have observed the effects of MgADP and thiophosphorylation on the conformational state of the light chain domain of myosin in skinned smooth muscle. Electron paramagnetic resonance (EPR) spectroscopy was used to monitor the orientation of spin probes attached to the myosin regulatory light chain (RLC). Two spectral states were seen, termed here "intermediate" and "final", that are distinguished by a approximately 24 degrees axial rotation of spin probes attached to the RLC. The two observed conformations are similar to those found previously for smooth muscle myosin S1; the final state corresponds to the major conformation of S1 in the absence of ADP, while the intermediate state corresponds to the conformation of S1 with ADP bound. Light chain domain orientation was observed as a function of the MgADP concentration and the extent of RLC thiophosphorylation. In rigor (no MgADP), LC domains were distributed equally between the intermediate state and the final state; upon addition of saturating (3.5 mM) MgADP, about one-third of the LC domains in the final state rotated approximately 20 degrees axially to the intermediate state. The progression of the change in populations was fit to a simple binding equation, yielding an apparent dissociation constant of approximately 110 microM for skinned smooth muscle fibers and approximately 730 microM for thiophosphorylated, skinned smooth muscle fibers. These observations suggest a model that explains the behavior of "latch bridges" in smooth muscle.  相似文献   

19.
Prochniewicz E  Walseth TF  Thomas DD 《Biochemistry》2004,43(33):10642-10652
We have used optical spectroscopy (transient phosphorescence anisotropy, TPA, and fluorescence resonance energy transfer, FRET) to detect the effects of weakly bound myosin S1 on actin during the actomyosin ATPase cycle. The changes in actin were reported by (a) a phosphorescent probe (ErIA) attached to Cys 374 and (b) a FRET donor-acceptor pair, IAEDANS attached to Cys 374 and a nucleotide analogue (TNPADP) in the nucleotide-binding cleft. Strong interactions were detected in the absence of ATP, and weak interactions were detected in the presence of ATP or its slowly hydrolyzed analogue ATP-gamma-S, under conditions where a significant fraction of weakly bound acto-S1 complex was present and the rate of nucleotide hydrolysis was low enough to enable steady-state measurements. The results show that actin in the weakly bound complex with S1 assumes a new structural state in which (a) the actin filament has microsecond rotational dynamics intermediate between that of free actin and the strongly bound complex and (b) S1-induced changes are not propagated along the actin filament, in contrast to the highly cooperative changes due to the strongly bound complex. We propose that the transition on the acto-myosin interface from weak to strong binding is accompanied by transitions in the structural dynamics of actin parallel to transitions in the dynamics of interacting myosin heads.  相似文献   

20.
Hiratsuka T 《Biochemistry》2006,45(4):1234-1241
The fluorescent probe 3-[4-(3-phenyl-2-pyrazolin-1-yl)benzene-1-sulfonyl amido]phenylboronic acid (PPBA) acts as a fluorescent inhibitor for the ATPases of skeletal [Hiratsuka (1994) J. Biol. Chem. 269, 27251-27257] and Dictyostelium discoideum [Bobkov et al. (1997) J. Muscle Res. Cell Motil. 18, 563-571] myosins. The former paper suggested that, upon addition of excess nucleotides to the binary complex of subfragment-1 from skeletal myosin (S1) with PPBA, a stable ternary complex of S1 with PPBA and nucleotide is formed. Useful fluorescence properties of PPBA enable us to distinguish the conformation of the myosin ATPase at the ATP state from that at the ADP state. In the present paper, to determine the PPBA-binding site in the complexes, enzymatic and fluorescence properties of the S1.PPBA.nucleotide complexes were investigated. Upon formation of the ternary complex with ATP, a new peak appeared at 398 nm in the PPBA fluorescence spectrum. Experiments using model compounds of aromatic amino acid suggested that this fluorescence peak at 398 nm is originated from PPBA interacting with Phe residue(s). Taking into account differences in fluorescence spectra between complexes of S1 and those of subfragment-1 from D. discoideum myosin (S1dC), in the ternary complex of S1 formed with ATP, PPBA was suggested to interact with Phe residue(s) that is absent in S1dC. Docking simulation of PPBA on the S1.nucleotide complex revealed that Phe472 interacts with PPBA. Binding sites of PPBA and blebbistatin, an inhibitor showing high affinity and selectivity toward myosin II [Kovács et al. (2004) J. Biol. Chem. 279, 35557-35563], seem to overlap at least partly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号