首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the investigation of the structure of DNA liquid crystal (LC) phases by means of polarization sensitive two-photon microscopy (PSTPM). DNA was stained with fluorescent dyes, an intercalator propidium iodide, or a groove binder Hoechst 3342, and the angular dependence of the intensity of two-photon excited fluorescence emitted by the dye was collected. The local orientation of DNA molecules in cholesteric and columnar LC phases was established on the basis of the relative angle between the transition dipole of the dye and the long axis of DNA helix. Three-dimensional images of the cholesteric phase were obtained making use of the intrinsic 3D resolving ability of two-photon microscopy. We also discuss the influence of dyes on the parameters of DNA LC phases and comment on advantages and limitations of the PSTPM technique in comparison with other LC characterization techniques.  相似文献   

2.
We have investigated the X-ray and optical properties (CD spectra and polarization microscopy) of liquid-crystalline phases and dispersions formed on pretreatment of low molecular weight DNA with the platinum(II) coordination complexes, cis-diammine-dichloroplatinum(II) (DDP), 2,2'-bipyridinedichloroplatinum(II) (1) and 2,2'-bipyridineethylenediammineplatinum(II) (2). It is demonstrated that the platination of DNA leads to the ordering of neighbouring molecules of DNA in liquid-crystalline phases being diminished. The intense bands observed in the CD spectra of liquid-crystalline dispersions prepared from DNA pretreated with 1 or 2 can be used to determine the orientation of the latter compounds with respect to the helical axis of the DNA and to detect distortions in the secondary structure of DNA. The possible causes of the appearance of the intense bands in the CD spectra of liquid-crystalline phases and alterations in the manner of packing of the molecules of DNA within them are discussed.  相似文献   

3.
The interaction of daunomycin molecules with double-stranded DNA in the liquid-crystalline state was investigated. It was shown that at a certain extent of daunomycin binding a change of the mechanism of anthracycline orientation with reference to the DNA chain occurs. This is testified by the alteration of the sense of spatial packing of the DNA molecules in liquid-crystalline dispersions formed as a result of phase separation in poly(ethyleneglycol)-containing solutions, as well as by the onset of the reaction of daunomycin with divalent copper ions. Using this reaction, polymeric (daunomycin-copper) chelate cross-links between the DNA molecules fixed in the liquid-crystalline dispersions were formed. The length of such cross-links is adjusted by the distance between the DNA molecules, which, in turn, depends on the concentration of poly(ethyleneglycol) used for phase separation. The above molecular building mechanism may lead to new interesting applications.  相似文献   

4.
Cyanine fluorophores are commonly used in single-molecule FRET experiments with nucleic acids. We have previously shown that indocarbocyanine fluorophores attached to the 5′-termini of DNA and RNA via three-carbon atom linkers stack on the ends of the helix, orienting their transition moments. We now investigate the orientation of sulfoindocarbocyanine fluorophores tethered to the 5′-termini of DNA via 13-atom linkers. Fluorescence lifetime measurements of sulfoindocarbocyanine 3 attached to double-stranded DNA indicate that the fluorophore is extensively stacked onto the terminal basepair at 15°C, with properties that depend on the terminal sequence. In single molecules of duplex DNA, FRET efficiency between sulfoindocarbocyanine 3 and 5 attached in this manner is modulated with helix length, indicative of fluorophore orientation and consistent with stacked fluorophores that can undergo lateral motion. We conclude that terminal stacking is an intrinsic property of the cyanine fluorophores irrespective of the length of the tether and the presence or absence of sulfonyl groups. However, compared to short-tether indocarbocyanine, the mean rotational relationship between the two fluorophores is changed by ∼60° for the long-tether sulfoindocarbocyanine fluorophores. This is consistent with the transition moments becoming approximately aligned with the long axis of the terminal basepair for the long-linker species.  相似文献   

5.
Transient four stranded joint DNA molecules bridging sister chromatids constitute an intriguing feature of replicating genomes. Here, we studied their structure and frequency of formation in Physarum polycephalum. By “3D gels”, we evidenced that they are not made of four continuous DNA strands. Discontinuities, which do not interfere with the unique propensity of the joint DNA molecules to branch migrate in vitro, are linked to the crossover, enhanced by RNaseA, and affect at most half of the DNA strands. We propose a structural model of joint DNA molecules containing ribonucleotides inserted within one strand, a gapped strand, and two continuous DNA strands. We further show that spontaneous joint DNA molecules are short-lived and are as abundant as replication forks. Our results emphasize the highly frequent formation of joint DNA molecules involving newly replicated DNA in an untreated cell and uncover a transitory mechanism connecting the sister chromatids during S phase.  相似文献   

6.
Murata S  Herman P  Lakowicz JR 《Cytometry》2001,43(2):94-100
BACKGROUND: Fluorescence lifetime imaging microscopy (FLIM) is becoming an important tool in cellular imaging. In FLIM, the image contrast is concentration insensitive, whereas it is sensitive to the local environment and interactions of fluorophores such as fluorescence resonance energy transfer (RET). METHODS: Fluorescence microscopy, lifetime imaging, and texture analysis were used to study the spatial distribution of fluorophores bound to nuclear DNA. 3T3-Swiss albino mice fibroblast nuclei were labeled with Hoechst 33258 (Ho), an AT-specific dye, and 7-aminoactinomycin D (7-AAD), a GC-specific dye. Ho is a RET donor to the 7-AAD acceptor. RESULTS: Texture analysis of 50 alcohol-fixed nuclei quantitatively showed changes of spatial distribution of apparent donor lifetimes. RET increased the spatial heterogeneity in the phase and modulation lifetime images. In most of the doubly stained cells (about 80%), the phase and modulation lifetime distributions were spatially homogeneous. In about 20% of the cells, we noticed that lower phase and modulation lifetimes caused by RET were correlated with regions of high Ho intensity in the nuclei. CONCLUSIONS: The spatial lifetime heterogeneity of Ho in presence of 7-AAD seems to be caused by RET between closely spaced strands in the three dimensionally condensed regions of DNA.  相似文献   

7.
8.
The effects of small size (~2 nm) gold nanoparticles on the properties of particles of cholesteric liquid-crystalline dispersions formed by double-stranded DNA molecules were analyzed. It has been shown that gold nanoparticles induce two different processes. First, they facilitate reorganization of the spatial cholesteric structure of dispersion particles to nematic one. This process is accompanied by the fast decrease in the amplitude of abnormal band in the CD spectrum. Second, they can form ensembles consisting of gold nanoparticles. This process is accompanied by the development and displacement of surface plasmon resonance band in the visible region of the absorption spectrum. The appearance of this band is analyzed by considering two different models of the formation of ensembles consisting of gold nanoparticles. By small-angle X-ray scattering we performed structural analysis of phases formed by DNA cholesteric liquid-crystalline dispersion particles treated with gold nanoparticles. As a result of this study it was possible to prove the formation of linear clusters of gold nanoparticles in the “free space” between the adjacent DNA molecules fixed in the quasinematic layers of liquid-crystalline particles. It has been hypothesized that the formation of linear clusters of gold nanoparticles is most likely related to DNA molecules, ordered in the spatial structure of quasinematic layers, and the toxicity of these nanoparticles in biological systems hypothesized.  相似文献   

9.
In this research, we observe and rationalize theoretically the transition from hexagonal to cholesteric packing of double-stranded (ds) DNA in dispersion particles. The samples were obtained by phase exclusion of linear ds DNA molecules from water-salt solutions of poly(ethylene glycol)—PEG—with concentrations ranging from 120 mg ml?1 to 300 mg ml?1. In the range of PEG concentrations from 120 mg ml?1 to 220 mg ml?1 at room temperature, we find ds DNA molecule packing, typical of classical cholesterics. The corresponding parameters for dispersion particles obtained at concentrations greater than 220 mg ml?1 indicate hexagonal packing of the ds DNA molecules. However, slightly counter-intuitively, the cholesteric-like packing reappears upon the heating of dispersions with hexagonal packing of ds DNA molecules. This transition occurs when the PEG concentration is larger than 220 mg ml?1. The obtained new cholesteric structure differs from the classical cholesterics observed in the PEG concentration range 120–220 mg ml?1 (hence, the term ‘re-entrant’). Our conclusions are based on the measurements of circular dichroism spectra, X-ray scattering curves and textures of liquid-crystalline phases. We propose a qualitative (similar to the Lindemann criterion for melting of conventional crystals) explanation of this phenomenon in terms of partial melting of so-called quasinematic layers formed by the DNA molecules. The quasinematic layers change their spatial orientation as a result of the competition between the osmotic pressure of the solvent (favoring dense, unidirectional alignment of ds DNA molecules) and twist Frank orientation energy of adjacent layers (favoring cholesteric-like molecular packing).  相似文献   

10.
All linear DNA molecules face special problems in replicating their 5' ends, as DNA polymerases add nucleotides only to pre-existing strands with free 3'-OH groups. Parvoviruses, a group of small animal viruses with a linear single-stranded DNA genome, cope with this problem by having palindromic terminal sequences that can fold back on themselves to form hairpin structures essential in priming DNA replication. The 3' terminal sequence that initiates replication becomes reversed in orientation during the process, and if the palindrome is imperfect, two different, reverse-complementary terminal sequences are generated. The relative abundances of the terminal sequence orientations at each end of the DNA molecules can be measured and give information about the replication process. From such clues, we developed a "kinetic hairpin transfer model" based on differential rates of hairpin formation and inversion processes depending on the conformations of the 3' termini. Numerical studies showed that this simple idea can account for the diverse pattern of DNA distributions observed in the family Parvoviridae. In this paper, we simplify the model to a set of coupled linear first-order ordinary differential equations in order to delineate its essential properties by Perron-Frobenius theory. Secondly, we examine our assumption of linear kinetics by modeling enzyme catalysis of the component steps of the hairpin transfer process. We show that the rate-determining step of the process is the binding of initiation complex to the self-priming hairpin structures. Furthermore, we find that if the replication machinery is saturated by DNA substrate late in an infection, the differential equations become non-linear but the steady-state DNA distribution is still given by the solution of our original linear equations.  相似文献   

11.
Measurements of time-resolved fluorescence anisotropy and fluorescence resonance energy transfer are finding many applications in the study of biological macromolecules as they enable structural properties of the host molecules to be determined in their natural environment. A difficulty in interpreting these experiments is that they both require knowledge of the relative orientation of the fluorophores, a property that is almost impossible to measure. Here we conduct simulations of AlexaFluor488 and AlexaFluor568 attached to two sites on the membrane channel MscL to provide an alternative mechanism for determining the likely configurations and orientational freedom of the fluorophores, as well as the most likely value of the orientation factor κ2 for energy transfer between them. The fluorophores are relatively mobile, and are found to be more so when immersed in bulk water than when they interact with the lipid membrane. The fluorophores never insert deeply into the lipid, despite their hydrophobic linkers and aromatic headgroup structures. Properties such as the fluorescence anisotropy decay can be predicted from simulations of the fluorophores in bulk water that closely match experimental data. In contrast, when the fluorophores were attached to the large MscL protein it was difficult to sample all the possible configurations of the fluorophores due to the computational time required. While this approach is likely to provide useful data on solvent-accessible fluorophores attached to small proteins, simulations lasting >50 ns or the use of biasing forces are required to accurately predict orientation factors for use in energy transfer experiments on larger membrane-bound proteins.  相似文献   

12.
Superhelical pBR322 DNA molecules form liquid-crystalline dispersions in water-salt solutions containing poly(ethyleneglycol). The formation of the liquid-crystalline dispersions from superhelical DNA molecules results in the appearance of two sites inside the DNA molecules that are split by Micrococcal nuclease. The first site of digestion does not differ from the standard site split by this enzyme in water-salt solutions, whereas the second one represents a new site specific only for the DNA molecules forming liquid-crystalline dispersions. Splitting of the DNA molecule through the first site is accompanied by formation of its linear form; splitting of a new site results in the formation of two linear DNA fragments with molecular masses equal to half of the initial DNA molecules. Enzyme digestion of superhelical DNA molecules forming liquid-crystalline dispersions induces a reformation of the "nonspecific" space organization of dispersions to the cholesteric one. A hypothetic model for packing of the superhelical DNA molecules inside liquid-crystalline dispersions and its transformation under enzyme action is suggested.  相似文献   

13.
Two- and three-dimensional homonuclear 1H NMR spectroscopic techniques have been applied to obtain nearly complete nonexchangeable proton assignments for a 31-residue intramolecular pyrimidine.purine.pyrimidine DNA triplex containing a central G.TA triple in D2O. An assignment strategy for obtaining resonance assignments for DNA protons from a 3D NOESY-TOCSY spectrum is proposed. The strategy utilizes the H1'/H5 omega 3 planes and relies on the recognition of cross-peak patterns for obtaining both intraresidue as well as sequential assignments. On the basis of the cross-peaks observed in the 2D and 3D spectra, a few structural features of the triplex have been delineated qualitatively. All three strands of the triplex adopt a right-handed helical conformation, and, despite the introduction of a central purine guanosine, there is no evidence for major structural distortions in the protonated third strand on the basis of a qualitative interpretation of NMR data. Several interstrand contacts between the purine and the Hoogsteen pyrimidine strands are observed which define the relative orientation of the bases and sugars in these two strands. The presence of strong NOEs between the methyl protons of thymine and the H1' proton of guanosine defines the preferred base-pairing alignment of guanosine at the G.TA triple site. The general approaches illustrated in this study extend the range of DNA molecules accessible for detailed structural investigation by high-resolution NMR spectroscopy.  相似文献   

14.
The circular dichroism spectra of liquid-crystalline dispersions obtained by phase exclusion of linear double-stranded DNA molecules from aqueous saline solutions of polyethylene glycol (120 ≤ CPEG ≤ 300 mg/mL) have been investigated. The formation of liquid-crystalline dispersions at polyethylene glycol concentrations ranging from 120 to 200 mg/mL was accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism; this is indicative of cholesteric packing of the double stranded DNA molecules in the particles of the dispersion. Liquid-crystalline dispersions formed at PEG concentrations higher than 220 mg/mL and room temperature did not show any abnormal bands in the circular dichroism spectra; this is indicative of hexagonal packing of double-stranded DNA molecules in the particles of the dispersions. Heating of optically inactive liquid crystal dispersions induced a transition of the dispersions into a different state accompanied by the emergence of an abnormal negative band in the spectrum of circular dichroism. This transition is considered within the concept of the transformation of a hexagonal packing of DNA molecules into a cholesteric packing. A qualitative mechanism of such a transition is proposed that is formulated in the terms of the “quasinematic” layers of double-stranded DNA molecules that change their spatial orientation under the competing influences of the osmotic pressure of the solvent, orientational elasticity of the cholesteric packing, and thermal fluctuations.  相似文献   

15.
Fluorescence detection is extensively used in high throughput screening. In HTS there is a continuous migration toward higher density plates and smaller sample volumes. In the present report we describe the advantages of two-photon or multiphoton excitation for HTS. Multiphoton excitation (MPE) is the simultaneous absorption of two long-wavelength photons to excite the lowest singlet state of the fluorophore. MPE is typically accomplished with short but high-intensity laser pulses, which allows simultaneous absorption of two or more photons. The intensity of the multiphoton-induced fluorescence is proportional to the square, cube, or higher power of the instantneous photon flux. Consequently, two-photon or multiphoton excitation only occurs at the focal point of the incident beam. This property of two-photon excitation allows the excited volume to be very small and to be localized in the center of each well in the HTS plate. We show that two-photon-induced fluorescence of fluorescein can be reliably measured in microwell plates. We also show the use of 6-carboxy fluorescein as a pH probe with two-photon excitation, and measure 4'-6-diamidino-2-phenylindole (DAPI) binding and two-photon-induced fluorescence. In further studies we measure the time-dependent intensity decays of DAPI bound to DNA and of calcium-dependent fluorophores. Finally, we demonstrate the possibility of three-photon excitation of several fluorophores, including indole, in the HTS plate. These results suggest that MPE can be used in high-density multiwell plates.  相似文献   

16.
An evolutionary Monte Carlo algorithm for predicting DNA hybridization   总被引:1,自引:0,他引:1  
Kim JS  Lee JW  Noh YK  Park JY  Lee DY  Yang KA  Chai YG  Kim JC  Zhang BT 《Bio Systems》2008,91(1):69-75
Many DNA-based technologies, such as DNA computing, DNA nanoassembly and DNA biochips, rely on DNA hybridization reactions. Previous hybridization models have focused on macroscopic reactions between two DNA strands at the sequence level. Here, we propose a novel population-based Monte Carlo algorithm that simulates a microscopic model of reacting DNA molecules. The algorithm uses two essential thermodynamic quantities of DNA molecules: the binding energy of bound DNA strands and the entropy of unbound strands. Using this evolutionary Monte Carlo method, we obtain a minimum free energy configuration in the equilibrium state. We applied this method to a logical reasoning problem and compared the simulation results with the experimental results of the wet-lab DNA experiments performed subsequently. Our simulation predicted the experimental results quantitatively.  相似文献   

17.
Deep imaging within tissue (over 300 μm) at micrometer resolution has become possible with the advent of two-photon fluorescence microscopy (2PFM). The advantages of 2PFM have been used to interrogate endogenous and exogenous fluorophores in the skin. Herein, we employed the integrin (cell-adhesion proteins expressed by invading angiogenic blood vessels) targeting characteristics of a two-photon absorbing fluorescent probe to image new vasculature and fibroblasts up to ≈ 1600 μm within wound (neodermis)/granulation tissue in lesions made on the skin of mice. Reconstruction revealed three dimensional (3D) architecture of the vascular plexus forming at the regenerating wound tissue and the presence of a fibroblast bed surrounding the capillaries. Biologically crucial events, such as angiogenesis for wound healing, may be illustrated and analyzed in 3D on the whole organ level, providing novel tools for biomedical applications.  相似文献   

18.
Förster resonance energy transfer (FRET) technology relies on the close proximity of two compatible fluorophores for energy transfer. Tagged (Cy3 and Cy5) complementary DNA strands forming a stable duplex and a doubly-tagged single strand were shown to demonstrate FRET outside of a cellular environment. FRET was also observed after transfecting these DNA strands into fixed and live cells using methods such as microinjection and electroporation, but not when using lipid based transfection reagents, unless in the presence of the endosomal acidification inhibitor bafilomycin. Avoiding the endocytosis pathway is essential for efficient delivery of intact DNA probes into cells.  相似文献   

19.
Conformational control of macromolecules is useful for efficient chemical and biochemical reactions. This article reports a direct observation method for macromolecules, such as long-strand DNA, in microchannel flow as well as a simple method for stretching DNA strands by microfluidics. Stretching and orientation of DNA molecules by control of flow within a microchannel was observed by optical microscopy. This DNA stretching is explained by coil-stretch transition of polymer molecules. This technique is useful for creating chemical reactions with macromolecules. It offers high selectivity and efficiency that are impossible to achieve in bulk solution. We also demonstrate that our microfluidic stretching method can accomplish efficient hybridization of long-strand DNA. This method will be useful for direct hybridization assay of long-strand DNA.  相似文献   

20.
Merkle D  Lees-Miller SP  Cramb DT 《Biochemistry》2004,43(23):7263-7272
The conditions required to form transfectable lipoplexes have been extensively studied [Zuhorn, I. S., and Hoekstra, D. (2002) J. Membr. Biol. 189, 167-179]. However, to date, experiments have not addressed either the order of events of lipoplex formation in solution or the maximum number of DNA molecules per vesicle in stable single-vesicle lipoplexes. In this study, we have employed two-photon excitation fluorescence correlation spectroscopy (TPE-FCS) and two-photon fluorescence cross-correlation spectroscopy (TPE-XCS) to examine both fluorescence-labeled DNA and cationic vesicle structure and dynamics simultaneously. The dependence of large aggregated lipoplex formation on DNA-to-cationic lipid charge ratio was determined, as was the maximum number of 40 bp double-stranded DNA oligonucleotides able to bind to a single vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号