首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A new effective and simple preparation method of pure metallic hydrosols consisting of silver nanoparticles is proposed using aqueous diaminsilver hydroxide as a precursor freed of special reducing agents, surfactants, or anionic pollutants. The process is driven by NH3 ligand loss and silver complex dissociation followed by silver ion reduction with hydroxyl ions or ammonia itself present in the solution. Self-reduction of aqueous diaminsilver hydroxide occurs for 20–60 min at 90–100 °C in water and results in a wide range of silver nanoparticles, with their sizes dependent on silver complex concentration and reaction time. The pure silver hydrosol is found to attach to a cell membrane without its damage thus allowing measurements of SERS spectra of submembrane hemoglobin inside living erythrocytes.  相似文献   

2.
探究了银胶浓度对于电穿孔导入银纳米粒子获取细胞内表面增强拉曼光谱(SERS)的影响.对6组含有不同浓度银胶的鼻咽癌细胞C666进行电穿孔,测量电穿孔后活细胞内表面增强拉曼光谱.以测得的SERS信号、光谱强度积分值和谱线重复性为指标,研究银胶浓度对电穿孔获取细胞内SERS的影响,对电穿孔后活性C666细胞内SERS平均光谱进行初步谱峰归属.在脉冲电场强度875 V/cm,脉冲持续时间1 ms,电脉冲2次的条件下,每500μl电击缓冲液中含有50μl银胶时测得的细胞内SERS光谱信噪比高,且光谱具有较好的重复性.结果说明,正确选择银胶浓度可以提高电穿孔-SERS效果,获取高质量的活细胞内SERS信号.此研究有助于扩展表面增强拉曼光谱的应用,包括实时检测分析活细胞内生化成分及分布,实时监测细胞生化变化过程等.  相似文献   

3.
The controlled tuning of interparticle distance at the nanoscale level is a major challenge for nanofabrication of surface-enhanced Raman scattering (SERS) active clusters and their application to molecular sensing. In fact, the geometrical properties of the narrow gaps between nanoparticles play a key role in determining the local field enhancement (and therefore, the SERS enhancement factor) and the spatial enhancement distribution in the gap region. Besides, very short interparticle distances may block the access of the analyte to the hot zone. In this paper, we report the synthesis of silver colloid NP clusters with interparticle distances fine tuned in the ≤2 nm range, by exploiting the chemical properties of linear α,ω-aliphatic diamines as molecular linkers with varying chain length. The bifunctional diamines also form intermolecular cavities within their self-assembled monolayers, suitable to host molecular analytes for nanosensing applications, as evidenced by SERS detection of organochlorine insecticides at the trace level. In this regard, the extension of the aliphatic chain played a crucial role in determining the SAM conformation and thus the final sensitivity of the functionalized SERS substrate.  相似文献   

4.
Summary Carp (Cyprinus carpio) hemoglobin readily autoxidizes in blood smears. Quantification of Soret-band absorbance in individual erythrocytes by means of scanning cytophotometry therefore requires more elaborate methods of preparation of blood samples. Of the fixatives that have been tested, suspension of whole blood in isotonic salt solutions containing glutaraldehyde was most suitable. Glutar-aldehyde-fixed red blood cells are totally resistant to hemolysis. In the course of fixation, hemoglobin is transformed to methermoglobin. Spectrophotometry indicated extensive similarities between glutaraldehyde-fixed carp methemoglobin and human methemoglobin. In aqueous solutions, the intensity of the Soret-peak was pH-dependent. The allosteric modifier organic polyphosphate caused anRT transition, resulting in increased molar extinctions. Dried preparations showed Soret-spectra that were not influenced from either pH or organic polyphosphate concentration of the aqueous suspensions in which the erythrocytes had been stored. The same was true for slide preparations of cyano-methemoglobin, easily derived from methemoglobin on addition of potassium cyanide. In the absence of oxygen fresh blood cells from carp slowly transform their hemoglobin into deoxyhemoglobin. Spectra of the intermediate stages of deoxygenation, Hb4(O2)3, Hb4(O2)2 and Hb4(O2), as well as mixtures of these intermediates, could be monitored.  相似文献   

5.
The presence of so-called hot spots, regions with strongly enhanced electromagnetic field, is a critical property of a substrate enabling detection of surface-enhanced Raman scattering (SERS) signals at high enhancement levels. In this work, the effect of interparticle field enhancement on SERS signals was investigated comparing SERS spectra of ethylenediaminetetraacetic-disodium salt in the chemically produced colloids with isolated and aggregated silver nanoparticles using 473 and 532-nm wavelength excitation. The presence of aggregates in the colloidal solution resulted in SERS spectra that were insensitive to wavelength excitation and much richer in structural information and of higher resolution than the corresponding SERS spectra for the colloid with isolated nanoparticles. The experimental SERS spectra were found to be consistent with the finite-difference time-domain simulation results that explored the electromagnetic response of the isolated and aggregated nanoparticles. These results provide more evidence to suggest that the aggregate formation offers favorable electromagnetic properties increasing sensitivity of Raman spectroscopy.  相似文献   

6.
Slatinskaya  O. V.  Zaripov  P. I.  Brazhe  N. A.  Petrushanko  I. Yu.  Maksimov  G. V. 《Biophysics》2022,67(5):726-733
Biophysics - Raman spectroscopy, infrared spectroscopy and laser interference microscopy revealed both morphological changes and changes in the conformation of hemoglobin in the erythrocyte as a...  相似文献   

7.
Different forms of modified and well-controlled plasmonic silver nanoparticles (AgNPs) were synthesized by silver ion reduction process of porous silicon (PS). Fine control of PS surface morphology was accomplished by employing two etching processes: light-induced etching (LIE) and photo electrochemical etching (PECE). The idea was to prepare excellent and reproducible surface-enhanced Raman scattering (SERS) substrates with high enhancement performance. PS surface modification was employed to create efficient and nearly uniformly distributed AgNP hotspot regions with very high specific surface areas. Reproducibility deviation of no more than 5% and enhancement factor of 1.2 × 1014 were obtained by SERS measurements at very low, rhodamine 6G (R6G) dye, concentration 10?15 M. The PS morphology SERS substrate was well discussed and analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction spectroscopy (XRD), and Raman measurements.  相似文献   

8.
Abstract

The aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H2O2; ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation.  相似文献   

9.
During intraerythrocytic development, Plasmodium falciparum increases the ion permeability of the erythrocyte plasma membrane to an extent that jeopardizes the osmotic stability of the host cell. A previously formulated numeric model has suggested that the parasite prevents premature rupture of the host cell by consuming hemoglobin (Hb) in excess of its own anabolic needs. Here, we have tested the colloid‐osmotic model on the grounds of time‐resolved experimental measurements on cell surface area and volume. We have further verified whether the colloid‐osmotic model can predict time‐dependent volumetric changes when parasites are grown in erythrocytes containing the hemoglobin variants S or C. A good agreement between model‐predicted and empirical data on both infected erythrocyte and intracellular parasite volume was found for parasitized HbAA and HbAC erythrocytes. However, a delayed induction of the new permeation pathways needed to be taken into consideration for the latter case. For parasitized HbAS erythrocyte, volumes diverged from model predictions, and infected erythrocytes showed excessive vesiculation during the replication cycle. We conclude that the colloid‐osmotic model provides a plausible and experimentally supported explanation of the volume expansion and osmotic stability of P. falciparum‐infected erythrocytes. The contribution of vesiculation to the malaria‐protective function of hemoglobin S is discussed.  相似文献   

10.
Generally, limited research is extended in studying stability and applicational properties of silver nanoparticles (Ag NPs) synthesized by adopting ‘green chemistry’ protocol. In this work, we report on the synthesis of stable Ag NPs using plant-derived materials such as leaf extract of Neem (Azadirachta indica) and biopolymer pectin from apple peel. In addition, the applicational properties of Ag NPs such as surface-enhanced Raman scattering (SERS) and antibacterial efficiencies were also investigated. As-synthesized nanoparticles (NPs) were characterized using various instrumentation techniques. Both the plant materials (leaf extract and biopolymer) favored the synthesis of well-defined NPs capped with biomaterials. The NPs were spherical in shape with an average particle size between 14-27 nm. These bio-NPs exhibited colloidal stability in most of the suspended solutions such as water, electrolyte solutions (NaCl; NaNO3), biological solution (bovine serum albumin), and in different pH solutions (pH 7; 9) for a reasonable time period of 120 hrs. Both the bio-NPs were observed to be SERS active through displaying intrinsic SERS signals of the Raman probe molecule (Nile blue A). The NPs were effective against the Escherichia coli bacterium when tested in nutrient broth and agar medium. Scanning and high-resolution transmission electron microscopy (SEM and HRTEM) images confirmed cellular membrane damage of nanoparticle treated E. coli cells. These environmental friendly template Ag NPs can be used as an antimicrobial agent and also for SERS based analytical applications.  相似文献   

11.
Commercially available digital versatile discs (DVDs) contain a silver-coated spiral distribution of rectangular-shaped grooves (AgDVD): for the first time, they have been used to produce surface-enhanced Raman scattering (SERS) substrates by electrochemical deposition of silver nanoparticles (AgNPs@AgDVD). The overall procedure only requires cheap and widely available materials and can be easily accomplished. Scanning electron microscopy images of AgNPs@AgDVD revealed that small AgNPs (average diameter about 15 nm) are present within the valleys of AgDVD, whereas over the ridges, the AgNPs are bigger, more densely packed and with a dendrite-like morphology somewhere. The SERS properties of these substrates have been studied in terms of the enhancement factor (EF), point-to-point reproducibility and sample-to-sample repeatability. It turned out that high SERS EF and good reproducibility requirements are both fulfilled. As for repeatability, remarkably better results than typical literature values have been achieved. Such an easy&cheap preparation along with efficient SERS properties make DVD-derived SERS substrates very good candidates for the development of convenient and disposable sensing platforms.  相似文献   

12.
We report pH sensing for biological applications based on surface enhanced Raman scattering (SERS) from silver nanoparticles functionalized with 2-aminothiophenol (2-aminobenzenethiol, 2-ABT). pH-dependent SERS spectra of the attached 2-ABT molecules enable one to sense the pH over the range of 3.0-8.0. We have performed the first demonstration of SERS detection in living cells kept in different pH buffer solutions and show that the pH sensitivity is retained in that case. Thus, the nanoparticles can be used as probes delivering spatially localized chemical information from biological environments and provide a new way to monitor chemical changes at cellular level.  相似文献   

13.
利用紫外与可见分光光度计测量银溶胶与尿液的吸收谱,采用拉曼光谱测量系统检测并研究分析了尿液加入银胶前后的拉曼光谱.基于表面增强技术,尿液的拉曼光谱信号得到显著增强,尿液中微弱的尿酸SERS信号被成功检测.文中对尿液的拉曼峰进行了谱峰归属,并分析了晨尿与夜尿的SERS谱.对晨尿的检测具有更高的可信度和信噪比.研究结果表明...  相似文献   

14.
银溶胶对聚赖氨酸溴化氢结合物(PLys—HBr)表现出极大表面增强拉曼(SER)效应。同PLyS—HBr的普通拉曼光谱相比,表面增强因子提高达6个数量级。实验表明,NH_3~+基是银表面增强效应的强活性基团。但是在相同条件下,聚谷氨酸钠(PGA—Na)在银溶胶中不能获得SER光谱,这可能是由于空间障碍或者COO~-基的活性不如NH_3~+基。  相似文献   

15.
We report experimentally the remote excitation surface plasmon and consequent enhancement of surface-enhanced Raman scattering (SERS) using evanescent wave propagating in quasi-one-dimensional (Q1D) MoO3 ribbon dielectric waveguide. The propagating dielectric waveguide along Q1D MoO3 ribbon is realized experimentally, when the 632.8 nm laser radiates on the one side edge of Q1D MoO3 ribbon. The remote excitation SERS spectra-enhanced by chemical and electromagnetic field mechanisms are measured, respectively, where silver (Ag) nanoparticles are excited by electromagnetic field after propagating 7.3 μm in the ribbon. The chemical mechanism for the remote excitation SERS is contributed from the charge transfer between the analyte molecule and MoO3 ribbon. The electromagnetic field mechanism for the remote excitation SERS arises from the energy conversion from the propagating dielectric waveguide to the surface plasmon of Ag nanoparticles on the Q1D MoO3 ribbon. It is important to reveal the mechanism of energy conversion from the propagating dielectric waveguide to the surface plasmon for potential applications in micro- and nanoscale devices.  相似文献   

16.
Stable gold nanoparticles with surface plasmon resonance tunable from visible (Vis) to near-infrared (NIR) are deposited via a direct sputtering methodology on large area polyethylene terephthalate (PET) to be used as effective, flexible NIR surface-enhanced Raman scattering (SERS) substrates. An O2 plasma treatment of PET is used to tailor growth dynamics, geometry, and plasmonic properties of nanoparticles. The O2 plasma treatment of PET results also in effective improvement of nanoparticle anchoring on the plastic substrate, providing more stable, flexible SERS systems. The functionality of fabricated SERS substrates has been tested using benzylthiol, and SERS enhancement factors in the range 104 have been achieved, which are comparable with those reported in literature for gold nanostructures fabricated on silicon substrate. These results attest the great potentiality of this methodology for the production of cost-effective flexible and reusable large-scale SERS substrates.  相似文献   

17.
Surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces. It is known that metal nanoparticles, especially gold and silver nanoparticles, exhibit great SERS properties, which make them very attractive for the development of biosensors and biocatalysts. On the other hand, the development of ecofriendly methods for the synthesis of metallic nanostructures has become the focus of research in several countries, and many microorganisms and plants have already been used to biosynthesize metallic nanostructures. However, the majority of these are pathogenic to plants or humans. Here, we report gold nanoparticles with good SERS properties, biosynthesized by Neurospora crassa extract under different environmental conditions, increasing Raman signals up to 40 times using methylene blue as a target molecule. Incubation of tetrachloroauric acid solution with the fungal extract at 60°C and a pH value of a) 3, b) 5.5, and c) 10 resulted in the formation of gold nanoparticles of a) different shapes like triangles, hexagons, pentagons etc. in a broad size range of about 10-200 nm, b) mostly quasi-spheres with some different shapes in a main size range of 6-23 nm, and c) only quasi-spheres of 3-12 nm. Analyses included TEM, HRTEM, and EDS in order to corroborate the shape and the elemental character of the gold nanoparticles, respectively. The results presented here show that these ‘green’ synthesized gold nanoparticles might have potential applicability in the field of biological sensing.  相似文献   

18.
Generally, the immobilization of two-dimensional nanoparticles in immersion procedures is time-consuming (over 24 h). In this paper, we report a very effective and simple method to fabricate two-dimensional gold nanoparticle patterns over large areas with high regularity for surface-enhanced Raman scattering (SERS). We achieved a highly sensitive SERS colloid surface by optimizing temperature and immersion time. The surfaces were characterized by X-ray photoelectron spectroscopy, UV–Vis, atomic force microscopy, and scanning electron microscopy. The SERS activity of surfaces was compared by using two techniques: “dip” and “dip and dry” in an aqueous solution of 10−6 M crystal violet. The influence of the morphology of the surface was investigated with both the dip and dip and dry techniques.  相似文献   

19.
Surface-enhanced Raman scattering (SERS) is highly sensitive and label-free analytical technique based on Raman spectroscopy aided by field-multiplying plasmonic nanostructures. We report the use of SERS measurements of patient urine in conjunction with biostatistical algorithms to assess the treatment response of prostate cancer (PCa) in 12 recurrent (Re) and 63 nonrecurrent (NRe) patient cohorts. Multiple Raman spectra are collected from each urine sample using monodisperse silver nanoparticles (AgNPs) for Raman signal enhancement. Genetic algorithms-partial least squares-linear discriminant analysis (GA-PLS-LDA) was employed to analyze the Raman spectra. Comprehensive GA-PLS-LDA analyses of these Raman spectral features (p = 3.50 × 10−16 ) yield an accuracy of 86.6%, sensitivity of 86.0%, and specificity 87.1% in differentiating the Re and NRe cohorts. Our study suggests that SERS combined with multivariate GA-PLS-LDA algorithm can potentially be used to detect and monitor the risk of PCa relapse and to aid with decision-making for optimal intermediate secondary therapy to recurred patients.  相似文献   

20.
Using silver nanoparticles (AgNPs) as the nanocatalyst, l ‐cysteine rapidly reduced HAuCl4 to make a stable gold nanoparticle sol (Ag/AuNP) that had a high surface‐enhanced Raman scattering (SERS) activity in the presence of Victoria blue 4R (VB4r) molecular probes. Under the selected conditions, chondroitin sulfate (Chs) reacted with the VB4r probes to form associated complexes that caused the SERS effect to decrease to 1618 cm?1. The decreased SERS intensity was linear to the Chs concentration in the range 3.1–500 ng/ml, with a detection limit of 1.0 ng/ml Chs. Accordingly, we established a simple and sensitive SERS quantitative analysis method to determine Chs in real samples, with a relative standard deviation of 1.47–3.16% and a recovery rate of 97.6–104.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号